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▶ In this lecture, we discuss Expectation-Maximization
(EM), which is an iterative optimization method dealing
with missing or latent data.

▶ In such cases, we may assume the observed data x are
generated from random variable X along with missing or
unobserved data z from random variable Z. We envision
complete data would have been y = (x, z).

▶ Very often, the inclusion of the observed data z is a data
augmentation strategy to ease computation. In this case, Z
is often referred to as latent variable.
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▶ Some of the variables in the model are not observed.

▶ Examples: mixture model, hidden Markov model (HMM),
latent Dirichlet allocation (LDA), etc.

▶ We consider the learning problem of latent variable models
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▶ complete data likelihood p(x, z|θ), θ is model parameter

▶ When z is missing, we need to marginalize out z and use
the marginal log-likelihood for learning

log p(x|θ) = log
∑
z

p(x, z|θ)

▶ Examples: Gaussian mixture model. z ∼ Discrete(π),
θ = (π, µ,Σ)

p(x|θ) =
∑
k

p(z = k|θ)p(x|z = k, θ)

=
∑
k

πkN (x|µk,Σk)

=
∑
k

πk
1

(2π)d/2|Σk|1/2
exp

(
−1

2
(x− µk)

TΣ−1
k (x− µk)

)
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▶ For most of these latent variable models, when the missing
components z are observed, the complete data likelihood
often factorizes, and the maximum likelihood estimates
hence have closed-form solutions.

▶ When z are not observed, marginalization destroys the
factorizible structure and makes learning much more
difficult.

▶ How to learn in this scenario?
▶ Idea 1: simply take derivative and use gradient ascent

directly
▶ Idea 2: find appropriate estimates of z (e.g., using the

current conditional distribution p(z|x, θ)), fill them in and
do complete data learning – This is EM!
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▶ At each iteration, the EM algorithm involves two steps
▶ based on the current θ(t), fill in unobserved z to get

complete data (x, z′)
▶ Update θ to maximize the complete data log-likelihood

ℓ(x, z′|θ) = log p(x, z′|θ)
▶ How to choose z′?

▶ Use conditional distribution p(z|x, θ(t))
▶ Take full advantage of the current estimates θ(t)

Ep(z|x,θ(t))ℓ(x, z|θ) =
∑
z

p(z|x, θ(t))ℓ(x, z|θ)

In some sense, this is our best guess (as shown later).
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More specifically, we start from some initial θ(0). In each
iteration, we follow the two steps below

▶ Expectation (E-step): compute p(z|x, θ(t)) and form the
expectation using the current estimate θ(t)

Q(t)(θ) = Ep(z|x,θ(t))ℓ(x, z|θ)

▶ Maximization (M-step): Find θ that maximizes the
expected complete data log-likelihood

θ(t+1) = argmax
θ

Q(t)(θ)

In many cases, the expectation is easier to handle than the
marginal log-likelihood.
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▶ EM algorithm can be viewed as optimizing a lower bound
on the marginal log-likelihood L(θ) = log p(x|θ)

▶ A class of lower bounds

L(θ) = log
∑
z

p(x, z|θ) = log
∑
z

q(z)
p(x, z|θ)
q(z)

≥
∑
z

q(z) log
p(x, z|θ)
q(z)

- Jensen’s inequality

=
∑
z

q(z) log p(x, z|θ)−
∑
z

q(z) log q(z), ∀q(z)

▶ The term in the last equation is often called Free-energy

F(q, θ) =
∑
z

q(z) log p(x, z|θ)−
∑
z

q(z) log q(z)
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▶ Free-energy is a lower bound of the true log-likelihood

L(θ) ≥ F(q, θ)

▶ EM is simply doing coordinate ascent on F(q, θ)
▶ E-step: Find q(t) that maximizes F(q, θ(t))
▶ M-step: Find θ(t+1) that maximizes F(q(t), θ)

▶ Properties:
▶ Each iteration improves F

F(q(t+1), θ(t+1)) ≥ F(q(t), θ(t))

