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Motivation 2/38

> Large scale datasets are becoming more commonly
available across many fields. Learning complex models
from these datasets is the future

» While many modern MCMC methods have been proposed
in recent years, they usually require expensive computation
when the data size is large

P In this lecture, we will discuss recent development on

Markov chain Monte Carlo methods that are applicable to
large scale datasets

» Best of both worlds: scalability, and Bayesian protection
against overfitting
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Stochastic Differential Equations 3/38

» Stochastic differential equations are widely used to model
dynamical systems with noise

dXt = /L(Xt, t)dt + O'(Xt, t)dBt

where B denotes a Wiener process/Brownian motion

» Now suppose the probability density for X; is p(x,t), we
are interested in how p(x,t) evolves along time

» For example, does it converge to some distribution? If it
does, how can we find it out?
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Fokker-Planck Equation 4/38

» Consider Y; = g(X;), where g is a test function with certain
regularity. By It6’s formula

1
aY; = <Vg<Xt> St 2tr<v29<Xt>aaT>> dt + Vg(Xe)odB;

» Integrate both side on time interval [t, ¢ + h] and take
expectation

Yoo, —Y, 1 [tth 1
DA / E(Vg-u+ -tr(VigocT) | ds
h h 2

» Let h — 0 and assume g(x) — 0 as ||z|| — oo

/g(m) W,t) o /g(a:) (—v (up) + V2 (;aan)> dw
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Fokker-Planck Equation 5/38

» Since g is arbitrary, p(z,t) satisfies the Fokker-Planck
equation (also known as the Kolmogorov forward equation)

Z?p (z,t)
Z o, (pilz, t)p(x,t)) +Z amzax] D, (z,t)p(z,1))

where D = 200 is the diffuse tensor

> Example: Weiner process dX; = dBy

op(z,t) 1 92
o~ 20:2P"Y
1 o2
If p(x,0) = §(z), the solution is p(x,t) \/%e 2
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Challenges From Massive Datasets 6/38

» Suppose that we have a large number of data items

D = {xl,l’g,. . .,JIN}
where N > 1
» The log-posterior (up to a constant) is

N

log p(6]X) = logp(6) + Y _ log p(wi#) ~ O(N)
i=1

» How to reduce this computation in MCMC without
damaging the convergence to the target distribution?
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Stochastic Gradient Ascent 7/38

» Also known as stochastic approximation
» At each iteration

» Get a subset (minibatch) wy,,...,z, of data items where
n <N
» Approximate gradient of log-posterior using the subset

N n
Viogp(6,|X) ~ Vogp(8h) + — > Vlogp(ar,|6r)

i=1

» Take a gradient step

€ N n
Ory1 =0 + Et (V log p(0:) + — > VIng(xtth))

=1
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Stochastic Gradient Ascent 8/38

» Major requirement for convergence on step-sizes

oo oo
E €4 = 00, E ef <00
t=1 t=1

» Intuition
» Step sizes cannot decrease too fast, otherwise will not be
able to explore parameter space
» Step sizes must decrease to zero, otherwise will not converge
to a local mode
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First Order Langevin Dynamics 9/38

» First order Langevin dynamics can be described by
the following stochastic differential equation

1

» The above dynamical system converges to the target
distribution p(0|X) (easy to verify via the Fokker-Planck
equation)

» Intuition

» Gradient term encourages dynamics to spend more time in
high probability areas

» Brownian motion provides noise so that dynamics will
explore the whole parameter space
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Numerical Approximation 10/38

» First order Euler discretization
€
Opp1 = 0; + §V10gp(9t’X) + e, e =N(0,¢€)

» Amount of noise is balanced to gradient step size

> With finite step size, there will be discretization errors. We
can add MH correction step to fix it, and this is MALA!

> As step size € — 0, acceptance rate goes to 1
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Stochastic Gradient Langevin Dynamics 11/38

» Introduced by Welling and Teh (2011)

» Idea: use stochastic gradients in Langevin dynamics

Orp1 =01 + %9(90 + e, e =N(0,¢)

g(0:) = Vogp(6:) + ZVlogp (xt,16¢)
=1

» Update is just stochastic gradient ascent plus Gaussian
noise
> Noise variance is balanced with gradient step sizes

P require step size ¢; decrease to 0 slowly
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Why SGLD Works? 12/38

» Controllable stochastic gradient noise. The stochastic
gradient estimate g(6;) is unbiased, but it introduces noise

9(0:) = Vlogp(0]X) + N (0,V(6:))

> Stochastic gradient noise ~ N (0, O(e?))
» Injected noise 7, ~ N(0, ¢;)

