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Overview of MCMC 2/36

» Simple MCMC methods, such as Metropolis algorithm and
Gibbs sampler explore the posterior distribution using
simple mechanism (e.g., a random walk)

> While this strategy might work well for low-dimensional
distributions, it could become very inefficient (e.g., high
autocorrelation, missing isolated modes) for
high-dimensional distributions

» In this lecture, we discuss several advanced techniques to
improve the efficiency of Markov chain Monte Carlo
methods
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Simple MCMC is Not Enough 3/36

Random walk Metropolis (RWM) is struggling with a
banana-shaped distribution
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How to Improve Simple MCMC Methods 4/36

» Random proposals are likely to be inefficient, since they
completely ignore the target distribution

> A better way would be to use information from the target
distribution to guide our proposals

> Note that in optimization, the gradient points to an ascent
direction, which would also be useful when designing the
proposal distributions

' =z + eVlogp(z)

when € is small, ‘

logp(z') > log p(x)
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Metropolis Adjusted Langevin Algorithm 5/36

» We can incorporate the gradient information into our
proposal distribution

» Let = be the current state, instead of using a random
perturbation centered at x (e.g., N'(x,0?)), we can shift
toward the gradient direction which leads to the following
proposal distribution

2
Q2 |x) = N(z + %V]ogp(:v), o?I)

This looks like GD with noise!
» No longer symmetric, use Metropolis-Hasting instead
» This is called Metropolis Adjusted Langevin Algorithm
(MALA)
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Metropolis Adjusted Langevin Algorithm 6/36
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Hamiltonian Monte Carlo 7/36

» It turns out that we can combine multiple MALA together,
resulting in an algorithm that can generate distant
proposals with high acceptance rate

» The new algorithm is based on Hamiltonian dynamics, a
system introduced by Alder and Wainwright (1959) to
simulate motion of molecules deterministically based on
Newton’s law of motion

> In 1987, Duane et al. combine the standard MCMC and
the Hamiltonian dynamics, and derived a method they
called Hybrid Monte Carlo (HMC)

» Nowadays, this abbreviation has also been used for
Hamiltonian Monte Carlo

ez x Y

@

PEKING UNIVERSITY




Hamiltonian Dynamics 8/36

» Construct a landscape with potential energy U(x)
p(z) x e V), U(2) = —log P(x)

» Introduce momentum r carrying kinetic energy
K(r) = $rTM~1r, and define total energy or
Hamiltonian H(z,r) = U(z) + K(r)

» Hamiltonian equations

dr oH dr OH

dat — or’ dt  Ox
» Some physics:
» The two equations are about velocity and force, respectively.

» Frictionless ball rolling (z,7) — (2/,r') satisfies
H(z',r") = H(x,r)
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Hamiltonian Monte Carlo 9/36

» The joint probability of (z,7) is
p(z,r) o< exp(—H (z,7)) o< p(z) - N(r]|0, M)

» 2 and r are independent and r follows a Gaussian
distribution

» The marginal distribution is the target distribution p(z)

» We then use MH to sample from the joint parameter space
and x samples are collected as samples from the target
distribution

» HMC is an auxiliary variable method
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Proposing Mechanism 10/36

We follow two steps to make proposals in the joint parameter
space
» Gibbs sample momentum: r ~ N (0, M)

» Simulate Hamiltonian dynamics and flip the sign of the
momentum

(z,r) = (20 rO) HD, @® Oy, (@ 1) = (2, D)

Important Properties

» Time reversibility: The trajectory is time reversible

» Volume preservation: Hamiltonian flow does not change
the volume - the jacobin determinant is 1

» Conservation of Hamiltonian: Total energy is conserved,
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Numerical Integration 11/36

» In practice, Hamiltonian dynamics can not be simulated
exactly. We need to use numerical integrators

» Leap-frog scheme

€ e OU
r(t+ 5) =r(t) - 5%(33@))
x(t+e)=x(t) + 6%5(7”(75 + %))
r(t+e)=r(t+e/2)— ;aag(a:(t +e))

Important Properties

» Reversibility and volume preservation: still hold

» Conservation of Hamiltonian: broken. Acceptance
probability becomes

a(z’,r'|z,r) = min (1,exp(—H (2',7') + H(z,r)))
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Comparison of Numerical Integrators 12/36

2 2
T r
H = — + —
(e,r) = 5+ 2
Euler, e =0.3 Leap-frog, ¢ = 0.3
2 4 o l 2 2 4 o i 2

Adapted from Neal (2011) R
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Hamiltonian Monte Carlo 13/36

