# Variational Hamiltonian Monte Carlo via Score Matching

Cheng Zhang Joint work with Babak Shahbaba and Hongkai Zhao

July 25, 2018

Computational Biology Program Fred Hutchinson Cancer Research Center

## Introduction

#### • Model setup

- Data:  $\mathcal{D} = \{y^1, \dots, y^N\}$
- Model:  $p(\mathcal{D}|\boldsymbol{ heta})$ , where  $\boldsymbol{ heta}$  is the model parameter
- Prior:  $p(\theta)$
- Goal: learn the posterior distribution

$$p(\theta|\mathcal{D}) = rac{p(\mathcal{D}| heta) \cdot p( heta)}{p(\mathcal{D})} \propto p(\mathcal{D}, heta)$$

- Difficulty: for most useful models, e.g. Bayesian logistic regression, Bayesian neural networks, and topic models, p(D) is unknown.
- Current approaches
  - Markov chain Monte Carlo (MCMC) [Metropolis et al., 1953].
  - Variational inference (VI) [Jordan et al., 1999].

#### Markov chain Monte Carlo

- Main idea: construct a Markov chain that converges to the target posterior p(θ|D)
- Metroplis-Hastings:
  - 1. sample  $m{ heta}' \sim q(m{ heta}'|m{ heta})$
  - 2. accept  $\theta'$  with probability

$$\alpha(\boldsymbol{\theta} \to \boldsymbol{\theta}') = \min\left(1, \frac{p(\mathcal{D}, \boldsymbol{\theta}')q(\boldsymbol{\theta}|\boldsymbol{\theta}')}{p(\mathcal{D}, \boldsymbol{\theta})q(\boldsymbol{\theta}'|\boldsymbol{\theta})}\right)$$

#### Simple examples

 Random walk Metropolis (RWM)

$$\boldsymbol{ heta}' \sim q(\boldsymbol{ heta}'|\boldsymbol{ heta}) = \mathcal{N}(\boldsymbol{ heta}, \sigma^2 \boldsymbol{I})$$

• Gibbs sampling

$$\theta'_i \sim p(\theta_i | \theta_{-i}, \mathcal{D}), \ i = 1, \dots$$



- RWM

#### **Fixed-form Variational Bayes**

Variational inference (VI) seeks the best candidate from a family of tractable distributions that minimizes a statistical distance measure to the target posterior, usually the Kullback-Leibler (KL) divergence

$$\hat{\eta} = rgmin_{\eta} D_{\mathcal{KL}}(q_{\eta}( heta) \| p( heta | \mathcal{D}))$$

equivalent to maximizing the evidence lower bound (ELBO)

$$L(\eta, \mathcal{D}) = \mathbb{E}_{q_{\eta}(\theta)} \log \left( rac{p(\theta, \mathcal{D})}{q_{\eta}(\theta)} 
ight) \leq \log p(\mathcal{D})$$

VI tends to be faster than MCMC. Fixed-form VI further assumes

$$q_{\eta}( heta) = \exp(T( heta)\eta - A(\eta))$$

- Potentially more accurate than using mean-field assumptions
- Still requires tractable approximating distributions which usually have limited expressive power.

## Hamiltonian Monte Carlo

#### Hamiltonian Dynamics

- Main idea: suppress the random walk behavior using a Hamiltonian dynamical system.
- The Hamiltonian energy function

$$H(\theta, \mathbf{r}) = U(\theta) + K(\mathbf{r})$$

- Potential:  $U(\theta) = -\log p(\theta, D)$
- Kinetic:  $K(\mathbf{r}) = \frac{1}{2}\mathbf{r}^{\mathsf{T}}\mathbf{M}^{-1}\mathbf{r}$

The joint density

$$p(\theta, \mathbf{r}) \propto \exp(-U(\theta) - K(\mathbf{r})) \propto p(\theta|\mathcal{D}) \cdot \mathcal{N}(\mathbf{r}|\mathbf{0}, \mathbf{M})$$

