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Introduction



Bayesian Inference

e Model setup
e Data: D= {y',...,y"}
e Model: p(D|0), where 6 is the model parameter
e Prior: p(0)

e Goal: learn the posterior distribution
p(D|6) - p(0)
p(D)

e Difficulty: for most useful models, e.g. Bayesian logistic regression,

p(6]D) = x p(D, 6)

Bayesian neural networks, and topic models, p(D) is unknown.
e Current approaches

e Markov chain Monte Carlo (MCMC) [Metropolis et al., 1953].
e Variational inference (V1) [Jordan et al., 1999].



Markov chain Monte Carlo

e Main idea: construct a Markov chain that converges to the target
posterior p(0|D)
e Metroplis-Hastings:
1. sample 8’ ~ q(0'|0)
2. accept 6’ with probability

M p(D,6")q(6]6")
a(@ — 0") = min (1, W)

Simple examples
* RWM
e Random walk Metropolis
(RWM)

et

0' ~ q(0'|0) = N(0,5°])
e Gibbs sampling

011 ~ p(01|0717ID)3 = 13



Fixed-form Variational Bayes

Variational inference (V1) seeks the best candidate from a family of
tractable distributions that minimizes a statistical distance measure to
the target posterior, usually the Kullback-Leibler (KL) divergence

7= argnmin Dki(an(0)|p(8]D))

equivalent to maximizing the evidence lower bound (ELBO)

L(1, D) = Eq (o) log (”éf(’;’))

VI tends to be faster than MCMC. Fixed-form VI further assumes

n(0) = exp(T(6)n — A(n))

) < log p(D)

e Potentially more accurate than using mean-field assumptions

e Still requires tractable approximating distributions which usually
have limited expressive power.



Hamiltonian Monte Carlo



Hamiltonian Dynamics

e Main idea: suppress the random walk behavior using a Hamiltonian

dynamical system.
e The Hamiltonian energy function

H(8,r)=U(0) + K(r)

—log p(6, D)

e Potential: U(0) =
%rTM*Ir

e Kinetic: K(r) =
The joint density
p(0,r) o< exp(—=U(0) — K(r)) o p(6]D) - N(r|0, M)

e Hamilton's equations
do d
= V,H=V,K(r), d{ — VeH = —VoU(8)

dt



Hamiltonian Flow

Let z = (0, r) € R??  a Hamiltonian flow ¢(z,t) is a solution to the
Hamilton's equations such that ¢(z,0) = z.

e Reversibility

#((60,r0), T) = (O1,r7)
<

#((61, —rr), T) = (60, —r0)

e Volume preservation

'detM‘ —1
o0z

e Energy preservation

H(o(z, 1)) = H(2)



Hamiltonian Monte Carlo

e Numerical integrator (leap-frog)
r(t+€¢/2) = r(£) — ¢/2Vo U(6(1))
O(t+¢) = 0(t) + eMr(t +¢/2)
r(t+e)=r(t+¢/2) —¢/2VoU(O(t + €))

Leap-frog scheme is time

reversible and volume
preserving, but does not S

preserve the Hamiltonian.

e Hamiltonian Monte Carlo
o 2 =¢(z,T)
e accept z' with probability

hme(z = 2") = min (1, exp(H(z) — H(Z")))



Scalable Markov chain Monte
Carlo



Stochastic Gradient MCMC

e Using stochastic gradient
. N < .
VoU(0) = —— > Vaologp(y10) — Ve log p(6) ~ O(n)
i=1

e Examples:
e SGLD [Welling and Teh, 2011]
e SGHMC [Chen et al., 2014]
e SGNHT [Ding et al., 2014]
e etc.

e Convergence is based on SDE theory (Fokker-Planck equation)

e Require small stepsize to reduce the noise introduced by stochastic
gradients
e Sacrifice exploration efficiency for scalability [Betancourt, 2015]



Surrogate Method

e Function Approximation [Neal, 1995, Liu, 2001]
US(8) =~ UB) = VeU>(0)~VeU(0)

U>(8) should be
e cheap to compute
e flexible enough for good approximation
Stochastic gradients can be viewed as unbiased function
approximations.
e Current Approaches

e Gaussian process [Rasmussen, 2003, Lan et al., 2015]
e Reproducing kernel Hilbert space [Strathmann et al., 2015]
e Random network [Zhang et al., 2015]



Bias, Variance, and Computation

Variance

Bias



Variational Hamiltonian Monte
Carlo




Surrogate Method: A Variational Perspective

e Surrogate induced distribution

qu(60) cxexp (~U3(6)), v eQ

where

Q= {1 st /exp (—U3(6)) d6 < oo}

e Free-form variational inference to improve approximation

~

¢ = argmin D (q¢(0),p(07'D))
Pe

D is some statistical distance measure between unnormalized
densities.

