
Statistical Models & Computing Methods

Lecture 18: Generative Models – II

Cheng Zhang

School of Mathematical Sciences, Peking University

December 09, 2024

Recap of Autoregressive Models 2/61

▶ Autoregressive models:
▶ Chain rule based factorization is fully general
▶ Compact representation via conditional independence and

/or neural parameterization

▶ Pros:
▶ Easy to evaluate likelihoods
▶ Easy to train

▶ Cons:
▶ Requires an ordering
▶ Generation is sequential
▶ Cannot learn features in an unsupervised way

Latent Variable Models: Motivation 3/61

▶ Lots of variability in images x due to gender, eye color, hair
color, pose, etc. However, unless images are annotated,
these factors of variation are not explicitly available (latent)

▶ Idea: explicitly model these factors using latent variables z

Latent Variable Models: Motivation 4/61

▶ Only shaded variables x are observed in the data (pixel
values)

▶ Latent variables z correspond to high level features
▶ If z chosen properly, p(x|z) could be much simpler than p(x)
▶ If we had trained this model, then we could identify

features via p(z|x), e.g., p(EyeColor = Blue|x)
▶ Challenge: Very difficult to specify these conditionals by

hand

Deep Latent Variable Models 5/61

▶ z ∼ N (0, I)

▶ p(x|z) = N (µθ(z),Σθ(z)) where µθ,Σθ are neural networks

▶ Hope that after training, z will correspond to meaningful
latent factors of variation (features). Unsupervised
representation learning

▶ As before, features can be computed via p(z|x)

Mixture Models 6/61

Combine simple models into a more complex and expressive one

p(x) =
∑
z

p(x, z) =
∑
z

p(z)p(x|z) =
K∑
k=1

p(z = k)N (x;µk,Σk)

Variational Autoencoder: Marginal Likelihood 7/61

A mixture of infinite many Gaussians

▶ z ∼ N (0, I)

▶ p(x|z) = N (µθ(z),Σθ(z)) where µθ,Σθ are neural networks

▶ Even though p(x|z) is simple, the marginal p(x) could be
very complex/flexible

pθ(x) =

∫
z
pθ(x, z)dz =

∫
z
pθ(x|z)p(z)dz

Recap of Latent Variable Models 8/61

▶ Allow us to define complex models p(x) in terms of simple
building blocks p(x|z)

▶ Natural for unsupervised learning tasks (clustering,
unsupervised representation learning, etc)

▶ No free lunch: much more difficult to learn compared to
fully observed autoregressive models

First Attempt: Naive Monte Carlo 9/61

pθ(x) = Ez∼p(z)pθ(x|z), ∇θpθ(x) = Ez∼p(z)∇θpθ(x|z)

We can use Monte Carlo estimate for the marginal likelihood
and its gradient

▶ Sample z(1), · · · , z(k) from the prior p(z)

▶ Approximate expectation with sample average

pθ(x) ≈
1

k

k∑
i=1

pθ(x|z(i)), ∇θpθ(x) ≈
1

k

k∑
i=1

∇θpθ(x|z(i))

Remark: work in theory but not in practice. For most z ∼ p(z),
pθ(x|z) is very low, i.e., mismatch between the prior and
posterior. This leads to large variance for the Monte Carlo
estimates. We need a clever way to select z(i) to reduce the
variance of the estimator.

Second Attempt: Importance Sampling 10/61

We can use importance sampling to reduce the variance

pθ(x) =

∫
z
pθ(x|z)p(z)dz =

∫
z
q(z)

pθ(x, z)

q(z)
dz = Ez∼q(z)

pθ(x, z)

q(z)

Similarly, we can use Monte Carlo estimate

▶ Sample z(1), · · · , z(k) from the important distribution q(z)

▶ Approximate expectation with sample average

pθ(x) ≈
1

k

k∑
i=1

pθ(x, z
(i))

q(z(i))

Remark: What is a good choice for q(z)?