• Hamilton's equations

$$\frac{d\theta}{dt} = \nabla_{\mathbf{r}} H = \nabla_{\mathbf{r}} K(\mathbf{r}), \quad \frac{d\mathbf{r}}{dt} = -\nabla_{\theta} H = -\nabla_{\theta} U(\theta)$$

Let  $\mathbf{z} = (\boldsymbol{\theta}, \mathbf{r}) \in \mathbb{R}^{2d}$ , a Hamiltonian flow  $\phi(\mathbf{z}, t)$  is a solution to the Hamilton's equations such that  $\phi(\mathbf{z}, 0) = \mathbf{z}$ .

• Reversibility

$$\phi((\boldsymbol{\theta}_0, \boldsymbol{r}_0), T) = (\boldsymbol{\theta}_T, \boldsymbol{r}_T)$$

$$\Leftrightarrow$$

$$\phi((\boldsymbol{\theta}_T, -\boldsymbol{r}_T), T) = (\boldsymbol{\theta}_0, -\boldsymbol{r}_0)$$

• Volume preservation

$$\left|\det \frac{\partial \phi(\boldsymbol{z},t)}{\partial \boldsymbol{z}}\right| = 1$$

• Energy preservation

 $H(\phi(\boldsymbol{z},t))=H(\boldsymbol{z})$ 



### Hamiltonian Monte Carlo

• Numerical integrator (leap-frog)

$$\mathbf{r}(t+\epsilon/2) = \mathbf{r}(t) - \epsilon/2\nabla_{\boldsymbol{\theta}} U(\boldsymbol{\theta}(t))$$
$$\boldsymbol{\theta}(t+\epsilon) = \boldsymbol{\theta}(t) + \epsilon \mathbf{M}^{-1} \mathbf{r}(t+\epsilon/2)$$
$$\mathbf{r}(t+\epsilon) = \mathbf{r}(t+\epsilon/2) - \epsilon/2\nabla_{\boldsymbol{\theta}} U(\boldsymbol{\theta}(t+\epsilon))$$

Leap-frog scheme is time reversible and volume preserving, but **does not** preserve the Hamiltonian.

• Hamiltonian Monte Carlo

• 
$$\mathbf{z}' = \hat{\phi}(\mathbf{z}, T)$$

accept z' with probability

$$\alpha_{hmc}(z \rightarrow z') = \min(1, \exp(H(z) - H(z')))$$



# Scalable Markov chain Monte Carlo

### Stochastic Gradient MCMC

• Using stochastic gradient

$$abla_{\boldsymbol{ heta}} \tilde{U}(\boldsymbol{ heta}) = -\frac{N}{n} \sum_{i=1}^{n} \nabla_{\boldsymbol{ heta}} \log p(y^{t_i} | \boldsymbol{ heta}) - \nabla_{\boldsymbol{ heta}} \log p(\boldsymbol{ heta}) \sim \mathcal{O}(n)$$

- Examples:
  - SGLD [Welling and Teh, 2011]
  - SGHMC [Chen et al., 2014]
  - SGNHT [Ding et al., 2014]
  - etc.
- Convergence is based on SDE theory (Fokker-Planck equation)
  - Require small stepsize to reduce the noise introduced by stochastic gradients
  - Sacrifice exploration efficiency for scalability [Betancourt, 2015]

### Surrogate Method

• Function Approximation [Neal, 1995, Liu, 2001]

 $U^{\mathcal{S}}(\theta) \approx U(\theta) \quad \Rightarrow \quad \nabla_{\theta} U^{\mathcal{S}}(\theta) \approx \nabla_{\theta} U(\theta)$ 

- $U^{S}(\theta)$  should be
  - cheap to compute
  - flexible enough for good approximation

Stochastic gradients can be viewed as unbiased function approximations.

