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Introduction 2/32

» Mean-field VI can be slow when the data size is large.

» Moreover, the conditional conjugacy required by mean-field
VI greatly reduces the general applicability of the method.

» Fortunately, as an optimization approach, VI allows us to
easily combine it with various scalable optimization
methods.

» In this lecture, we will introduce some of the recent
advancements on scalable variational inference, both for
mean-field VI and more general VI.

ez x Y

@

PEKING UNIVERSITY




Mean-field VI Could Be Data-inefficient 3/32

» A generic class of models

n

p(ﬁv 2, JI) = p(ﬁ) Hp(zivxi‘ﬂ)

i=1
» The mean-field approximation

n

q(8,2) = q(BIN) [ [ azles)

i=1
» Coordinate ascent could be data-ineflicient
A= Eq(z)(ng(xa Z))v QS: = Eq(ﬁ)(nf(xia B))

» Requires local computation for each data points.
> Aggregate these computation to update the global
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Gradients of The ELBO 4/32

» Recall that the A-ELBO (update to a constant) is

L(A) = Vad,( (a + ZE@ (zi, 7)) )\> + A,(\)
» Differentiating this w.r.t. A yields
VaL(\) = (a + Z Eg, (T (zi, i) — A)

> Similarly

Vo, L(¢i) = V3, Ae(¢) (Ex(ne(xi, B)) — ¢3)
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Natural Gradient 5/32

» The gradient of f at A, Vf(\) points in the same
direction as the solution to

argmax f(z +d)\), s.t. ||d\]? < €2
dA

for sufficiently small e.

» The gradient direction implicitly depends on the Euclidean
distance, which might not capture the distance between the
parameterized probability distribution ¢(5|\).

» We can use natural gradient instead, which points in the
same direction as the solution to

argdlgl\aax fz+dX\), st DE(g(BIN), q(BIA+dN)) <e

for sufficiently small €, where D" is the symmetrized KL

divergence. @ ez XY
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Natural Gradient 6/32

» We manage the symmetrized KL divergence constraint
with a Riemannian metric G(\)

DL (a(B10), a(BIA + X)) ~ dAT G(A)dX
as d\ — 0. G is the Fisher information matrix of ¢(5|\)
G(N) = Ex ((Valoga(BIN)(Valoga(51N) )
» The natural gradient (Amari, 1998)
VAS(A) £ GV
» When ¢(5|A) is in the prescribed exponential family

G(\) = Vidy(\)
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Stochastic Variational Inference 7/32

» The natural gradient of the ELBO

VistL, = (a + ) By, (T(2, xi))> —A

=1
Vol L = Ex(ne(wi, B)) — ¢

Classical coordinate ascent can be viewed as natural
gradient descent with step size one

» Use the noisy natural gradient instead
VA*L(A) = a+nEy, (T(zj,2;))—A, j ~ Uniform(1,...,n)

» This is a good noisy gradient
» The expectation is the exact gradient (unbiased).
» Depends merely on optimized local parameters (cheap).
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Stochastic Variational Inference 8/32

Input: data x, model p(, z, X).

Initialize A randomly. Set p, appropriately.

repeat
Sample j ~ Unif(1,...,n).

Set local parameter ¢ «— E, [m(ﬂ,xj)].
Set intermediate global parameter

A= a+nEy[t(Z;,x)].
Set global parameter

A=(1-pJ2r +Pzi-

until forever
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Stochastic Variational Inference in LDA 9/32
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Classic Coordinate Ascent

Gank x exp (E(log Oa k) + E(log Bruw,,.))

d—OH-Z(bdn, /\k—Tl+ZZ¢dnk Wd,n

d=1n=1
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Stochastic Variational Inference in LDA 10/32

» Sample a document wy uniform from the data set
> Estimate the local variational parameters using the current
topics. Forn=1,..., N

¢d,n,k X exp (E(log Hd,k‘) + E(lOg Bk,wd’n)) ) k= 17 cee 7K

N
Y4 =+ Z ¢d,n
n=1

» Form the intermediate topics from those local parameters
for noisy natural gradient

N
)\k:n+DZ¢d,n7kwd,nv ]{7:1,,K

n=1
» Update topics using noisy natural gradient

A= (1= p)A+ g\
(1= p)) A+ pt S
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Stochastic Variational Inference in LDA 11/32

Online 98K
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VI for General Models 12/32

» Mean-field VI works for conjugate-exponential models,
where the local optimal has closed-form solution.

