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Introduction 2/32

» In this lecture, we discuss Expectation-Maximization
(EM), which is an iterative optimization method dealing
with missing or latent data.

» In such cases, we may assume the observed data z are
generated from random variable X along with missing or
unobserved data z from random variable Z. We envision
complete data would have been y = (z, 2).

» Very often, the inclusion of the observed data z is a data
augmentation strategy to ease computation. In this case, Z
is often referred to as latent variable.
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Latent Variable Model 3/32

» Some of the variables in the model are not observed.

» Examples: mixture model, hidden Markov model (HMM),
latent Dirichlet allocation (LDA), etc.
> We consider the learning problem of latent variable models

Mixture Model Hidden Markov Model

X1 Xy Xy
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Marginal Likelihood 4/32

» complete data likelihood p(z, z|f), € is model parameter

» When z is missing, we need to marginalize out z and use
the marginal log-likelihood for learning

log p(z|0) = logZp (z,2]0)

» Examples: Gaussian mixture model. z ~ Discrete(n),
0= (m,p,%)

p(x|0) = sz—k|0) (z]z =k, 0)

= Z?Tk./\/ x\uk,Ek)
k

1 1 _
= ZT%W exp (_2(:3 - ,Uk)TZkl(l" - Mk))
k
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Learning in Latent Variable Model 5/32

» For most of these latent variable models, when the missing
components z are observed, the complete data likelihood
often factorizes, and the maximum likelihood estimates
hence have closed-form solutions.

» When z are not observed, marginalization destroys the
factorizible structure and makes learning much more
difficult.

» How to learn in this scenario?

» Idea 1: simply take derivative and use gradient ascent
directly

» Idea 2: find appropriate estimates of z (e.g., using the
current conditional distribution p(z|z, 6)), fill them in and
do complete data learning — This is EM!
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Expectation Maximization 6/32

» At each iteration, the EM algorithm involves two steps
» based on the current #*), fill in unobserved z to get
complete data (x,2’)
» Update 6 to maximize the complete data log-likelihood
L(z,2'|0) = logp(x, 2'|0)
» How to choose 2'?
» Use conditional distribution p(z|x, §®))
» Take full advantage of the current estimates §(*)

Ep(le g(t))g x, Z|9 Zp |£C e(t) ({17 Z|9)

In some sense, this is our best guess (as shown later).
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EM Algorithm 7/32

More specifically, we start from some initial 8. In each
iteration, we follow the two steps below

» Expectation (E-step): compute p(z|z, ") and form the
expectation using the current estimate o)

Q(t) (0) = Ep(z|x,0(t>)£(33= 2’0)

» Maximization (M-step): Find 0 that maximizes the
expected complete data log-likelihood

0+ = arg max Q™ (9)
[%

In many cases, the expectation is easier to handle than the
marginal log-likelihood.
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How does EM Work? 8/32

» EM algorithm can be viewed as optimizing a lower bound
on the marginal log-likelihood £(6) = log p(x|6)

» A class of lower bounds

0)
:logZp(a:,z\Q logz p( Z|
> Z log z)\ﬁ) - Jensen’s inequality
= Z )log p(x, 210) — Y " q(2)logq(z), Vq(2)

z

» The term in the last equation is often called Free-energy

F(g,0) =Y q(z)logp(x, 210) — Y q(2)log (=)

z z
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Lower Bound Maximization 9/32

» Free-energy is a lower bound of the true log-likelihood
L(0) > F(q,9)

» EM is simply doing coordinate ascent on F(q, 6)
> E-step: Find ¢() that maximizes F(q,0®)
» M-step: Find #(**1 that maximizes F(q(*), )

» Properties:
» Each iteration improves F

Flg,0040) > F(g®, 60)
» Each iteration improves £ as well
E(e(t-‘rl)) > E(e(t))

will show later
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E-step 10/32

» Find ¢ that maximizes F (g, (")
F(q,0) =Y q(2)logp(z, 210) = Y q(2)log q(2)

=3 g2 log p(z|z, 0)p(|0)

q(2)
= ot o pi'é’)e) +logp(zl)
= L(0) — Dk (q(2)||p(z|z,0))
< L(0)

T, »
NPT TS
a3t PEKING UNIVERS!

ITY




E-step 11/32

F(q,0%) = £(6Y) — Drr(q(2)|p(zz,6))

» KL divergence is non-negative and is minimized (equals to
0) iff the two distributions are identical.

» Therefore, F(g,0") is maximized at ¢)(z) = p(z|z, 8®).