- Current Approaches
  - Gaussian process [Rasmussen, 2003, Lan et al., 2015]
  - Reproducing kernel Hilbert space [Strathmann et al., 2015]
  - Random network [Zhang et al., 2015]

### Bias, Variance, and Computation Trade-off



# Variational Hamiltonian Monte Carlo

• Surrogate induced distribution

$$q_{oldsymbol{\psi}}(oldsymbol{ heta}) \propto \exp\left(-U^{\mathcal{S}}_{oldsymbol{\psi}}(oldsymbol{ heta})
ight), \quad oldsymbol{\psi} \in \Omega$$

where

$$\Omega := \{ \psi \text{ s.t. } \int \exp\left(-U^{S}_{\psi}(\theta)\right) d\theta < \infty \}$$

• Free-form variational inference to improve approximation

$$\hat{\psi} = \mathop{\mathrm{arg\,min}}_{\psi \in \Omega} D\left(q_{\psi}(oldsymbol{ heta}), p(oldsymbol{ heta}, \mathcal{D})
ight)$$

*D* is some statistical distance measure between unnormalized densities.

**Remark**: Unlike fixed-form VI,  $q_{\psi}(\theta)$  does not have to be tractable and  $U_{\psi}^{S}(\theta)$  enjoys free style construction.

Random Bases Surrogate:  $U_{\psi}^{S}(\theta) = \sum_{i=1}^{s} \psi_{i} a(\theta; \gamma_{i})$ 

#### Theorem (Rahimi and Recht 2008)

Let  $\mu$  be any probability measure,  $\|f\|_{\mu}^2 = \int f^2(\theta)\mu(d\theta)$ . Suppose  $\sup_{\theta,\gamma} |a(\theta;\gamma)| \leq 1$ . Fix  $f \in \mathcal{F}_p$ .  $\forall \delta > 0$ , with probability at least  $1 - \delta$  over  $\gamma_i \stackrel{\text{iid}}{\sim} p(\gamma)$ , there exist  $\psi_1, \ldots, \psi_s$  such that

$$U_{\psi}^{S}(\boldsymbol{ heta}) = \sum_{i=1}^{s} \psi_{i} \boldsymbol{a}(\boldsymbol{ heta}; \boldsymbol{\gamma}_{i})$$

satisfies

$$\|U_{\psi}^{\mathsf{S}} - f\|_{\mu} < \frac{\|f\|_{p}}{\sqrt{s}} \left(1 + \sqrt{2\log \frac{1}{\delta}}\right)$$

where  $||f||_p = \sup_{\gamma} \left| \frac{\psi_f(\gamma)}{p(\gamma)} \right|$ 

• "Score matching" [Hyvärinen, 2005]

$$\tilde{D}_{SM}(q_{\psi}(\boldsymbol{\theta}) \| p(\boldsymbol{\theta}, \mathcal{D})) = \frac{1}{2} \int \boldsymbol{q}_{\psi}(\boldsymbol{\theta}) \| \nabla_{\boldsymbol{\theta}} U_{\psi}^{S}(\boldsymbol{\theta}) - \nabla_{\boldsymbol{\theta}} U(\boldsymbol{\theta}) \|^{2} d\boldsymbol{\theta}$$

• Consistency

$$egin{aligned} & ilde{D}_{SM}(q_\psi( heta)\|p( heta,\mathcal{D})) = 0 \ \ \Rightarrow U^S_\psi( heta) = U( heta) + ext{Constant} \Rightarrow q_\psi( heta) = p( heta|\mathcal{D}) \end{aligned}$$

#### Surrogate Induced Hamiltonian Flow

Define  $H^{S}_{\psi}(\theta, \mathbf{r}) = U^{S}_{\psi}(\theta) + K(\mathbf{r})$ , a surrogate induced Hamiltonian flow (SIHF) is a solution  $\phi^{S}_{\psi}(\mathbf{z}, t)$  to the modified Hamilton's equations

$$rac{dm{ heta}}{dt} = m{M}^{-1}m{r}, \quad rac{dm{r}}{dt} = -
abla_{m{ heta}}m{U}_{m{\psi}}^{m{S}}(m{ heta})$$

such that  $\phi^{S}_{\psi}(\boldsymbol{z},0) = \boldsymbol{z}$ 



#### Variational Hamiltonian Monte Carlo

- Sample by HMC from the current surrogate induced distribution
  - $\mathbf{z}' = \hat{\phi}^{S}_{\psi}(\mathbf{z}, T)$
  - accept z' with probability

$$lpha_{\textit{vhmc}}(m{z} 
ightarrow m{z}') = \min\left(1, \exp(H^S_\psi(m{z}) - H^S_\psi(m{z}'))
ight)$$