» For more general models, we may not have this conditional
conjugacy

| 4
>
>
>
>

>

Nonlinear Time Series Models
Deep Latent Gaussian Models
Generalized Linear Models
Stochastic Volatility Models
Bayesian Neural Networks
Sigmoid Belief Network

» While we may derive a model specific bound for each of
these models (Knowles and Minka, 2011; Paisley et al.,
2012), it would be better if there is a solution that does not
entail model specific work.
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VI for Bayesian Logistic Regression 13/32

» The logistic regression model

1

= Ty SN0

y; ~ Bernoulli(p;), p;

» The mean-field approximation

d

9(8) = T[N Bjlus. 03)

Jj=1

» The ELBO is

L(p,0%) = Eq(log p(B) + log p(ylz, B) — log q(8))
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VI for Bayesian Logistic Regression 14/32

L(p,0%) = Eq(log p(8) — log ¢(B) + log p(y|, 3))

d d
1 1
= =5 2 (45 + ) + 5D loga +Eglogp(ylx, §) + Const
= <
d
> (loga? — i —07) + YT Xp —Ey(log(1 + exp(X5)))
7j=1

_1
2

» We can not compute the expectation term

» This hides the objective dependence on the variational
parameters, making it hard to directly optimize.
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Stochastic Optimization 15/32

» Let p(x,0) be the joint probability (i.e., the posterior up to
a constant), and g4(#) be our variational approximation

» The ELBO is

L(¢) = Eq(log p(x, 0) — log q4(0))

» Instead of requiring a closed-form lower bound and
differentiating afterwards, we can take derivatives directly

» As shown later, this leads to a stochastic optimization
approach that handles massive data sets as well.

ez x Y

@

PEKING UNIVERSITY




Score Function Estimator 16/32

» Compute the gradient
VoL = VyE4(logp(z,0) — log g4(0))
= /V¢q¢(0)(logp(a:, ) —logqy(6)) df
—q4(0)Vylogqe(0) do
— [ (6)V.s0ga,(6) oz (2.6) ~ og 44(6))

—q4(0)Vlogqe(8) do
— B, (Vg 4o(0)(log p(z,0) — log 4s(0) — 1))

. _ Vaqs(0)
Using V log gg0 = %

ez x Y

@

PEKING UNIVERSITY




Score Function Estimator 17/32

» Recall that

VoL = E, (Vlog 45(6)(log p(a, 0) — log 45(6) — 1))

» Note that
E,Vglogge(0) =0

» We can simplify the gradient as follows
VoL =Eq (Vg loggs(0)(logp(x, 0) —log 44(0)))

» This is known as score function estimator or REINFORCE
gradients (Williams, 1992; Ranganath et al., 2014; Minh et
al., 2014)
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Monte Carlo Estimate 18/32

VoL =Eq (Vglogqs(0)(log p(x, 0) — log qs(0)))

» Unbiased stochastic gradients via Monte Carlo!

S
1
5D Vologas(0:)(log p(x, 05) —og 4s(0)), 05 ~ a(6)

s=1

» The requirements for inference
» Sampling from ¢4 (6)
» Evaluating V4 log g4(0)
» Evaluating log p(z, 6) and log ¢4(0)
» This is called Black Box Variational Inference (BBVI):
no model specific work! (Ranganath et al., 2014)
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Basci BBVI 19/32

Algorithm 1: Basic Black Box Variational Inference
Input :Model logp(x,z),

Variational approximation q(z; v)
Output : Variational Parameters: v

while not converged do
z[s] ~ q // Draw S samples from ¢
p = t-th value of a Robbins Monro sequence
y=v+pi>°  V,logq(zls]; »)(logp(x,z[s]) —logq(z[s]; »))
t=t+1
end

Ranganath et al., 2014
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Basic BBVI Doesn’t Work 20/32

Variance of the gradient can be a problem

Varg, ) = Eq (Vg log 45(6) (log p(x, ) — log g4 () — V4 L)?)