» So when we are computing p(z|z,0®)), we are actually
computing arg max, F(q, 10

» Moreover,

F(q¥,09) = £(0")

this means the lower bound matches the true log-likelihood
at 0, which is crucial for the improvement on L.
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M-step 12/32

» Find 0+ that maximizes F(q(*), 0)

9+ = arg max F(¢?, 0)
6
= argmax Y _ p(z[x,0")) log p(, 210) + H (p(z|x,01))
9 z

= argénaX]Ep(zlmﬁ(t))@(x, 2’0)
» The expected complete data log-likelihood usually can be
solved in the same manner (closed-form solutions) as the
fully-observed model.
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Monotonicity of EM

ﬁ(e(t-i-l))

Inp(X|9)

gold grew
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EM for Exponential Families 14/32

» When the complete data follow an exponential family
distribution (in canonical form), the density is

p(z,2|0) = h(x, z)exp(0 - T'(x, z) — A(0))
» E-step

Q(t) (0) = Ep(z|,7;76(t>) logp(x7 2’0)
= 0 . ]Ep(z|x,0<t))T(‘,r7 Z) — A(Q) + COHSt

» M-step

VoQW(0) = 0= B, g0 T (7, 2) = VoA(0) = Epy 20T (2, 2)
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Examples: Censored Survival Times 15/32

» In survival analyses, we often have to terminate our study
before observing the real survival times, leading to
censored survival data.

» Suppose the observed data are Y = {(t1,91),..., (tn,0n)},
where T ~ Exp(p) and §; is the indicator of a censored
sample. WLOG, assume §; =0,i <r, & =1,i>r

» The log-likelihood function is

logp(Y|u) = > logp(tilu) + Y logp(T; > tilu)
i=1 i>r
= —rlogpu— Y ti/n
i=1

» The MLE of pu: o =>"" t;/r
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Examples: Censored Survival Times 16/32

» Let us see how EM works in this simple case.

» Let t = (T1,...,T,) = (T1,...,T,2) be the complete data
vector, where z = (Ty41,...,T},) are the unobserved n — r
censored random variables.

» Natural parameter 1/, sufficient statistics > ;- ; 73, and
Eud i Ti = np
» By the lack of memory, T;|T; > t; ~ t; + Exp(u), Vi > 7.

n r
By iy O Ti= tit Y ti+ (n—r)u®
=1 1=1 i>r
» Update formula

(k+1) _ 2?21 ti+ (n— T)H(k)
n
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Gaussian Mixture Model 17/32

» Consider clustering of data X = {z1,...,zn} using a finite
mixture of Gaussians.

z ~ Discrete(w), x|z =k ~ N (ug, k)

0 = {7k, pu, T}, are model parameters
» Complete data log-likelihood

log p(x, z|0) = log H x|z = k))t==*

K
Z i (log i + log N (x| g, X))
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E-step 18/32

» Compute the conditional probability p(z,|z,,08®) via
Bayes’ theorem

P(2n, 2, |0)
n n,0 =
p(z |‘T ) Zzn p(zm xn‘g)

w,?wmm,@, =)
S TON (|, )
(t) &

> Denote v, = p(zn = k|zn, 0®)), which can be viewed as a
soft clustermg of x,

p(zn = k|xp, Q(t)) =

ol
k
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E-step 19/32

» Expected complete-data log-likelihood

Zzp Zn|=75n7 Ing(xnaznle)

=> Z%,k log 7, + log N (| x, i)

k

= Z Z'yr(f)k (log 7k + log N (| g, X))
k n
Substitute N (x| p, ) in

d 1
®)(9) = Z Z*yﬁii(log T~ 5 log(2m) — 3 log | k|
k n

- 5(en - " m)

2
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M-step 20/32

» Maximize Q()(#) with respect to 7 using Lagrange

multipliers
SR
Therefore
t t) t)
ﬂ_(t-{—l) . Zn PY'SL,)]{‘ Zn Py’fL,k . Zn VT(L,k
. =

DI DIRICEIED DED DL SN

» Note that ), 'ys)k can be viewed as the weighted number

of data points in mixture component k, and W,E/,tﬂ) is the

fraction of data the belongs to mixture component k.
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M-step 21/32

» Compute the derivative w.r.t ug

Q" (e - -
) S i = ) = 5 ke -

O -

» Therefore,
()
(t+1) _ >on 2n Tngtn kan
H,
Zn r)/n,k
,u,(fﬂ) is the weighted mean of data points assigned to

mixture component k

» Similarly, we can get

(tJrl))(m M](erl))T

n —

E}(jﬂ) 2on ’Vn k:(
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EM algorithm for Gaussian Mixture Models 22/32