HMC in one iteration
» Sample momentum r ~ N(0, M)
» Run numerical integrators (e.g., leapfrog) for L steps

» Accept new position with probability
min (1, exp(—H (z',7") + H(z,7)))
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The Geometry of Phase Space 14/36

» Since Hamiltonian is conserved, every Hamiltonian
trajectory is confined to an energy level set

HYE)={z,r|H(z,7) = E}

Nl ®)

—
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Adapted from Betancourt (2017)
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Choice of Kinetic Energy 15/36

» The choice of the conditional probability distribution over
the momentum, or equivalently, the kinetic energy, affects
HMC’s behavior over different energy level sets

P Ideally, the kinectic energy will interact with the target
distribution to ensure that the energy level sets are
uniformly distributed

» In HMC, we often use Euclidean-Gaussain kinetic energy

T
K(r) = %5". This sets M = I and completely ignore local
geometric information of the target distribution

» Preconditioning mass matrix may help, but it is also quite
limited

» Instead of using a fixed M, how about using an adaptive
one?
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Fisher Information and Riemannian Manifold 16/36

» Consider the symmetric KL divergence between two
densities p and q

Dg1(pllg) = Dxv(pllg) + Dxi(qllp)

» Let p(y|z) be the likelihood. Then
Dy, (p(yla + 62)||p(ylx)) is approximately

&vTIEy‘x (Ve logp(y|z) Vs logp(y]a:)T) ox = 6xT G(x)dx

where G(x) is the Fisher Information matrix

» This induces a Riemannian manifold (Amari 2000) over
the parameter space of a statistical model, which defines
the natural geometric structure of density p(x)
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Riemannian Manifold Hamiltonian Monte Carlo  17/36

» Based on the Riemannian manifold formulation, Girolami
and Calderhead (2011) introduce a new method, called
Riemannian manifold HMC (RMHMC)

» Hamiltonian on a Riemannian manifold
H(z,r) = Ue) + 3 log((2m)IG())) + 517 Gla)r
» The joint probability is
p(x,7) o< exp(—=H(z, 7)) o p(x) - N(r[0, G(x))

» 2z and r now are correlated, and the conditional
distribution of r given z follows a Gaussian distribution

» The marginal distribution is the target distribution

ez x Y

@

PEKING UNIVERSITY




RMHMUC in Practice 18/36

» The resulting dynamics is non-separable, so instead of the
standard leapfrog we need to use the generalized leapfrog
method (Leimkuhler and Reich, 2004)

» The generalized leapfrog scheme
€ € €
r(t+ 5) =r(t) - gva(l’(t)ﬂ'(t + 5))

2t +€) = a(t) + 5 (G(t) " + Glalt+ ) )r(t+3)

r(t+e) =r(t+ 5) - §VmH(a:(t +e),r(t+ 5))

» The above scheme is time reversible and volume preserving.
However, the first two equations are defined implicitly (can
be solved via several fixed point iterations)
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Examples: Banana Shape Distribution 19/36

» Consider a 2D banana-shaped posterior distribution as
follows

yi ~ N(01+603,07), 0= (61,02) ~N(0,051)
» the log-posterior is (up to an ignorable constant)

Zl(yl — 91 — 9%)2 . 9% + 9%
202 203

logp(H\Y, U;a 0’3) = -

» Fisher information for the joint likelihood
n |: 1 2(92:| 1

02 (20, 463 ponl

G(0) = Eyy (—V% logp(Y,0)) = 2
7
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Examples: Banana Shape Distribution 20/36
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Examples: Bayesian Logistic Regression 21/36

» Consider a Bayesian logistic regression model with design
matrix X and regression coefficients 8 € R?, with a simple
prior 8 ~ N (0, aly)

» Neglecting constants, the log-posterior is

log p(BIX, Y, ) = L() — 55"

1
T T T T
=0"XY - log(1 4 =
g Z og(1 + exp(; B)) — 5 B8
» Use the joint likelihood to compute the fisher information

) 1 . 1
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Examples: Bayesian Logistic Regression 22/36
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Choice of Integration Time 23/36

» Integration time determines the exploration efficiency of
Hamiltonian trajectory in each energy level set
» Too short integration time lose the advantage of the
coherent exploration of the Hamiltonian trajectory (e.g.,
one step HMC is equivalent to MALA)
» Too long integration time wastes computation since
trajectories are likely to return to explored regions

» The No-U-Turn Sampler (Hoffman and Gelman, 2011).