» When ¢, — 0

» Stochastic gradient noise will be dominated by injected
noise 17, so can be ignored. SGLD then recovers Langevin
dynamics updates with decreasing step sizes

» MH acceptance probability approaches 1, so we can ignore
the expensive MH correction step

» If ¢; approaches 0 slowly enough, the discretized Langevin
dynamics is still able to explore the whole parameter space
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Examples: Mixture of Gaussian 13/38

01 ~N(0,07), 62 ~N(0,03)
1 1
Ti ~ 5,/\/’(91,0'3) + 5-}\/(01 + 02702)

3 3
2 2
1 1
0 0
-1 -1
-2 -2
=3 0 1 > 4 0 1 2
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Examples: Mixture of Gaussian 14/38

Noise and rejection probability
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Examples: Logistic Regression 15/38
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Naive Stochastic Gradient HMC 16/38

» Now that stochastic gradient scales MALA, it seems
straightforward to use stochastic gradient for HMC

df = M~ trdt
dr = g(0)dt = —=VU(8)dt + \/€V (0)dB,

» However, the resulting dynamics does not leave p(,r)
invariant (can be verified via Fokker-Planck equation)

» This deviation can be saved by MH correction, but that
leads to a complex computation vs efficiency trade-off

» Short runs reduce deviation, but requires more expensive
HM steps and does not full utilize the exploration of the
Hamiltonian dynamics

» Long runs lead to low acceptance rates, waste of
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Example: Naive Stochastic Gradient HMC Fails

Ul) = —20* +6*
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Second Order Langevin Dynamics 18/38

» We can introduce friction into the dynamical system to
reduce the influence of the gradient noise, which leads to
the second order Langevin dynamics

df = M~ trdt

2
dr = —VU(0)dt — CM~'rdt +v/2CdB, @)

» Consider the joint space z = (6, r), rewrite (2)

dz = —[D + G)VH(z)dt + V2DdB,

0 —I 0 0
o=[r o] 2=l o]
» p(0,r) o exp(—H(A,7)) is the unique stationary
distribution of (2)

where
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Stochastic Gradient HMC 19/38

» Introduced by Chen et al (2014)

» Use stochastic gradient in the second order Langevin
dynamics. In each iteration

» resample momentum () ~ N(0, M) (optional),
(B0, 70) = (1) (1))
» simulate dynamics in (2)
0; =0;_1+ GtMilTifl
Ty ="Ti—1+ Gtg(9¢) — etCZ\/Iflri_l —|—N(O 20@)

» update the parameter (§¢+1) +(+1)) = (4,,,7,,), no MH
correction step
» Similarly, the stochastic gradient noise is controllable, and
when ¢; — 0, SGHMC recovers the second order Langevin
dynamics
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Connection to SGD With Momentum 20/38

» Let v = eM ™7, we can rewrite the update rule in SGHMC

Av=eEMg0) —eMCv+N(0,28 M CMY)
AO =0

» Define n = M, o = eM~1C, the update rule becomes

Av =ng(f) — av + N(0,2an)
Al =v

» If we ignore the noise term, this is basically SGD with
momentum where 7 is the learning rate and 1 — « the
momentum coefficient

» This connection can be used to guide our choices of

ez x Y

SGHMC hyper-parameters

PEKING UNIVERSITY




Examples: Univariate Standard Normal 21/38
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Examples: Bivariate Gaussain With Correlation  22/38

SGHMC vs SGLD on a bivariate Gaussian with correlation

1 .
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Examples: MNIST Dataset 23/38
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A Recap on SGHMC 24/38

» Stochastic gradient in SGHMC introduces noise. With step
size €, the corresponding dynamics is

dd = M~ rdt
dr = —VU(0)dt — CM~\dt + 1/2(C + %eV(Q))dBt

» If somehow we correct the mismatch between friction
coefficient and the real noise level, we can improve the
approximation accuracy for a finite €

» But how can we do that given that the noise V() is
unknown?

ez x Y

@

PEKING UNIVERSITY




Nosé-Hoover Thermostat 25/38

» One missing key fact is the thermal equilibrium condition:

p(6.7) o exp (~(U(6) + K (r))/T) = T = -E(Gr)

» Unfortunately, using stochastic gradients destroys the
thermal equilibrium condition

» We can introduce an additional variable £ that adaptively
controls the mean kinetic energy, and use the following
dynamics

d = rdt, dr = g(0)dt — Erdt + V2AdB,

de — (Tll Ty 1)t (3)