Remark: Unlike fixed-form VI, g.,(8) does not have to be tractable
and U;Z(G) enjoys free style construction.
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Random Bases Surrogate

Random Bases Surrogate: Ui(@) = > via(0; ;)
Theorem (Rahimi and Recht 2008)

= [ (0 ). Suppose
supg 7| ( v)| < 1. Fix f € Fp. V¢ > 0, with probablllty at least 1 — 9
over «; o p(7), there exist 11, ..., 1 such that
satisfies

g 11l 1
Uy, — fllu < s 1+ 2|og5

() ‘
p(~)

where |||, = sup,,
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Score Matching

e "Score matching” [Hyvarinen, 2005]

Dem(as(6)1p(6.2)) = 5 [ au(©)VaU3(6) ~ VoU(6) a0

e Consistency
Dsm(ay(8)lp(6,D)) =0

= U;Z(B) = U(0) + Constant = g (6) = p(6|D)
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Surrogate Induced Hamiltonian Flow

Define Hi(@, r)= U;z(O) + K(r), a surrogate induced Hamiltonian flow
(SIHF) is a solution ¢fp(z, t) to the modified Hamilton's equations

do dr
-7 Mfl Db S
dt b VoUy(0)
such that gzﬁf/)(z,O) =z
Forcemap HF SIHF
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Variational Hamiltonian Monte Carlo

e Sample by HMC from the current surrogate induced distribution

° 7 = gz@f,,(z, T)
e accept z' with probability

Avhme(z = Z') = min (1,exp(Hfb(z) — H;f,(z’)))

e Empirical score matching distance minimization (with regularization)

/\ )
pl) = arg min = Z I ZVga )y — Vo U(8™)|? + 5 |||

n1/1

e Regularized surrogate can be helpful at the start, e.g.
1
V{Z(:)(G) = NtUS,m(@) + (1= pe) - 5(9 —65)TVaU(0) (6 - 6")
where p; is a transition schedule that goes from 0 to 1 as t increases.
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Online Variational Hamiltonian Monte Carlo

1) can be updated online. Denote A(0) = (Vga(0;v1),...,Vea(6;7s))

Online Variational HMC

1. Set A, ut, s and HMC parameters e, L. Initialize ) to a first
guess,)(® =0,C = 1. Find 8 and compute V3 U(0)".

2: fort=1to T do

3:  Perform one HMC iteration for the regularized surrogate induced

distribution gy, (0) o exp(fV{Z(t)(O)) to draw (@(t+1), p(t+1))

4. Acquire VoU(0(1) and A,y = A(O(F1)

5. Compute WD = COAT [l + A1 COAT 17T

6: Update 9(tt1) C(t+1) as follows

7

8

9

. end for
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Connections to Related Work

e Compared to Stochastic linear regression [Salimans and Knowles,
2013], VHMC allows free-form intractable approximate distributions.

e Compared to RNSHMC [Zhang et al., 2015] and Kamiltonian Monte
Carlo [Strathmann et al., 2015], VHMC enables variational
approximation that further reduces the computation in the
correction step.
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Experiments




A Beta-binomial Model for Overdispersion
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Figure 1: Left: Approximate posteriors for a varying number of hidden
neurons. Exact posterior at bottom right. Right: KL-divergence and score
matching squared distance between the surrogate approximation and the exact
posterior density using an increasing number of hidden neurons.
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Bayesian Probit Regression
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Figure 2: RMSE of the approximate posterior mean as a function of the
number of likelihood evaluations for different variational Bayesian approaches
and VHMC algorithm. 18



Bayesian Logistic Regression
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Figure 3: Final error of logistic regression at time T versus mixing rate for the
mean (top) and covariance (bottom) estimates after 300 (left) and 3000
(right) seconds of computation. Each algorithm is run using different setting of

parameters. 19



Independent Component Analysis
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Figure 4: Convergence of Amari distance on the MEG data for HMC, SGLD

and our Variational HMC algorithm.
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Conclusion




Summary and Future Work

VHMC provides a general framework that combines variational inference
and MCMC for scalable Bayesian inference.

e Accelerate HMC via efficient surrogate

o dr s
E = r, E =5 VBUw(e)

e Improve surrogate via free-form variational inference
% = arg min Dsu (4 (6)]|p(0, D))
PeQ

Future work:

e Extension to high dimensional problems using more sophisticate
structures (e.g., deep neural networks).
e Other distance measure for unnormalized densities (e.g. stein’s

discrepancy).
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Questions?



Stochastic Linear Regression

e Linear relaxation

G7(0) = exp(T(0)77), T(0)=(1,T(8)), 1= (no,n")

e Minimizing unnormalized KL divergence

argﬁmin Dk (85(0)|p(6, D))

= (B(FO)7(6))) " Eo(F(0)" logp(6.D))

i

e Fixed-point update

HHD = (Eq,,, (T(0)T 7(9)))  Eqy,, (7(6)7 108 p(6.D))

See Salimans and Knowles [2013] for more details and variations.



A Dense Subset in RKHS

Reproducing kernel
k8.6 = [ p(1)a(6i)a(6:7)dy

related reproducing kernel Hilbert space (RKHS)

{ /7/)F ~)d~ s.t. /w’c d’y<oo}

W|th an inner product fw’ w"”(“’ d~ between f(0) and
- fwg 0, )d’Y-
A Dense Subset
Define b()
2l
Fp =1 f(0) € Hs.t. sup f ‘<oo}
7 { ©) ~ | p(v)

Fp is dense in H. See [Rahimi and Recht, 2008] for more details.
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