» Idea: use the distance to the initial position as a criteria for
selecting integration time - avoid U-Turn

» Naive implementation is not time reversible. Use a strategy
similar to the doubling procedure in slice sampling (Neal
2003).
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Adaptive MCMC 24/36

> Generally speaking, the efficiency of MCMC depends on its
proposal distribution, which usually involves several
hyper-parameters

» Most MCMC algorithms, therefore, need tuning to be
efficient and reliable in large scale applications

» However, tuning could be painful and sometimes not
practical (requires computing time, human time, and
typically expert knowledge, too many variables, when to
stop tuning, tuning criterion not clear, etc)

» Adaptive MCMC is about tuning MCMC without human
intervention

» It uses the trajectory so far to tune the sampling kernel on
the fly (so it is not a Markov chain anymore)
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Examples: Random Walk Metropolis

» Proposal distribution:
¥~ Qu(-|z) =2+ oN(0,1y)

» Plots for different o - Goldilock’s principle

25/36
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Examples: Random Scan Gibbs Sampler 26/36

» Random Scan Gibbs Sampler for 50-d Truncated
Multivariate Normals. Are uniform 1/d selection
probabilities optimial?
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How to Design Adaptive MCMC Algorithms? 27/36

» First, we need a parameterized family of proposal
distributions for a given MCMC class

> We also need an optimization rule that is mathematically
sound and computationally cheap

» We need it to work in practice

Ergodicity of Adaptive MCMC

» How do we know that the chain will converge to the target
distribution if it is not even Markovian?
» Two conditions (see Roberts and Rosenthal 2007):
»  Diminishing adaption: the dependency on ealier states of
the chain goes to zero
» Bounded convergence: convergence times for all adapted
transition kernels are bounded in probablity
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Adaptive Metropolis Algorithms 28/36

» Consider random walk Metropolis for a d-dimensional
target distribution with proposal Q(a'|z,) = N (x,, 02X (™)

» If the target distribution is Gaussian with covariance .,
the optimal proposal is N (xy, %E), which leads to an
acceptance rate a* ~ 0.23 (see Gelman et al 1996)

» This gives a simple criterion for random walk Metropolis in
practice

» We can use it to design an adaptive Metropolis algorithm
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Adaptive Scaling Algorithm 29/36

» Draw proposal
a’ ~ Q(‘xn) =Zn + UnN(Oa Id)

» select the value x,11 according to the Metropolis
acceptance rate o, = a(x'|z,)

» Update scale by
log o1 = logoy, + 'Yn(an - a*)

where the adaptation parameter ~, — 0
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Adaptive Metropolis Algorithm 30/36

» Optimal scaling is not the whole story. In fact, the optimal
proposal suggests to learn the covariance matrix of the
target distribution (e.g., use the empirical estimates)

» The algorithm runs as follows:

» Sample a candidate value from N(x,, %En)
> Select the value 2,41 as in the usual Metropolis (or MH)
» Update the proposal distribution in two steps:

Hn+1 = HUn + 7n+1(mn+1 - Nn)
2n+1 == En + Yn+1 ((xn—Q—l - ,Ufn)(xn—o—l - ,LLn)T - En)

where v, — 0

» Many variants exist (e.g., adapting the scale, block
updates, and batch adaption, etc)
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Adaptive Hamiltonian Monte Carlo 31/36
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» The performance of HMC would be sensitive to its

hyperparameters, mainly the stepsize € and trajectory
length L

ez x Y

@

PEKING UNIVERSITY




Adaptive Hamiltonian Monte Carlo 32/36

» Optimal acceptance rate strategy might not work well. The
example shown on the previous slides all have similar
acceptance rate

» Effective sample size is impractical since high order
auto-correlation are hard to estimate

» Wang et al (2013) uses normalized expected squared
jumping distance (ESJD)

ESJD7 = EWH:E(H_I) _ $(t)||2/\/z

where v = (¢, L)
» Update v via Bayesian optimization, with an annealing
adapting rate
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More Tricks on HMC 33/36

» Instead of using a fixed trajectory length L, we can sample
it from some distribution (e.g., U(1, Liax))

» Split the Hamiltonian
H(J,'7T’) = Hl(.T,T') + HQ(CC,T') + o+ Hk(x77a>

simulate Hamiltonian dynamics on each H; (sequentially or
randomly) give the Hamiltonian dynamics on H. Can save
computation if some of the H; are analytically solvable

» Partial momentum refreshment

v

Acceptance using windows of states

» See Neal (2010) for more complete and detailed discussion
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