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Bayesian Inference 2/33

▶ A Bayesian probabilistic model includes the conditional
distribution p(x|θ) of observed variable x given the model
parameter θ, and the prior p(θ), which gives a joint
distribution

p(x, θ) = p(x|θ)p(θ)

▶ Inference about the parameter θ is through the posterior,
the conditional distribution of the parameters given the
observations

p(θ|x) = p(x, θ)

p(x)

▶ For most interesting models, the denominator is not
tractable. We appeal to approximate posterior inference.
▶ Markov chain Monte Carlo – We’ve introduced
▶ Variational inference – The topic for this lecture!



Variational Inference 3/33

q∗(θ)
p(θ|x)

Q
q∗(θ) = argmin

q∈Q
KL (q(θ)∥p(θ|x))

▶ VI turns inference into optimization

▶ Specify a variational family of distributions over the model
parameters

Q = {qϕ(θ);ϕ ∈ Φ}

▶ Fit the variational parameters ϕ to minimize the distance
(often in terms of KL divergence) to the exact posterior



Example: Mixture of Gaussians 4/33

Adapted from David Blei
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▶ Idea adapted from statistical physics – mean-field methods
to fit a neural network (Peterson and Anderson, 1987).

▶ Picked up by Jordan’s lab in the early 1990s, generalized it
to many probabilistic models. (see Jordan et al., 1999 for
an overview)

▶ Contributions from Hinton’s group: mean-field for neural
networks (Hinton and Van Camp, 1993); connection to the
EM algorithm (Neal and Hinton, 1993).
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▶ More and more work on variational inference now, making
it scalable, easier to derive, faster, more accurate, and
applying it to more complicated models and applications.

▶ Modern VI touches many important areas: generative
models, probabilistic programming, reinforcement learning,
neural networks, convex optimization, Bayesian statistics,
and myriad applications.



Kullback-Leibler Divergence 7/33

▶ We use Kullback-Leibler (KL) divergence to measure the
distance between two distributions.

▶ This comes from information theory, a field that has
deep links to statistics and machine learning.

▶ The KL divergence for variational inference is

KL(q∥p) = Eq(θ)

(
log

q(θ)

p(θ|x)

)
▶ If q is high, p and q should be close
▶ if q is low then we don’t care

▶ We choose q that are tractable: easy to take expectations
and compute the pdf.

▶ Reversing the arguments leads to a different kind of
variational inference, i.e., expectation propagation, which is
in general more computationally expensive.
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▶ We actually can’t minimize the KL divergence exactly, but
we can find an equivalent formulation that is tractable –
the evidence lower bound (ELBO)

▶ By Jensen’s inequality

log p(x) = log

∫
p(x, θ)dθ

= log

∫
q(θ)

p(x, θ)

q(θ)
dθ

≥
∫

q(θ) log
p(x, θ)

q(θ)
dθ

≥ Eq(log p(x, θ))− Eq(log q(θ))

This is the ELBO. Note that this is the free-energy lower
bound we derived for EM.
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▶ What does the ELBO have to do with the KL divergence
to the posterior?

▶ Note that p(θ|x) = p(x, θ)/p(x), use this in the KL
divergence

KL(q(θ)∥p(θ|x)) = Eq

(
log

q(θ)

p(θ|x)

)
= Eq

(
log

q(θ)

p(x, θ)

)
+ log p(x)

= log p(x)− Eq

(
log

p(x, θ)

q(θ)

)
▶ Therefore, the KL divergence is just the gap between the

ELBO and the model evidence, and minimizing the KL
divergence is equivalent to maximizing the ELBO.



More on The ELBO 10/33

L = Eq

(
log

p(x, θ)

q(θ)

)
= Eq(log p(x, θ))− Eq(log q(θ))

▶ L only requires the joint probability p(x, θ), which is
computable.

▶ The ELBO trades off two terms
▶ The first term drives q towards the MAP estimate.
▶ The second term encourages q to be diffuse.

▶ Unfortunately, the ELBO is usually not convex, and VI
may end up with local modes.
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▶ A commonly used variational family is the mean field
approximation, a variational family that factorizes

q(θ) =

d∏
i=1

qi(θi)

Each variable is independent. We can relax this constraint
by using blockwise factorization.

▶ Note that this family is usually quite limited since the
parameters in true posteriors are likely to be dependent.
▶ E.g., in the Gaussian mixture model all of the cluster

assignments z and the cluster locations µ are dependent on
each other given the data x.

▶ These dependencies often make the posterior difficult to
work with.
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▶ We now turn to optimizing the ELBO for the mean field
approximation

L = Eq(log p(x, θ))− Eq

d∑
i=1

log qi(θi)

= Eq(log p(x, θ))−
d∑

i=1

Eqi log qi(θi)

▶ For each component qi(θi)

L =

∫ d∏
i=1

qi(θi) log p(x, θ)dθ −
d∑

i=1

Eqi log qi(θi)

= EqiE−qi (log p(x, θ))− Eqi log qi(θi) + const



A Coordinate Ascent Algorithm 13/33

▶ Take the derivative w.r.t. qi(θi)

∂L
∂qi(θi)

= E−qi(log p(x, θ))− log qi(θi)− λ = 0

▶ This leads to a coordinate ascent algorithm

q∗i (θi) ∝ exp (E−qi (log p(x, θ)))

▶ The RHS only depends on qj(θj), j ̸= i.
▶ This determines the form of the optimal qi(θi). We only

specify the factorization before.
▶ While the optimal qi(θi) might not be easy to compute

(depending on the form), for many models it is.