» (3) is known as the Nosé-Hoover thermostat in statistical
physics.
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Stochastic Gradient Nosé-Hoover Thermostat 26/38

» Introduced by Ding et al (2014)

» The algorithm
» TInitialized 6, rg ~ N(0,1), and &y = A
> Fort=1,2,...

re =141 + €9(0i—1) — e&p—1m4—1 + V2AN (0, €)
Oy =01 + €1y

& =& 1+ e((r)r®/d—1)

» The thermostat £ helps to adjust the friction according to
the real noise level, and maintains the right mean kinetic
energy

» When mean kinetic energy is high, £ get bigger, increasing
friction to cool down the system
» When mean kinetic energy is low, £ get smaller, reducing
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Example: A Double-well Potential 27/38

U@)=0+4)0+1)(0—-1)(0—3)/144+0.5
g(0)e = —-VU(0)e + N(0,2Be), e¢=0.01,B=1

For SGNHT, we set A =10
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Mathematical Foundation 28/38

» Consider the following stochastic differential equation
dl' = v(T")dt + N(0,2D(0)dt)
where T' = (0,1, &).
» p(T") ox exp(—H (T")) is the stationary distribution if

V- (p(D)o()) = VYV : (p(I)D)

We can construct H such that the marginal distribution is
p(0) o< exp(~U (9)).
» For SGNHT, H(I') = U(0) + %rTr + %l(g — A)?

r 0 0 0
o) = |-VU@)—&r|, DO)=|0 A 0
rTr/d—1 0 0 0
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A Recipe for Continuous Dynamics MCMC 29/38

» Introduced by Ma et al (2015)

» Assume target distribution p(6|X) is the marginal
distribution of p(z) o exp(—H(z))

» We consider the following stochastic differential equation

dz = —(D(z) + Q(2))VH(z)dt + T'(z)dt + /2D(z)d B,

9
)= 55, (P2 + Qo)

> (Q(z) is a skew-symmetric curl matrix
» D(z) denotes the positive semidefinite diffusion matrix

» The above dynamics leaves p(z) invariant
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The Recipe is Complete 30/38

All existing samplers can
be written in framework

» HMC

» Riemannian HMC

» Langevin Dynamics
(LD)

» Riemannian LD

p(z) =

AII Continuous

Markov Processes

Adapted from Emily Fox 2017

ANEIE T

et PEKING UNIVERSITY




The Recipe is Complete 30/38

All existing samplers can
be written in framework

» HMC

» Riemannian HMC

» Langevin Dynamics
(LD)

» Riemannian LD

All Continuous
Markov Processes

Any valid sampler has a
D and @ in the
framework

Adapted from Emily Fox 2017
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A Practical Algorithm 31/38

» Consider e-discretization
zi41 = 2e— (D (2) +Q(2¢) ) VH (2¢)+T (2¢))+N (0, 26, D (1))

» The gradient computation in VH (2¢) could be expansive,
can be replaced with stochastic gradient VH (z;)

201 = 2—e((D(20) +Q(20))VH (2)+T(2))+N (0,26, D(21))

» The gradient noise is still controllable

VH(z) = VH(z) + (N(0,V(9)),0)"

> stochastic gradient noise ~ N(0, 7V (0))
» injected noise ~ N(0,2¢;D(z))
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Stochastic Gradient Riemann HMC 32/38

| 2

>

>

As shown before, previous stochastic gradient MCMC
algorithms all cast into this framework

Moreover, the framework helps to develop new samplers
without requiring significant physical intuition

Consider H(0,7) = U(0) + rTr, modify D and Q to
account for the geometry

0= o). 0= (e ")

Note that this works for any positive definite G(6), not just
the fisher information metric
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Streaming Wikipedia Analysis 33/38

Applied SGRHMC to online LDA
- each entry was analyzed on the fly

3500,
; SGLD
SGHMC
\% —SGRLD
3000 — SGRHMC
22500
>
9
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Number of Documents
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Alternative Methods for Scalable MCMC 34/38

» Reduce the computation in MH correction step via subsets
of data (Korattikara et al 2014)

» Divide and conquer: divide the entire data set into small
chunks, run MCMC in parallel for these subsets of data,
and merge the results for the true posterior approximation
(Scott et al 2016)

» Using deterministic approximation instead of stochastic
gradients. This may introduce some bias, but remove the
unknown noise for gradient estimation, allowing for better
exploration efficiency

» Gaussian processes: Rasmussen 2003, Lan et al 2016

» Reproducing kernel Hilbert space: Strathmann et al 2015
» Random Bases: Zhang et al 2017
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