» E-step: Compute the soft clustering probabilities

L0 _ TN @l %))
n,k
S TN (@l 50

» M-step: Update parameters

t
(t+1) Zn 77(1,)k:
T = —

N
(t+1) don %(Lt}cxn
D YV
2](€t+1) . 5 %(f)k(xn B “i(fﬂzt))(f”n _ Ml(ctJrl))T
2n Yk
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Examples: Mixture of 5 Gaussians 23/32
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Examples: Mixture of 3 Gaussians 24/32
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Connection to k-means 25/32

» The k-means algorithm follows two steps
» Assignment step: assign data to the nearest cluster

|1, k=argming ||z, — pe|
Tnk 0, otherwise

» Update step: set pg to the mean of data points assigned to
the k-th cluster

t
- - n
Zn ’}/n,k: Nk niYn, k=1

N is the number of data points assigned to the k-th cluster.
» Therefore, k-means can be viewed as a special case of EM
for Gaussian mixture models where 3;, = I and +, j, are
hard assignments instead of soft clustering probabilities
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Hidden Markov Model 26/32

» Sequence data 1, 2o, ..., 2, each x, € R?

v

Hidden variables 21, 29, ..., 27, each z; € {1,2,..., K}
» Joint probability

T—1 T
p(x,2) = p(z1) [ [ p(zealz) [ [ plailz)
t=1 t=1

» p(x¢|z:) is the emission probability, could be a Gaussian
p(wilze = k) = N (¢ |pe, Zi)

» p(zi+1|2¢) is the transition probability, a K x K matrix
aij = p(ze+1 = jlze = 1), > a5 =1
» p(z1) ~ Discrete(r) is the prior for the first hidden state
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Expected Complete Data Log-likelihood 27/32

» The expected complete data log-likelihood is

Q= IEp(z|a:) Ing(.T Z)

T-1
= ZP(Z!IB) <1ng 1) + Z log p(ze41]2¢) + Zlogp wt\Zt))

t=1

—ZP z1|z) log p(21) +Z Z (2, ze41l2) log p(2141]21)

t=1 z¢,2t+1
+ Z ZP(%L@ log p(x¢|2t)
t=1 2zt

» Therefore, in the E-step, we need to compute unary and
pairwise marginal probabilities p(z¢|x) and p(z, zt+1]:n).
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E-step: Forward-Backward Algorithm 28/32

» Using the sequential structure of HMM, we can compute
these marginal probabilities via dynamic programming.

» The forward algorithm

ai1(J) = p(ze41 = Jy 21, - - - Teg1)

= Zp(zt-‘rl == j7 2t = ivxlv L ,I’t+1)

(2

= P($t+1|2’t+1 = j) ZP(Z’tH = j’zt = i)p(?«’mﬂ?l, cee 9Ct)

2

= p(Tit1|zt41 = J) Z aiip(ze, 1, ..., xt)

(2

= p(@ipa|ze01 = 5) Y agjau(i)

1

ez x Y

@

PEKING UNIVERSITY




E-step: Forward-Backward Algorithm 29/32

» The backward algorithm
Bi(i) = p(Tis1, ... xp|2e = 1)
= ij(xtJrl» T 21 = 2 =1)
= Zj aijp(Tet1lzi1 = J)Be1(d)
» Unary marginal probability
p(ze = jlo) o< p(ze = j, ) = ae(j)Be ()
» Pairwise marginal probability

p(zt41 = J, 2t = i|lz) < p(zt41 = j, 2t = i, 7)
= ay(1)ayp(Te1|zeer = 7)Ber1(d)
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M-step 30/32

» From the E-step, we have
_ _ou(k)Be(k)
Ttk = (Zt = k’$) Zk Oét( ) ( )

(i) aip(Tes1|ze+1 = §)Brv1(d)

&(i,5) = p(zep1 = j, 2 = i|x) = S o (k) By (k)

» The expected complete data log—likelihood is

Q= 271k10g7rk+22& i, j)log a;;

t=1 4,5

+ Z Z%’k log N (¢ |k, Ze)

t=1 k

» Closed form solution for M-step — just like in the Gaussian

mixture model @ ez X P

=/ PEKING UNIVE RSITY




Summary 31/32

EM algorithm finds MLE for models with missing/latent
variables. Applicable if the following pieces are easy to solve

» Estimating missing data from observed data using current
parameters (E-step)

» Find complete data MLE (M-step)

Pros
» No need for gradients, learning rates, etc.
» Fast convergence

» Monotonicity. Guaranteed to improve L at every iteration

Cons
» Can get stuck at local optimal
» Requires conditional distribution p(z|x, ) to be tractable
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