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Bayesian Inference 2/33

> A Bayesian probabilistic model includes the conditional
distribution p(x|f) of observed variable z given the model
parameter 0, and the prior p(6), which gives a joint
distribution

p(z,0) = p(x|0)p(0)

» Inference about the parameter 6 is through the posterior,
the conditional distribution of the parameters given the
observations

p(z,0)

p(x)
» For most interesting models, the denominator is not
tractable. We appeal to approximate posterior inference.

» Markov chain Monte Carlo — We've introduced
» Variational inference — The topic for this lecture!

p(0]x) =
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Variational Inference 3/33

q7"(0) —argrSmKL q(0)[lp(0]z))

» VI turns inference into optimization

» Specify a variational family of distributions over the model
parameters

Q ={g4(0); ¢ € @}

> Fit the variational parameters ¢ to minimize the distance
(often in terms of KL divergence) to the exact posterior
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Example: Mixture of Gaussians 4/33
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History 5/33

[Peterson and Anderson 1987] [Jordan et al. 1999] [Hinton and van Camp 1993]

» Idea adapted from statistical physics — mean-field methods
to fit a neural network (Peterson and Anderson, 1987).

» Picked up by Jordan’s lab in the early 1990s, generalized it

to many probabilistic models. (see Jordan et al., 1999 for
an overview)

» Contributions from Hinton’s group: mean-field for neural
networks (Hinton and Van Camp, 1993); connection to the
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EM algorithm (Neal and Hinton, 1993). P
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Today 6/33
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[Kingma and Welling 2013] [Rezende et al. 2014] [Kucukelbir et al. 2015]

» More and more work on variational inference now, making
it scalable, easier to derive, faster, more accurate, and
applying it to more complicated models and applications.

» Modern VI touches many important areas: generative
models, probabilistic programming, reinforcement learning,
neural networks, convex optimization, Bayesian statistics,
and myriad applications.
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Kullback-Leibler Divergence 7/33

» We use Kullback-Leibler (KL) divergence to measure the
distance between two distributions.

» This comes from information theory, a field that has
deep links to statistics and machine learning.

» The KL divergence for variational inference is

KL(qllp) = Eqo) <1°g p(ééﬁ))

» If ¢ is high, p and ¢ should be close
» if ¢ is low then we don’t care

» We choose ¢ that are tractable: easy to take expectations
and compute the pdf.

> Reversing the arguments leads to a different kind of
variational inference, i.e., expectation propagation, which is

in general more computationally expensive. @ N i XS
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Evidence Lower Bound 8/33

» We actually can’t minimize the KL divergence exactly, but
we can find an equivalent formulation that is tractable —
the evidence lower bound (ELBO)

» By Jensen’s inequality
log p(z) = log / p(z,0)do

_ p(z,9)
—log/q(ﬁ) o0 do

p(z,0)
Z/q(@)log 0 do

> E,(logp(z,0)) — E,(log q(0))

This is the ELBO. Note that this is the free-energy lower
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bound we derived for EM.
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Equivalent Formulation 9/33

» What does the ELBO have to do with the KL divergence
to the posterior?

» Note that p(0|x) = p(z,0)/p(z), use this in the KL
divergence

KL(q(0)(Ip(0]z)) = Eq <1°g p?éiz))

q(9) )
=E, ( log + log p(z
! ( p(a,0) )
p(z, 9)>
q(0)
» Therefore, the KL divergence is just the gap between the

ELBO and the model evidence, and minimizing the KL
divergence is equivalent to maximizing the ELBO.

=logp(z) — E, <log
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More on The ELBO 10/33

o (%)

— E,(log p(x,0)) — E,(log ¢(9))

» L only requires the joint probability p(x,#), which is
computable.
» The ELBO trades off two terms
» The first term drives ¢ towards the MAP estimate.
» The second term encourages g to be diffuse.
» Unfortunately, the ELBO is usually not convex, and VI
may end up with local modes.
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Mean-Field Variational Inference 11/33

» A commonly used variational family is the mean field
approximation, a variational family that factorizes

d
q(0) = [ a(9:)
=1

Each variable is independent. We can relax this constraint
by using blockwise factorization.