2.0

e PDF
15 e Abs Mu Score

0.5

0.0

-2.0 -15 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0
Adapted from Blei, Ranganath and Mohamed

» magnitude of log p(x, ) — log gy (0) varies widely
P> rare values sampling

» too much variance to be useful
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Control Variates 21/32

» To make BBVI work in practice, we need methods to
reduce the variance of naive Monte Carlo estimates

» Control Variates. To reduce the variance of Monte Carlo
estimates of E(f(z)), we replace f with f such that
E(f(z)) =E(f(z)). A general class

f(z) = f(2) — a(h(z) — Eh(x))

—— PDF
5 — = x X
A ’ h=at » a can be chosen to minimize
5 fed the variance.
2 » £ is a function of our choice.
1 Good h have high correlation
0 with the original function f.

-1
—20 —-1.5 —-1.0 —-05 0.0 0.5 1.0 1.5 2.0
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Control Variates for VI 22/32

f(x) = f(x) — a(h(z) — Eh(z))

» For variational inference, we need h functions with known ¢
expectation

» A commonly used one is h(0) = V4loggs(6), where
Eq(Vglogge(0)) =0, Vg
» The variance of f is
Var(f) = Var(f) + a®Var(h) — 2aCov(f, h)

and the optimal scaling is a* = Cov(f, h)/Var(h). In
practice this can be estimated using the empirical variance

ez x Y
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Baseline 23/32

» When h(f) = V4 loggs(0), the control variate gradient is

VgL =Eq (Vyloggy(0)(logp(x, 0) —log qs(0) — a))

and a is called a baseline.
» Baselines can be constant, or input-dependent a(x).

» While we can estimate the baseline using the samples as
before, people often use a model-agnostic baseline to centre
the learning signal (Minh and Gregor, 2014)

p=argminE,({(x,0,¢) — ap(x))2
P

where the learning signal is
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Rao-Blackwellization 24/32

» We can use Rao-Blackwellization to reduce the variance by
integrating out some random variables.

» Consider the mean-field variational family

d
q(0) = [ ai(0:l¢:)
i=1

» Let q(;) be the distribution of variables that depend on the
ith variable (i.e., the Markov blanket of §; and 6;), and let
pi(z,0(;)) be the terms in the joint probability that depend
on those variables.

Vo, L =By, (Vg log qi(0i] 1) (log pi(z, (s)) — log ¢i(:]61)))

» This can be combined with control variates.
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The Reparameterization Trick 25/32

» Another commonly used variance reduction technique is
the reparameterization trick (Kingma et al., 2014;
Rezende et al., 2014)

» The Reparameterization
0=05(0), c~ale) = 6~ aq5(6)
> Example:
O0=co+pu, e~N(@O,1) <= 0~N(o0?)
» Compute the gradient via the reparameterization trick
VoL = VyE,, ) (log p(z, ) — log gy (6))

= v¢>]ECIe(€) (logp(x, g¢(6)) - IOg qd)(g¢(6)))
=Ey. (o Velogp(z, gg(€)) — log gs(ge(€)))
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Variance Comparison 26/32

10°
10!
107! Reparameterization
Reinforce
1073 Reinforce with

control variate
10° 10' 10*> 10°
Number of MC samples

Kucukelbir et al., 2016
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Score Function

Differentiates the density
V4e(0)

Works for general models,
including both discrete and
continuous models.

Works for large class of
variational approximations

May suffer from large
variance

Control Variates vs. Reparameterization 27/32

Reparameterization

Differentiates the function
Vg (logp(x,0) —logqy(0))
Requires differentiable
models

Requires variational
approximation to have
form 6 = g4(e)

Better behaved variance in
general
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Doubly Stochastic Optimization 28/32

» Scale up previous stochastic variational inference methods
to large data set via data subsampling.

> Replace the log joint distribution with unbiased stochastic
estimates

n m
log p(, 0) ~ log p(6) + Zl log p(zy,10), m < n

» Example: score function estimator
1 S
Vol =< ; Vg log g4 () <logp Zlogp 4,105

— logq¢(«95)>, s ~ qg(0)
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Summary 29/32

» When the data size is large, we can use stochastic
optimization to scale up VI

» For conditional exponential models, we can use noisy
natural gradient.
» For general models, naive stochastic gradient estimators

may have large variance, variance reduction techniques are
often required.

» Score function estimator (for both discrete and continuous
latent variable)
» The reparameterization trick (for continuous variable, and
requires reparameterizable variational family)
» We can also combine score function estimators with the
reparameterization trick for more general and robust
stochastic gradient estimators (Ruiz et al., 2016)
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