▶ Each iteration improves L as well

L(θ(t+1)) ≥ L(θ(t))

will show later
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▶ Find q that maximizes F(q, θ(t))

F(q, θ) =
∑
z

q(z) log p(x, z|θ)−
∑
z

q(z) log q(z)

=
∑
z

q(z) log
p(z|x, θ)p(x|θ)

q(z)

=
∑
z

q(z) log
p(z|x, θ)
q(z)

+ log p(x|θ)

= L(θ)−DKL (q(z)∥p(z|x, θ))
≤ L(θ)



E-step 11/32

F(q, θ(t)) = L(θ(t))−DKL(q(z)∥p(z|x, θ(t)))

▶ KL divergence is non-negative and is minimized (equals to
0) iff the two distributions are identical.

▶ Therefore, F(q, θ(t)) is maximized at q(t)(z) = p(z|x, θ(t)).
▶ So when we are computing p(z|x, θ(t)), we are actually

computing argmaxq F(q, θ(t))

▶ Moreover,
F(q(t), θ(t)) = L(θ(t))

this means the lower bound matches the true log-likelihood
at θ(t), which is crucial for the improvement on L.
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▶ Find θ(t+1) that maximizes F(q(t), θ)

θ(t+1) = argmax
θ

F(q(t), θ)

= argmax
θ

∑
z

p(z|x, θ(t)) log p(x, z|θ) +H(p(z|x, θ(t)))

= argmax
θ

Ep(z|x,θ(t))ℓ(x, z|θ)

▶ The expected complete data log-likelihood usually can be
solved in the same manner (closed-form solutions) as the
fully-observed model.
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L(θ(t+1)) ≥ F(q(t), θ(t+1))

≥ F(q(t), θ(t)) = L(θ(t))
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▶ When the complete data follow an exponential family
distribution (in canonical form), the density is

p(x, z|θ) = h(x, z) exp(θ · T (x, z)−A(θ))

▶ E-step

Q(t)(θ) = Ep(z|x,θ(t)) log p(x, z|θ)
= θ · Ep(z|x,θ(t))T (x, z)−A(θ) + Const

▶ M-step

∇θQ
(t)(θ) = 0 ⇒ Ep(z|x,θ(t))T (x, z) = ∇θA(θ) = Ep(x,z|θ)T (x, z)
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▶ In survival analyses, we often have to terminate our study
before observing the real survival times, leading to
censored survival data.

▶ Suppose the observed data are Y = {(t1, δ1), . . . , (tn, δn)},
where Tj ∼ Exp(µ) and δj is the indicator of a censored
sample. WLOG, assume δi = 0, i ≤ r, δi = 1, i > r

▶ The log-likelihood function is

log p(Y |µ) =
r∑

i=1

log p(ti|µ) +
∑
i>r

log p(Ti > ti|µ)

= −r log µ−
n∑

i=1

ti/µ

▶ The MLE of µ: µ̂ =
∑n

i=1 ti/r



Examples: Censored Survival Times 16/32

▶ Let us see how EM works in this simple case.

▶ Let t = (T1, . . . , Tn) = (T1, . . . , Tr, z) be the complete data
vector, where z = (Tr+1, . . . , Tn) are the unobserved n− r
censored random variables.

▶ Natural parameter 1/µ, sufficient statistics
∑n

i=1 Ti, and
Eµ
∑n

i=1 Ti = nµ

▶ By the lack of memory, Ti|Ti > ti ∼ ti + Exp(µ), ∀i > r.

