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Introduction 2/30

» While EM increases the marginal likelihood in each
iteration and often converges to a stationary point, we are
not clear about the convergence rate and how does that
relate to the missing data scenario.

» Moreover, the requirements of tractable conditional
distribution and easy complete data MLE may be too
restrictive in practice.

» In this lecture, we will discuss the convergence theory for
EM and introduce some variants of it that can be applied
in more general settings.
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Example: Censored Survival Times 3/30

» Recall that in the censored survival times example, given
the observed data Y = {(t1,61),..., (tn,0n)}, where t;
follows an exponential distribution with mean p and can be
either censored or not as indicated by ¢;.

» Assume §; =0,¢ <r, §; = 1,7 > r. The MLE of y is
fr="732"ti/r

» EM update formula

(ht1) _ 2imiti+(n— r)pu®)
n

"

» Therefore,

(k+1) _ i = u(ﬂ(k) — i)
n

7

Linear convergence, rate depends on the amount of missing

information ,
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EM as A Fixed Point Algorithm 4/30

We can view EM update as a map
00+ = (™)),  ®(0) = argmax Q(#']0)
9/

where Q(0'|0) = E,(.|5,0) log p(z, 2|6)

Lemma 1
If for some 6%, L(6*) > L(0), V0, then for every EM algorithm

L(@(07)) = L(67), Q(P(67)|07) = Q(67(67)
and

p(z|z, ®(0%)) = p(z|z,0%), a.s.
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Local Convergence 5/30

Lemma 2
If for some 6%, L(6*) > L(0), VO # 6, then for every EM
algorithm

P(6%) = 0"

Theorem 1
Suppose that 0®) ¢ = 0,1, ... is an instance of an EM algorithm
such that

> the sequence £(6®)) is bounded and £(8®)) — L£*.
> M(L*) ={0*: L(6*) = L*} is a discrete set.
> |0 — 9| — 0.

Then all the limit points of the sequence #®) converges to some
0* € M(L*). See Wu (1983) for more details.
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Local Convergence 6/30

> Since A+ = &(9®)) maximizes Q('|01), we have

Q

89/( t+1 ‘9 ) 0

» For all ¢, there exists a 0 < oz(()tH) < 1 such that

QO 9D — Q(eM[91)) = —(gt+1) — o).

Q
69/2( t+1)|9 )(9(t+1) _ e(t))T

where Gét“) = g(t) +(1— ao)g(tﬂ)

» If the sequence ) is negative definite with

80’2
eigenvalues bounded away from zero and L£(6®)) is

bounded, by Theorem 1, #®) converges to some 0*
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Local Convergence 7/30

» When EM converges, it converges to a fixed point of the
map
0" = ®(6%)

» Taylor expansion of ® at 6* yields
O+ —g* = ®(0W) — ®(0*) ~ VI(0) (0 — %)
» The global rate of EM defined as

i ||9(t+1) _(9*”

P 5% 100 — 67|
equals the largest eigenvalue of V®(6*) and p < 1 when the
observed Fisher information —V2L£(6*) is positive definite.
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Proof 8/30

» As aforementioned, ®(0) maximize Q(#'|0), therefore

oQ _
20 (20)16) =0, Vo
» Differentiate w.r.t. 6
8262 82Q
let 6 = 6*

2 -1 92
Vo) = (-5 1)) @) ()

ANEIE T

=/ PEKING UNIVERSITY




Complete and Missing Information 9/30

> If gZ—,%(e(t“)w(t)) is negative definite with eigenvalues
bounded away from zero, then

82Q *| )k 2 *
_60/2 (9 ‘9 ) - Ep(z|x,9*) (_v 10gp(1'72|9 ))

is positive definite, known as the complete information

» The marginal log-likelihood can be rewritten as

‘C(el) = Ep(z|a:,0) 1ng($, Z|‘9l) - Ep(z\r,é‘) logp(z|x, 9/)
=Q(0'10) — H(0']0)
Therefore 82Q o
/ o H /
8989’<9 10) = 0006’ (7710)
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Complete and Missing Information 10/30

» Some properties of H(0|0) = E,(,|,) log p(z|x,0)

OH

0’H _0*H
o (016) = =5 (016)
» Therefore,
8989’(9 07) = 0000’ (07167) = - 0072 (9 10%)

is positive semidefinite (variance of the score
Vlog p(z|z,0%)), known as the missing information
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Missing-Information Principle 11/30

L(0") = Q(6']0) — H(0']0)

» Differentiate both side w.r.t. @ twice

0%Q 0’H
VEL(O') = S (010) = 5 (0'16)
» The missing-information principle
L 9*Q ) o*H
Iobscrvcd
Icomplete Imissing

» Substitute in (1)
V@(e*) =1 ! (9*) missing(e*)

complete

= (Iobserved(e ) + Im1531ng(9*)) mlssmg(9*)
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Convergence Rate of EM 12/30

» When Iopserved = — V2L(0%) is positive definite, the
eigenvalues of V®(6*) are all less than 1, EM has a linear
convergence rate.