• Empirical score matching distance minimization (with regularization)

$$\hat{\psi}^{(t)} = \arg\min_{\psi} \frac{1}{2} \sum_{n=1}^{t} \|\sum_{i=1}^{s} \nabla_{\theta} a(\theta^{(n)}; \gamma_i) \psi_i - \nabla_{\theta} U(\theta^{(n)}) \|^2 + \frac{\lambda}{2} \|\psi\|^2$$

• Regularized surrogate can be helpful at the start, e.g.

$$V_{\psi^{(t)}}^{\mathcal{S}}(\boldsymbol{\theta}) = \mu_t U_{\psi^{(t)}}^{\mathcal{S}}(\boldsymbol{\theta}) + (1 - \mu_t) \cdot \frac{1}{2} (\boldsymbol{\theta} - \boldsymbol{\theta}^L)^{\mathsf{T}} \nabla_{\boldsymbol{\theta}}^2 U(\boldsymbol{\theta})^L (\boldsymbol{\theta} - \boldsymbol{\theta}^L)$$

where  $\mu_t$  is a transition schedule that goes from 0 to 1 as t increases.

 $\psi$  can be updated online. Denote  $A(\theta) = (\nabla_{\theta} a(\theta; \gamma_1), \dots, \nabla_{\theta} a(\theta; \gamma_s))$ 

#### **Online Variational HMC**

1: Set  $\lambda, \mu_t, s$  and HMC parameters  $\varepsilon, L$ . Initialize  $\theta^{(0)}$  to a first guess,  $\psi^{(0)} = \mathbf{0}, \mathbf{C}^{(0)} = \frac{1}{\lambda} \mathbf{I}_s$ . Find  $\theta^L$  and compute  $\nabla^2_{\theta} U(\theta)^L$ .

2: **for** 
$$t = 1$$
 to *T* **do**

3: Perform one HMC iteration for the regularized surrogate induced distribution  $q_{\psi^{(t)}}(\theta) \propto \exp(-V_{\psi^{(t)}}^{S}(\theta))$  to draw  $(\theta^{(t+1)}, \mathbf{r}^{(t+1)})$ 

4: Acquire 
$$\nabla_{\theta} U(\theta^{(t+1)})$$
 and  $A_{t+1} = A(\theta^{(t+1)})$ 

5: Compute 
$$W^{(t+1)} = \boldsymbol{C}^{(t)} A_{t+1}^{\mathsf{T}} [\boldsymbol{I}_d + A_{t+1} \boldsymbol{C}^{(t)} A_{t+1}^{\mathsf{T}}]^{-1}$$

6: Update 
$$\psi^{(t+1)}, \boldsymbol{C}^{(t+1)}$$
 as follows

7: 
$$\psi^{(t+1)} = \psi^{(t)} + W^{(t+1)} (\nabla_{\theta} U(\theta^{(t+1)}) - A_{t+1} \psi^{(t)})$$

8: 
$$\boldsymbol{C}^{(t+1)} = \boldsymbol{C}^{(t)} - W^{(t+1)} A_{t+1} \boldsymbol{C}^{(t)}$$

9: end for

- Compared to Stochastic linear regression [Salimans and Knowles, 2013], VHMC allows free-form intractable approximate distributions.
- Compared to RNSHMC [Zhang et al., 2015] and Kamiltonian Monte Carlo [Strathmann et al., 2015], VHMC enables variational approximation that further reduces the computation in the correction step.