▶ The ELBO converges to a local minimum. We use the
resulting q as a proxy for the true posterior.
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There is a strong relationship between Mean-Field VI and
Gibbs sampling

▶ In Gibbs sampling, we sample from the conditional

▶ In Mean-Field VI (via coordinate ascent), we iteratively set
each factor to

qi(θi) ∝ exp (E(log(conditional)))

Example: Multinomial conditionals

▶ Suppose the conditional is multinomial

p(θi|θ−i, x) ∼ Multinomial(π(θ−i, x))

▶ Then the optimial qi(θi) is also a multinomial

q∗(θi) ∝ exp (E(log π(θ−i, x)))
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▶ Suppose each conditional is in the exponential family

p(θi|θ−i, x) = h(θi) exp (η(θ−i, x) · T (θi)−A(η(θ−i, x)))

where η(θ−i, x) is the natural parameters and T (θi) is the
sufficient statistics.

▶ This includes a lot of complicated models
▶ Bayesian mixture of exponential families with conjugate

priors
▶ Hierarchical HMMs
▶ Mixed-membership models of exponential families
▶ Bayesian linear regression



Coordinate Ascent for Mean-Field VI 16/33

▶ Compute the log of the conditional

log p(θi|θ−i, x) = log h(θi) + η(θ−i, x) · T (θi)−A(η(θ−i, x))

▶ Compute the expectation w.r.t. q(θ−i)

E (log p(θi|θ−i, x)) = log h(θi)+E (η(θ−i, x))·T (θi)−E (A(η(θ−i, x)))

▶ Note that the last term does not depend on θi, therefore

q∗i (θi) ∝ h(θi) exp (E (η(θ−i, x)) · T (θi))

and the normalizing constant is A(E (η(θ−i, x)))

▶ The optimal qi(θi) is in the same exponential family as the
conditional.
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▶ Consider the clustering of x = {x1, . . . , xn} using a finite
mixture of Gaussians with generating variance one

zi ∼ Discrete(π), xi|zi = k ∼ N (µk, 1)

µk ∼ N (µ0, σ0), k = 1, . . . ,K

▶ The joint probability is

log p(x, z, µ) =

n∑
i=1

log p(xi, zi|µ) +
K∑
k=1

logN (µk|µ0, σ
2
0)

=

n∑
i=1

K∑
k=1

1zi=k (log πk + logN (xi|µk, 1))

+

K∑
k=1

logN (µk|µ0, σ
2
0)



Update q(zi) 18/33

▶ The mean field family is

q(µ, z) =

K∏
k=1

N (µk|µ̃k, σ̃
2
k)

n∏
i=1

q(zi|ϕi)

▶ Coordinate ascent update for q(zi) is

q∗(zi) ∝ exp
(
E−q(zi)(log p(x, zi, z−i, µ))

)
▶ Take expectation and restrict the terms relate to zi

q∗(zi) ∝ exp(log πzi + E(logN (xi|µzi , 1)))

∝ exp

(
log πzi + xiµ̃zi −

µ̃2
zi + σ̃2

zi

2

)



Update q(µk) 19/33

▶ Similarly, the coordinate ascent update for q(µk) is

q∗(µk) ∝ exp
(
E−q(µk)(log p(x, z, µk, µ−k))

)
∝ exp

(
n∑

i=1

q(zi = k) logN (xi|µk, 1) + logN (µk|µ0, σ
2
0)

)

∝ exp

(
n∑

i=1

ϕi,k

(
xiµk −

1

2
µ2
k

)
+

µ0

σ2
0

µk −
1

2σ2
0

µ2
k

)
∝ N

(
µ̂k, σ̂

2
k

)
where

µ̂k =

µ0

σ2
0

+
n∑

i=1
ϕi,kxi

1

σ2
0

+
n∑

i=1
ϕi,k

, σ̂2
k =

1

1

σ2
0

+
n∑

i=1
ϕi,k



Examples: Bayesian Latent Dirichlet Allocation 20/33

▶ The local variables are θd and zd.

▶ The global variables are the topics β1, . . . , βK .