» The rate of convergence depends on the relative size of
Iobserved (0%) and Iissing (0*). EM converges rapidly when
the missing information is small.

» The fraction of information loss may vary across different
component of 6, so some component may converge faster
than other components.

» See Wu (1983) for more detailed discussions.
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EM for Maximum A Posterior 13/30

» EM can be easily modified for the Maximum A Posterior
(MAP) estimate instead of the MLE.

» Suppose the log-prior penalty term is R(#). We only have
to maximize

Q10™) + R(0) (2)
in the M-step
» Monotonicity.

ﬁ(e(t+1)) +R(9(t+1)) ];-(9 (t+1) |9(t)) +R(9(t+1))
> F(OW[0®)) + R(6D)
LWy + R(OY)

» If R(A) corresponds to a conjugate prior, (2) can be
maximized in the same manner as Q(6|6®)).
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Monte Carlo EM 14/30

» The E-step requires finding the expected complete data
log-likelihood Q(A]6)). When this expectation is difficult
to compute, we can approximate it via Monte Carlo
methods

» Monte Carlo EM (Wei and Tanner, 1990)

» Draw missing data z(t) ceey

distribution p(z|z, H(t))
» Compute a Monte Carlo estimate of Q(0]0™))

27(,? from the conditional

Q (t+1) 9|0(t Zlogp

> Update A1) to maximize QU+ (]0™).
Remark: It is recommended to let m changes along
iterations (small at the beginning and increases as

iterations progress) : @ ST
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Example: Censored Survival Times 15/30

» By the lack of memory, it is easy to compute the expected
complete data log-likelihood, which lead to the ordinary
EM update

(ht1) Dy ti 4 (n—r)u®
EM - n

» In MCEM, we can sample from the conditional distribution

T, = (Tjrs1,---, Tjn), Tju—ti ~ Exp(,u(k)), l=r+1,...,n

for j =1,...,m® and the update formula is
nopoy Ly m® Ty
(1) _ izttt pm i T

HMCEM = n
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Examples: Censored Survival Times

16/30
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Improving the M-step 17/30

» One of the appeals of the EM algorithm is that Q(#]0®) is
often simpler to maximize than the marginal likelihood

» In some cases, however, the M-step cannot be carried out
easily even though the computation of Q(#|0®) is
straightforward in the E-step

» For such situations, Dempster et al (1977) defined a
generalized EM algorithm (GEM) for which the M-step
only requires #(t1) to improve Q(A|6®)

Q(g(t+1)|9(t)) > Q(g(t)|9(t))
» We can easily show that GEM is also monotonic in £
£(0"D) > F(g.0"*Y) > F(g,00) = £(60V)
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Expectation Conditional Maximization 18/30

» Meng and Rubin (1993) replaces the M-step with a series
of computationally cheaper conditional maximization (CM)
steps, leading to the ECM algorithm

» The M-step in ECM contains a collection of simple CM
steps, called a CM cycle. For s =1,...,5, the s-th CM
step requires the maximization of Q(]6)) subject to a
constraint

009 = argmax Q(0]0")),  s.t. ga(0) = go(0UTTI/)
6

» The efficiency of ECM depends on the choice of constraints.
Examples: Blockwise updates (coordinate ascent).

» One may also insert an E-step between each pair of
CM-steps, updating () at every stage of the CM cycle.
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Multivariate Regression 19/30

» Suppose we have n independent observations from the
following k-variate normal model

Y ~ N(XiB, %), i=1,...,n

> X; € RF¥P is a known design matrix for the i-th observation
» [ is a vector of p unknown parameters
» 3 is a d X d unknown variance-covariance matrix

» The complete data log-likelihood (up to a constant) is

n

L(B,5IY) = S log|] - 3 D" (¥ - X;) 57 (% - Xif)
=1

» Generally, MLE does not has closed form solution except in
special cases (e.g., ¥ = o%I)
e K P

@

PEKING UNIVERSITY




A Coordinate Ascent Algorithm 20,30

» Although the joint maximization of 5 and X are not
generally in closed form, a coordinate ascent algorithm
does exist

» Given ¥ = X, the conditional MLE of j is simply the
weighted least-square estimate

—1 n
t+1 (Z XT Z) (Z XiT(E(t))lYi)
i=1

» Given § = D, the conditional MLE of ¥ is the
cross-product of the residuals

n

1
(t+1) — = - _ v R(t+1) v R+INT
B = DR X)X
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Multivariate Regression with Missing Data 21/30

» Now suppose that we also have missing data
Y, ~N(X;5,%), i=n+1,...,m
for which only the design matrix X;, ¢ > n are known

» The complete data log-likelihood

m

L(B,SIY) = ~ 2 log %] — 5 D% — Xi6)T 57 (¥ - X;)
=1

» Expected values of sufficient statistics observed data and
current parameter () = () £(®)