» Note that this family is usually quite limited since the
parameters in true posteriors are likely to be dependent.

» E.g., in the Gaussian mixture model all of the cluster
assignments z and the cluster locations p are dependent on
each other given the data z.

» These dependencies often make the posterior difficult to

ez X P

work with.
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ELBO for Mean-Field VI 12/33

» We now turn to optimizing the ELBO for the mean field
approximation

L =E4(logp(z,8)) qzlong

= [E,(logp(x,0)) ZE log ¢; (0.

» For each component ¢;(6;)

d d
£~ [TLate08p(a.0)d8 ~ 3" B, logais)
i=1 =1

=E4,E_g, (logp(x,0)) — Eqy, log g;(0;) + const
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A Coordinate Ascent Algorithm 13/33

» Take the derivative w.r.t. ¢;(6;)

oL
0q;(6;)

» This leads to a coordinate ascent algorithm

=E_,(logp(z,0)) —log gi(0;) — A =0

q; (0;) o< exp (E_g, (logp(z,0)))

» The RHS only depends on g;(0;), j # i.

» This determines the form of the optimal ¢;(6;). We only
specify the factorization before.

» While the optimal ¢;(6;) might not be easy to compute
(depending on the form), for many models it is.

» The ELBO converges to a local minimum. We use the
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resulting ¢ as a proxy for the true posterior.

PEKING UNIVERSITY




Connection to Gibbs Sampling 14/33

There is a strong relationship between Mean-Field VI and
Gibbs sampling

» In Gibbs sampling, we sample from the conditional

» In Mean-Field VI (via coordinate ascent), we iteratively set
each factor to

qi(0;) x exp (E(log(conditional)))
Example: Multinomial conditionals
> Suppose the conditional is multinomial
p(0;10—i, ) ~ Multinomial(m(6_;, z))

» Then the optimial ¢;(6;) is also a multinomial

q"(0;) oc exp (E(log w(0—;, 7))
ez x Y
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Exponential Family Conditionals 15/33

> Suppose each conditional is in the exponential family
p(0i|0—i, z) = h(0;) exp (n(0—i, x) - T(0;) — A(n(6—i, x)))

where n(0_;, x) is the natural parameters and T'(6;) is the
sufficient statistics.
» This includes a lot of complicated models

» Bayesian mixture of exponential families with conjugate
priors

» Hierarchical HMMs

» Mixed-membership models of exponential families

» Bayesian linear regression

ez x Y
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Coordinate Ascent for Mean-Field VI 16/33

» Compute the log of the conditional
log p(63]0-i, x) = log h(6;) +1(0—s, ) - T(0;) — A(n(6—, z))
» Compute the expectation w.r.t. q(6_;)
E (log p(6:]0—i, x)) = log h(0i)+E (1(6—i, x))-T (0:)—E (A(n(0—, z))
» Note that the last term does not depend on 6;, therefore
q; (6:) o< h(0;) exp (E (n(0—, x)) - T(6:))

and the normalizing constant is A(E (n(0_;,x)))

» The optimal ¢;(6;) is in the same exponential family as the
conditional.
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Examples: Bayesian Mixtures of Gaussians 17/33

» Consider the clustering of z = {z1,...,z,} using a finite
mixture of Gaussians with generating variance one

z; ~ Discrete(n), x|z = k ~ N (ug, 1)
,UkNN(,U[),O'Q)7 k’Zl,...,K

» The joint probability is

n K
log p(x, 2, 1) = »_log pl(wi, zi|1) + D log N (k| o, o3)

i=1 k=1
n K
—22122 (log 7y, + log N (|, 1))
i=1 k=1
K
+ > log N (k| o, o)
k=1
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Update q(z;) 18/33