## Experiments

### A Beta-binomial Model for Overdispersion



**Figure 1: Left**: Approximate posteriors for a varying number of hidden neurons. Exact posterior at bottom right. **Right**: KL-divergence and score matching squared distance between the surrogate approximation and the exact posterior density using an increasing number of hidden neurons.

#### **Bayesian Probit Regression**



**Figure 2:** RMSE of the approximate posterior mean as a function of the number of likelihood evaluations for different variational Bayesian approaches and VHMC algorithm.

#### **Bayesian Logistic Regression**



**Figure 3:** Final error of logistic regression at time T versus mixing rate for the mean (top) and covariance (bottom) estimates after 300 (left) and 3000 (right) seconds of computation. Each algorithm is run using different setting of parameters.

#### **Independent Component Analysis**



**Figure 4:** Convergence of Amari distance on the MEG data for HMC, SGLD and our Variational HMC algorithm.

### Conclusion

**VHMC** provides a general framework that combines variational inference and MCMC for scalable Bayesian inference.

• Accelerate HMC via efficient surrogate

$$rac{dm{ heta}}{dt} = m{M}^{-1}m{r}, \quad rac{dm{r}}{dt} = -
abla_{m{ heta}}m{U}_{m{\psi}}^{m{S}}(m{ heta})$$

• Improve surrogate via free-form variational inference

$$\hat{\psi} = \mathop{rg\,min}\limits_{oldsymbol{\psi}\in\Omega} ilde{D}_{\mathcal{SM}}\left(q_{oldsymbol{\psi}}(oldsymbol{ heta}) \| oldsymbol{p}(oldsymbol{ heta},\mathcal{D})
ight)$$

Future work:

- Extension to high dimensional problems using more sophisticate structures (e.g., deep neural networks).
- Other distance measure for unnormalized densities (e.g. stein's discrepancy).

# Questions?

• Linear relaxation

$$\tilde{q}_{\tilde{\eta}}(\theta) = \exp(\tilde{T}(\theta)\tilde{\eta}), \quad \tilde{T}(\theta) = (1, T(\theta)), \quad \tilde{\eta} = (\eta_0, \eta^{\intercal})^{\intercal}$$

• Minimizing unnormalized KL divergence

$$\begin{split} \hat{\tilde{\eta}} &= \operatorname*{arg\,min}_{\tilde{\eta}} \tilde{D}_{\mathcal{KL}}(\tilde{q}_{\tilde{\eta}}(\theta) \| p(\theta, \mathcal{D})) \\ &= \left( \mathbb{E}_{q}(\tilde{T}(\theta)^{\mathsf{T}} \tilde{T}(\theta)) \right)^{-1} \mathbb{E}_{q}(\tilde{T}(\theta)^{\mathsf{T}} \log p(\theta, \mathcal{D})) \end{split}$$

• Fixed-point update

$$\hat{\tilde{\eta}}^{(n+1)} = \left( \mathbb{E}_{q_{\hat{\tilde{\eta}}^{(n)}}}(\tilde{T}(\theta)^{\intercal}\tilde{T}(\theta)) \right)^{-1} \mathbb{E}_{q_{\hat{\tilde{\eta}}^{(n)}}}(\tilde{T}(\theta)^{\intercal} \log p(\theta, \mathcal{D}))$$

See Salimans and Knowles [2013] for more details and variations.

### A Dense Subset in RKHS

Reproducing kernel

$$k( heta, heta') = \int p(\gamma) a( heta;\gamma) a( heta';\gamma) d\gamma$$

related reproducing kernel Hilbert space (RKHS)

$$\mathcal{H} := \left\{ f(\boldsymbol{\theta}) = \int \psi_f(\boldsymbol{\gamma}) \mathsf{a}(\boldsymbol{\theta};\boldsymbol{\gamma}) d\boldsymbol{\gamma} \text{ s.t. } \int \frac{\psi_f^2(\boldsymbol{\gamma})}{p(\boldsymbol{\gamma})} d\boldsymbol{\gamma} < \infty \right\}$$

with an inner product  $\langle f, g \rangle_{\mathcal{H}} = \int \frac{\psi_f(\gamma)\psi_g(\gamma)}{p(\gamma)}d\gamma$  between  $f(\theta)$  and  $g(\theta) = \int \psi_g(\gamma)a(\theta;\gamma)d\gamma$ .