Ep(z|Y,µ(k))

n∑
i=1

Ti =
r∑

i=1

ti +
∑
i>r

ti + (n− r)µ(k)

▶ Update formula

µ(k+1) =

∑n
i=1 ti + (n− r)µ(k)

n
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▶ Consider clustering of data X = {x1, . . . , xN} using a finite
mixture of Gaussians.

z ∼ Discrete(π), x|z = k ∼ N (µk,Σk)

θ = {πk, µk,Σk}Kk=1 are model parameters

▶ Complete data log-likelihood

log p(x, z|θ) = log

K∏
k=1

(p(z = k)p(x|z = k))1z=k

=
K∑
k=1

1z=k(log πk + logN (x|µk,Σk))
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▶ Compute the conditional probability p(zn|xn, θ(t)) via
Bayes’ theorem

p(zn|xn, θ) =
p(zn, xn|θ)∑
zn

p(zn, xn|θ)

p(zn = k|xn, θ(t)) =
π
(t)
k N (xn|µ(t)

k ,Σ
(t)
k )∑

k π
(t)
k N (xn|µ(t)

k ,Σ
(t)
k )

▶ Denote γ
(t)
n,k ≜ p(zn = k|xn, θ(t)), which can be viewed as a

soft clustering of xn ∑
k

γ
(t)
n,k = 1
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▶ Expected complete-data log-likelihood

Q(t)(θ) =
∑
n

∑
zn

p(zn|xn, θ(t)) log p(xn, zn|θ)

=
∑
n

∑
k

γ
(t)
n,k (log πk + logN (xn|µk,Σk))

=
∑
k

∑
n

γ
(t)
n,k (log πk + logN (xn|µk,Σk))

Substitute N (xn|µk,Σk) in

Q(t)(θ) =
∑
k

∑
n

γ
(t)
n,k

(
log πk −

d

2
log(2π)− 1

2
log |Σk|

− 1

2
(xn − µk)

TΣ−1
k (xn − µk)

)
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▶ Maximize Q(t)(θ) with respect to π using Lagrange
multipliers

π
(t+1)
k ∝

∑
n

γ
(t)
n,k

Therefore

π
(t+1)
k =

∑
n γ

(t)
n,k∑

k

∑
n γ

(t)
n,k

=

∑
n γ

(t)
n,k∑

n

∑
k γ

(t)
n,k

=

∑
n γ

(t)
n,k

N

▶ Note that
∑

n γ
(t)
n,k can be viewed as the weighted number

of data points in mixture component k, and π
(t+1)
k is the

fraction of data the belongs to mixture component k.
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▶ Compute the derivative w.r.t µk

∂Q(t)(θ)

∂µk
=
∑
n

γ
(t)
n,kΣ

−1
k (xn − µk) = Σ−1

k

∑
n

γ
(t)
n,k(xn − µk)

▶ Therefore,

µ
(t+1)
k =

∑
n γ

(t)
n,kxn∑

n γ
(t)
n,k

µ
(t+1)
k is the weighted mean of data points assigned to

mixture component k

▶ Similarly, we can get

Σ
(t+1)
k =

∑
n γ

(t)
n,k(xn − µ

(t+1)
k )(xn − µ

(t+1)
k )T∑

n γ
(t)
n,k



EM algorithm for Gaussian Mixture Models 22/32

▶ E-step: Compute the soft clustering probabilities

γ
(t)
n,k =

π
(t)
k N (xn|µ(t)

k ,Σ
(t)
k )∑

k π
(t)
k N (xn|µ(t)

k ,Σ
(t)
k )

▶ M-step: Update parameters

π
(t+1)
k =

∑
n γ

(t)
n,k

N

µ
(t+1)
k =

∑
n γ

(t)
n,kxn∑

n γ
(t)
n,k

Σ
(t+1)
k =

∑
n γ

(t)
n,k(xn − µ

(t+1)
k )(xn − µ

(t+1)
k )T∑

n γ
(t)
n,k



Examples: Mixture of 5 Gaussians 23/32



Examples: Mixture of 3 Gaussians 24/32
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▶ The k-means algorithm follows two steps
▶ Assignment step: assign data to the nearest cluster

γn,k =

{
1, k = argmink′ ∥xn − µk′∥
0, otherwise

▶ Update step: set µk to the mean of data points assigned to
the k-th cluster

µk =

∑
n γ

(t)
n,kxn∑

n γ
(t)
n,k

=
1

Nk

∑
n:γn,k=1

xn

Nk is the number of data points assigned to the k-th cluster.