E(Y;|Yops, 01) = X, 80
E(Y;Y;" [Yobs, 0) = £ + (x,;80) (X, 80T
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E-step 22/30

Expected complete-data log-likelihood

n

By _m 1 v Ty-l(y .
Q019" = =5 log|%| 2;01 Xip)'STHY; - XiB)
- % > E((Yi— XiB)"STH(Y - XiB))
i=n+1
=~ log |5 - 1§j(¥~ — Xi)TETHY; — XiB)
- 2 g 2i:1 K3 (2 (] K3

R _
-3 > (BY; - X;if)TSTHEY; - X;8) + C
i=n-+1
where C =13 E(YV)TSTE(Y;) —E(Y,S7'Y) is a
constant independent of the parameter 5. )
NI TS
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CM-steps: Update [ 23/30

» The first CM-step, maximize Q given ¥ = 2(*),

» Since C is independent of £, we can maximize

n

1
T log[B=3 > (¥ - XiB)TL7(¥; - Xif)

i=1
3 Y (Y- Xip)TS T (BY: - Xif)
1=n-+1
m -1 m
= B+ — (Z X,L»TZ(t)XZ) <Z XiTE(t)YZ)
i=1 i=1

where
. Y; 1 <n
Yz—{ X80, i>n
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CM-steps: Update X 24/30

» The second CM-step, maximize Q with g = g¢+1)
» Rewrite Q as

Q00" = log|2 - ZTr NY; - XiB)(Yi — Xi8)")

—fZTr Y X:B)(Y; — X:8)7))

i=n+1

» Similarly as in the complete data case

n(t+1) 1 (Z(Yl — X, 80D (y; — X, 0INT Z »n(®)
m\i= i=n-+1
+ X’L t+1))(ﬁ( ) 5(t+1))TXZT>
+1

i=n
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ECM for Multivariate Regression 25/30

» Both the E-step and the two CM-steps can be implemented
using close form solutions, no numerical iteration required.

» Both CM-steps improves Q

Q(@(Hl), E(t+1)|5(t)7 Z(t)) > Q(@(Hl), Z(t)|6(t), E(t))
> Q(8Y, x|, 51)
» ECM in this case can be viewed as an efficient

generalization of iterative reweighted least squares, in the
presence of missing data.
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Example: A Simulation Study 26,30

We generate 120 design matrices at random and simulate 100

. . 2 1, 0.1
observations with 3 = <1> , U= <().1 2 )
ECM estimates

G (2068) o _ (0951 0214
—\1087)7 ~ 7 0214 2186

-200
\

log-likelihood
-400

-600

Iteration N
Je g X ¥
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EM Gradient Algorithm 27/30

» Iterative optimization can be considered when direct
maximization is not available.

» All numerical optimization can apply and that would yield
an algorithm that has nested iterative loops (e.g., ECM
inserts conditional maximization steps within each CM
cycle)

» To avoid the computational burden of nested looping,
Lange proposed to use one single step of Newton’s method

9°Q 'oQ
0(t+1) _ H(t) _ (89,2 (e(t)‘e )> 89/( |0 )

_ g0 _ (39§2?( 0)ptt )> V(o)

» This EM gradient algorithm has the same rate of

convergence as the full EM algorithm. : @ N i XS
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Acceleration Methods 28/30

» When EM is slow, we can use the relatively simple analytic
setup from EM to motivate particular forms for
Newton-like steps.

» Aitken Acceleration. Newton update
o+ — 9 _ (v2L(0W )"t L(eW) (3)
Note that VL(0®)) = 92(9®|9(t)) and
0= 29 40100) & 992 (90190) . 2 (90190 (55 -0

o0’ 06" EM
substitute in (3)

0(t+1) - e(t) + (Iobserved(a(t)))71[complete(0(t))(Hg;/_[l) - Q(t))

» Many other acceleration exists (e.g., Quasi—Newton

methods).
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>

>

C. F. J. Wu. On the convergence properties of the EM
algorithm. Annals of Statistics, 11:95-103, 1983.

X.-L. Meng and D. B. Rubin. Maximum likelihood
estimation via the ECM algorithm: A general framework.
Biometrika, 80:267-278, 1993.

G. C. G. Wei and M. A. Tanner. A Monte Carlo
implementation of the EM algorithm and the poor man’s
data augmentation algorithms. Journal of the American
Statistical Association, 85:699-704, 1990.

K. Lange. A gradient algorithm locally equivalent to the

EM algorithm. Journal of the Royal Statistical Society,
Series B, 57:425-437, 1995.

ez x Y

@

PEKING UNIVERSITY




References 30/30

» T. A. Louis. Finding the observed information matrix
when using the EM algorithm. Journal of the Royal
Statistical Society, Series B, 44:226-233, 1982.

ez x Y

@

PEKING UNIVERSITY