▶ The variational distribution is

q(β, θ, z) =

K∏
k=1

q(βk|λk)

D∏
d=1

q(θd|γd)
N∏

n=1

q(zd,n|ϕd,n)



Mean-field Variational Inference for LDA 21/33

Adapted from David Blei



Mean-field Variational Inference for LDA 22/33

▶ The complete probability model

θd ∼ Dirichlet(α), βk ∼ Dirichlet(η)

zd,n|θd ∼ Discrete(θd), wd,n|zd,n, β ∼ Discrete(βzd,n)

▶ The joint probability is

p(w, z, θ, β) =

K∏
k=1

p(βk|η)
D∏

d=1

p(θd|α)
N∏

n=1

p(zd,n|θd)p(wd,n|zd,n, β)

▶ We set q(βk|λk), q(θd|γd), q(zd,n|ϕd,n) accordingly

q(βk|λk) ∼ Dirichlet(λk), q(θd|γd) ∼ Dirichlet(γd)

q(zd,n|ϕd,n) ∼ Discrete(ϕd,n)
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▶ Update λ

q(βk|λ∗
k) ∝ exp

(
Eq(β−k,θ,z) log p(w, z, θ, β)

)
∝ exp

 V∑
j=1

(ηj − 1 +

D∑
d=1

N∑
n=1

ϕd,n,kw
j
d,n) log βk,j


⇒ λ∗

k,j = ηj +
∑D

d=1

∑N
n=1 ϕd,n,kw

j
d,n

▶ Update γ

q(θd|γ∗d) ∝ exp(Eq(β,θ−d,z) log p(w, z, θ, β))

∝ exp

(
K∑
k=1

(αk − 1 +

N∑
n=1

ϕd,n,k) log θd,k

)

⇒ γ∗d,k = αk +
∑N

n=1 ϕd,n,k
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▶ Update ϕ

q(zd,n|ϕ∗
d,n) ∝ exp(Eq(β,θ,z−(d,n)) log p(w, z, θ, β))

∝ exp(Eq(β,θ,z−(d,n))(log p(zd,n|θd)

+ log p(wd,n|zd,n, β)))

∝ exp

(
K∑
k=1

1zd,n=k(Eθd(log θd,k)

+

V∑
j=1

wj
d,nEβk

(log βk,j))


⇒ ϕ∗

d,n,k ∝ exp
(
Eθd(log θd,k) +

∑V
j=1w

j
d,nEβk

(log βk,j)
)



A Generic Class of Models 25/33

p(β, z, x) = p(β)

n∏
i=1

p(zi, xi|β)

▶ The observations are x = {x1, . . . , xn}
▶ The local latent variables are z = {z1, . . . , zn}
▶ The global variables are β

▶ The i-th data point xi only depends on zi and β



Conditional Conjugacy 26/33

▶ Goal: compute p(β, z|x)
▶ Exponential family and conditional conjugacy

p(xi, zi|β) = h(xi, zi) exp (β · T (xi, zi)−Aℓ(β))

p(β) = h(β) exp (α · T (β)−Ag(α))

= h(β) exp (α1 · β − α2Aℓ(β)−Ag(α))

▶ Complete conditionals

p(β|x, z) = h(β) exp (ηg(x, z) · T (β)−Ag(ηg(x, z)))

p(zi|xi, β) = h(zi) exp(ηℓ(xi, β) · T (zi)−Aℓ(ηl(xi, β)))

where ηg(x, z) = (α1 +
∑n

i=1 T (xi, zi), α2 + n)



Mean-field Variational Inference 27/33

▶ The mean-field variational family

q(β, z) = q(β|λ)
n∏

i=1

q(zi|ϕi)

▶ The global parameters λ govern the global variables
▶ The local parameters ϕi govern the local variables

▶ Moreover, we set q(β|λ), q(zi|ϕi) to be in the same
exponential family

q(β|λ) = h(β) exp(λ · T (β)−Ag(λ))

q(zi|ϕi) = h(zi) exp(ϕi · T (zi)−Aℓ(ϕi))
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▶ Update λ

q(β|λ∗) ∝ exp(Eq(z)(log p(x, z, β))

∝ exp

(
Eq(z)(log p(β) +

n∑
i=1

log p(xi, zi|β))

)
∝ h(β) exp(Eq(z)(ηg(x, z)) · T (β))

Therefore

λ∗ = Eq(z)(ηg(x, z))



Coordinate Ascent 29/33

▶ Update ϕi

q(zi|ϕ∗
i ) ∝ exp(Eq(β,z−i)(log p(x, z, β)))

∝ exp(Eq(β)(log p(zi|xi, β)))
∝ exp(Eq(β)(log h(zi) + ηℓ(xi, β) · T (zi)))
∝ h(zi) exp(Eq(β)(ηℓ(xi, β)) · T (zi))

Therefore

ϕ∗
i = Eq(β)(ηℓ(xi, β))

▶ We then iteratively update each parameter, holding others
fixed.



Classical Variational Inference 30/33
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▶ We introduced variational inference (VI), an alternative
method to MCMC for approximate Bayesian inference.

▶ For models with conditional conjugacy, a mean-field
approximation can be learned via coordinate ascent.

▶ This strategy is applicable to a generic class of models,
including Bayesian mixture models, time series models
(e.g., HMM), factorial models, multilevel regression, and
mixed-membership models (e.g., LDA), etc.

Pros and Cons for Mean-field VI

▶ can be fast to train (compared to MCMC).

▶ may provide poor approximation, depending on the
complexity of the posterior.
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