» The mean field family is

K n

q(p,2) = [TV Gunliin, 53) T [ a(zil¢0)

k=1 i=1
» Coordinate ascent update for g(z;) is
q*(2i) o< exp (E_y () (log p(, zi, 24, 1))
> Take expectation and restrict the terms relate to z;

q*(zi) x exp(log 7y, + E(log N (x| ptz,, 1))

@+ﬁ)

X exp <10g To + Tiflz, — 2
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Update q(pr) 19/33

» Similarly, the coordinate ascent update for g(ug) is
q* () o< exp (E_ gy, (log p(, 2, pk, pi—)))

 exp (Z q(zi = k) log N (@i, 1) + logN(uk!uo,ag))

i=1
X exp znzé k(ﬂiuk 1M2>+M0/~Lk ! T
i, ik T SHE ) — 5 oMk
pt 2 08 20(2)
OC./\/’(ﬂk,ﬁg)
where .
Ho
—5 + > bi ki
~ 0y =1 A2 1
M = 1 n , O = 1 n
— + D bik — + > Pik
0y  i=1 0y i=1
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Examples: Bayesian Latent Dirichlet Allocation  20/33

Vd ¢d,n /\k

1|1 T
o O e
o Qd Zd.n Wd,n ,Bk n
N p K

» The local variables are 6; and zg.
» The global variables are the topics f1,..., k-

» The variational distribution is

q(B,0,z) Hq Br| k) Hq Oalva) H (2dn|Pdn)
n=1
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Mean-field Variational Inference for LDA

Seeking Life’s Bare (Genetic) Necessities

COLD SPRING HARBOR, NEW YORK—
How many genes does an organism need to
survive? Last week at the genome mecting
here,* two genome researchers with radically
different approaches presented complemen
tary views of the hasic genes needed for life

One research team, using computer analy
ses to compare known genomes, concluded
that today’s organisms can be sustained with
just 250 wenes, and that the carliest life forms
required a mere 128
other researcher mapped genes
in a simple parasite and esti-
mated that for this organism, [
800 genesare plenty to do the
job—but that anything short
of 100 wouldn't be enough
Although the numbers don’t
match precisely, those predictions

nes. The —

* Genome Mapping and Sequenc-
ing, Cold Spring Harbor, New York,
May 80 12

SCIENCE » VOL. 272 » 24 MAY 1996

“are not all that far apart,” especially in
000 genes in the hu.

comparison to the 7
man genome, notes Siv Andersson of Uppsala
University in Sweden, who arrived at the
800 number. But coming up with a consen-
sus answer may be more than just a genetic
numbers game, particularly as more and
more genomes are completely mapped and
sequenced. “It may be a way of organizing
any newly sequenced genome,” explains
Arcady Mushegian, a computational mo-

lecular biologist at the National Center

\ for Biotechnology Information (NCBI)
| in Bethesda, Maryland. Comparing an

Stripping down. Computer analysis yields an esti-
mate of the minimum modern and ancient genomes.

—
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Mean-field Variational Inference for LDA 22/33

» The complete probability model
04 ~ Dirichlet(«), ) ~ Dirichlet(n)

24 n|04 ~ Discrete(0q), Wan|Zdn, 5 ~ Discrete(ﬁzd’n)

» The joint probability is

D N
p(w,z,0,8) = Hp Beln) [ p(0ale) T] p(zanlba)p(wanlzan, B)
= d=1 n=1

> We set q(Br| k), ¢(0alVa), 4(2dn|dan) accordingly

q(Bk|Ax) ~ Dirichlet(A),  ¢(04]va) ~ Dirichlet(yq)

Q(Zd,n ‘ ¢d,n) ~ Discrete(gbd,n)
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Coordinate Ascent 23/33

» Update )\

a(Brl M) ox exp (Eqs_,.0.2) logp(w, 2,0, 3))

v D N
occexp (Y (= 1+ > Gamrw),)log B,
j=1 d=1n=1

_ D N 5
= )\Z:j =" + zd:l anl Qsd,n,kwd’n

» Update vy

Q(edh/;) X eXp(Eq(,Bﬂ_d,z) logp(wv 2,0, ﬁ))