▶ Therefore, k-means can be viewed as a special case of EM
for Gaussian mixture models where Σk = I and γn,k are
hard assignments instead of soft clustering probabilities.



Hidden Markov Model 26/32

▶ Sequence data x1, x2, . . . , xT , each xn ∈ Rd

▶ Hidden variables z1, z2, . . . , zT , each zt ∈ {1, 2, . . . ,K}
▶ Joint probability

p(x, z) = p(z1)

T−1∏
t=1

p(zt+1|zt)
T∏
t=1

p(xt|zt)

▶ p(xt|zt) is the emission probability, could be a Gaussian

p(xt|zt = k) = N (xt|µk,Σk)

▶ p(zt+1|zt) is the transition probability, a K ×K matrix
aij = p(zt+1 = j|zt = i),

∑
j aij = 1

▶ p(z1) ∼ Discrete(π) is the prior for the first hidden state



Expected Complete Data Log-likelihood 27/32

▶ The expected complete data log-likelihood is

Q = Ep(z|x) log p(x, z)

=
∑
z

p(z|x)

(
log p(z1) +

T−1∑
t=1

log p(zt+1|zt) +
T∑
t=1

log p(xt|zt)

)

=
∑
z1

p(z1|x) log p(z1) +
T−1∑
t=1

∑
zt,zt+1

p(zt, zt+1|x) log p(zt+1|zt)

+

T∑
t=1

∑
zt

p(zt|x) log p(xt|zt)

▶ Therefore, in the E-step, we need to compute unary and
pairwise marginal probabilities p(zt|x) and p(zt, zt+1|x).



E-step: Forward-Backward Algorithm 28/32

▶ Using the sequential structure of HMM, we can compute
these marginal probabilities via dynamic programming.

▶ The forward algorithm

αt+1(j) = p(zt+1 = j, x1, . . . , xt+1)

=
∑
i

p(zt+1 = j, zt = i, x1, . . . , xt+1)

= p(xt+1|zt+1 = j)
∑
i

p(zt+1 = j|zt = i)p(zt, x1, . . . , xt)

= p(xt+1|zt+1 = j)
∑
i

aijp(zt, x1, . . . , xt)

= p(xt+1|zt+1 = j)
∑
i

aijαt(i)



E-step: Forward-Backward Algorithm 29/32

▶ The backward algorithm

βt(i) = p(xt+1, . . . , xT |zt = i)

=
∑

j
p(xt+1, . . . , xT , zt+1 = j|zt = i)

=
∑

j
aijp(xt+1|zt+1 = j)βt+1(j)

▶ Unary marginal probability

p(zt = j|x) ∝ p(zt = j, x) = αt(j)βt(j)

▶ Pairwise marginal probability

p(zt+1 = j, zt = i|x) ∝ p(zt+1 = j, zt = i, x)

= αt(i)aijp(xt+1|zt+1 = j)βt+1(j)
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▶ From the E-step, we have

γt,k = p(zt = k|x) = αt(k)βt(k)∑
k αt(k)βt(k)

ξt(i, j) = p(zt+1 = j, zt = i|x) = αt(i)aijp(xt+1|zt+1 = j)βt+1(j)∑
k αt(k)βt(k)

▶ The expected complete data log-likelihood is

Q =
∑
k

γ1,k log πk +

T−1∑
t=1

∑
i,j

ξt(i, j) log aij

+

T∑
t=1

∑
k

γt,k logN (xt|µk,Σk)

▶ Closed form solution for M-step – just like in the Gaussian
mixture model
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EM algorithm finds MLE for models with missing/latent
variables. Applicable if the following pieces are easy to solve

▶ Estimating missing data from observed data using current
parameters (E-step)

▶ Find complete data MLE (M-step)

Pros

▶ No need for gradients, learning rates, etc.

▶ Fast convergence

▶ Monotonicity. Guaranteed to improve L at every iteration

Cons

▶ Can get stuck at local optimal

▶ Requires conditional distribution p(z|x, θ) to be tractable
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