#### A Dense Subset

Define

$$\mathcal{F}_{p} := \left\{ f(\boldsymbol{\theta}) \in \mathcal{H} \text{ s.t. } \sup_{\boldsymbol{\gamma}} \left| \frac{\psi_{f}(\boldsymbol{\gamma})}{p(\boldsymbol{\gamma})} \right| < \infty \right\}$$

 $\mathcal{F}_p$  is dense in  $\mathcal{H}$ . See [Rahimi and Recht, 2008] for more details.

### References

- M. Betancourt. The fundamental incompatibility of scalable Hamiltonian Monte Carlo and naive data subsampling. In *Proceedings of the 32nd International Conference on Machine Learning (ICML 2015)*, 2015.
- T. Chen, E. B. Fox, and C. Guestrin. Stochastic gradient hamiltonian monte carlo. In *Proceedings of 31st International Conference on Machine Learning (ICML 2014)*, 2014.
- N. Ding, Y. Fang, R. Babbush, C. Chen, R. D. Skell, and H. Neven. Bayesian sampling using stochastic gradient thermostats. In Advances in Neural Information Processing Systems 27 (NIPS 2014), 2014.
- A. Hyvärinen. Estimation of non-normalized statistical models by score matching. *Journal of Machine Learning Research*, 6:695–709, 2005.

- M. I. Jordan, Z. Ghahramani, T. S. Jaakkola, and L. K. Saul. An introduction to variational methods for graphical methods. In *Machine Learning*, pages 183–233. MIT Press, 1999.
- D. P. Kingma and M. Welling. Auto-encoding variational bayes. In *The* 2nd International Conference on Learning Representations (ICLR), 2013.
- S. Lan, T. Bui, M. Christie, and M. Girolami. Emulation of higher-order tensors in manifold Monte Carlo methods for Bayesian inverse problems. arxiv.org/abs/1507.06244, 2015.
- J. S. Liu. Monte Carlo Strategies in Scientific Computing. Springer, 2001.
- Y. A. Ma, T. Chen, and E. Fox. A complete recipe for stochastic gradient mcmc. In Advances in Neural Information Processing Systems 28 (NIPS 2015), 2015.
- N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and
   E. Teller. Equation of State Calculations by Fast Computing Machines. *The Journal of Chemical Physics*, 21(6):1087–1092, 1953.

- R. M. Neal. *Bayesian learning for neural networks*. PhD thesis, Department of Computer Science, University of Toronto, 1995.
- A. Rahimi and B. Recht. Uniform approximation of functions with random bases. In *Proc. 46th Ann. Allerton Conf. Commun., Contr. Comput.*, 2008.
- C. E. Rasmussen. Gaussian processes to speed up hybrid monte carlo for expensive bayesian integrals. *Bayesian Statistics*, 7:651–659, 2003.
- T. Salimans and D. A. Knowles. Fixed-form variational posterior approximation through stochastic linear regression. *Bayesian Analysis*, 8(4):837–882, 2013.
- H. Strathmann, D. Sejdinovic, S. Livingstone, Z. Szabo, and A. Gretton. Gradient-free Hamiltonian Monte Carlo with efficient kernel exponential families. In *Advances in Neual Information Processing Systems*, Cambridge, MA, 2015. MIT Press.
- M. Welling and Y. W. Teh. Bayesian learning via stochastic gradient Langevin dynamics. In *Proceedings of the International Conference on Machine Learning*, 2011.

C. Zhang, B. Shahbaba, and H. K. Zhao. Hamiltonian Monte Carlo Acceleration Using Surrogate Functions with Random Bases. arxiv.org/abs/1506.05555, 2015.