K N
o< exp <Z(ak — 14> Gank)log 9d,k>

k=1 n=1

N
= 7;7]@ =+ anl ¢d,n,k
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Coordinate Ascent 24/33

» Update ¢

A(Zdn|Pan) < exP(Eqp,0,2_ 4.y logp(w, 2,6, B))
o exp(Eq(5,0,2_y..y) (108 P(2d,n]04)
+ logp(wd,n’zd,na B)))
o< exp (Z 1.y =k (Eq,(log Oa k)

k=1 Vv

+> wl B, (log B;))

Jj=1

=

= 0% % exp (Eg, (08 0ar) + L)y ], g, (Iog By.5) )
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A Generic Class of Models 25/33

Global variables R '3

¥ X
Local variables Zi ( ) ‘ Xi
n

n
p(B, 2 x) = p(B) [ [ p(2i, :1B)
i=1
» The observations are z = {x1,...,z,}
» The local latent variables are z = {z1,...,2,}

» The global variables are 3
» The i-th data point x; only depends on z; and

ez x Y
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Conditional Conjugacy 26/33

» Goal: compute p(3, z|x)

» Exponential family and conditional conjugacy

p(zi, zi|B) = h(wi, 2i) exp (B - T(xi, z:) — Ae(B))
p(B) = h(B)exp (a - T(B) — Ag(a))
= h(B)exp (a1 - — a2Ai(B) — Ag(a))

» Complete conditionals

p(Blz, z) = h(B) exp (7757(37: z)-T(B) - Ag(ng($7 z)))
p(zilwi, B) = h(2i) exp(ne(ws, B) - T'(2:) — Ae(mi(z4, B)))

where 1y, 2) = (a1 + Y0, T, 2), 0 + )

T, »
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Mean-field Variational Inference 27/33

» The mean-field variational family

a(B,2) = q(B|N) H q(2i|¢:)
i=1

» The global parameters A govern the global variables
» The local parameters ¢; govern the local variables

» Moreover, we set ¢(8|A), ¢(zi|¢;) to be in the same
exponential family

q(BIN) = h(B) exp(A - T(B) — Ag(N))
q(zi|¢i) = h(zi) exp(¢i - T(zi) — Ae(bi))

ez x Y
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Coordinate Ascent 28/33

> Update A
q(BIA") o< exp(Eq) (log p(z, 2, B))

X exp (Eq(z) (logp(B) + Zlogp(a?u Zz’ﬂ)))

=1
X h(ﬁ) eXp(Eq(z) (779(567 Z)) : T(ﬁ))

Therefore

A= Eq(z) (779(% Z))
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Coordinate Ascent 29/33

> Update ¢;

q(2il¢7) o< exp(Ey(s,._,)(log p(x, 2, 8)))
p(Eq(s)(log p(zilzi, B)))

o< exp(Eyg) (log h(zi) + me(xi, B) - T'(2:)))
o< h(z;) exp(Eq(g) (ne(zi, B)) - T'(2:))

X ex

Therefore

o7 = Eqep)(me(zi, 8))

» We then iteratively update each parameter, holding others
fixed.
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Classical Variational Inference 30/33

Input: data x, model p(j3, z, X).
Initialize A randomly.
repeat

for each data point i do
| Setlocal parameter ¢; < E; [1,(8,x;)].

end
Set global parameter

Ae—a+ Z?zl Ey [t(Z;,x;)].

until the ELBO has converged

ez x Y
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Summary 31/33

» We introduced variational inference (VI), an alternative
method to MCMC for approximate Bayesian inference.

» For models with conditional conjugacy, a mean-field
approximation can be learned via coordinate ascent.

» This strategy is applicable to a generic class of models,
including Bayesian mixture models, time series models
(e.g., HMM), factorial models, multilevel regression, and
mixed-membership models (e.g., LDA), etc.

Pros and Cons for Mean-field VI
» can be fast to train (compared to MCMC).

» may provide poor approximation, depending on the
complexity of the posterior.
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