Variational Inference 11/61

▶ Evidence Lower Bound (ELBO)

log pθ(x) ≥ Ez∼q(z) log
pθ(x, z)

q(z)

= Ez∼q(z) log pθ(x, z)− Ez∼q(z) log q(z)

= Ez∼q(z) log pθ(x, z) +H(q)

▶ Equality holds when q(z) = p(z|x; θ)

log pθ(x) = Ez∼p(z|x;θ) log pθ(x, z) +H(p(z|x; θ))

This is the E-step in EM!

▶ In practice, p(z|x, θ) is usually intractable. We can find the
“best” q(z) by maximizing the ELBO in a parameterized
family of {qϕ(z) : ϕ ∈ Φ}

The Evidence Lower Bound 12/61

log pθ(x) ≥
∫
z
qϕ(z|x) log

pθ(x, z)

qϕ(z|x)
= L(x; θ, ϕ)

= L(x; θ, ϕ) + KL(qϕ(z|x)∥p(z|x; θ))

The better qϕ(z|x) can approximate the posterior p(z|x; θ), the
closer ELBO will be to the log pθ(x). We then jointly optimize
over θ and ϕ to maximize the ELBO over a dataset.

Variational Learning 13/61

L(x; θ, ϕ1) and L(x; θ, ϕ2) are both lower bounds, we want to
jointly optimize θ and ϕ.

ELBO for The Entire Dataset 14/61

▶ For each data point x, ELBO holds

log pθ(x) ≥
∫
z
qϕ(z|x) log pθ(x, z) +H(qϕ(z|x)) = L(x; θ, ϕ)

▶ Maximum likelihood learning over the entire dataset

ℓ(θ;D) =
∑
xi∈D

log pθ(x
i) ≥

∑
xi∈D

L(xi; θ, ϕi)

▶ Therefore

max
θ

ℓ(θ;D) ≥ max
θ,ϕ1,··· ,ϕM

M∑
i=1

L(xi; θ, ϕi)

▶ Note that we use different variational parameters ϕi for
every data point xi, because the true posterior pθ(z|xi) is
different across data points xi

Variational Approximations Across Dataset 15/61

▶ Assume pθ(z, x
i) is close to pdata(z, x

i). Suppose z captures
information such as digit identity (label), style, etc. For
simplicity, assume z ∈ {0, 1, . . . , 9}

▶ Suppose qϕi(z) is a probability distribution over the hidden
variable z parameterized by ϕi = (p0, . . . , p9)

▶ If ϕi = (0, 0, 0, 1, . . . , 0), is qϕi(z) a good approximation of
pθ(z|x1)(x1 is the leftmost datapoint)? Yes

▶ If ϕi = (0, 0, 0, 1, . . . , 0), is qϕi(z) a good approximation of
pθ(z|x3)(x3 is the rightmost datapoint)? No

▶ For each xi, need to find a good ϕi,∗ via optimization, can
be expensive

Learning via SVI 16/61

▶ Optimizing
∑

xi∈D L(xi; θ, ϕi) as a function of θ, ϕ1, . . . , ϕM

using stochastic gradient ascent

L(D; θ, ϕ1:M) =

M∑
i=1

Eqϕi (z
i)

(
log pθ(x

i, z)− log qϕi(zi)
)

1. Initialize θ, ϕ1, · · · , ϕM

2. Randomly sample a data point xi from D
3. Optimize L(xi; θ, ϕi) as a function of ϕi, e.g., local gradient

update
4. Compute ∇θL(xi; θ, ϕi,∗)
5. Update θ in the gradient direction. Go to step 2

▶ How to compute the gradients? Often no close form
solution for the expectations. Use Monte Carlo estimates!

Learning Variational Autoencoder 17/61

L(x; θ, ϕ) = Eqϕ(z) (log pθ(x, z)− log qϕ(z))

▶ Similarly as in VI, we assume qϕ(z) is tractable, i.e., easy
to sample from and evaluate

▶ Suppose z1, . . . , zk are samples from qϕ(z)

▶ The gradient with respect to θ is easy

∇θL(x; θ, ϕ) = ∇θEqϕ(z) (log pθ(x, z)− log qϕ(z))

= Eqϕ(z)∇θ log pθ(x, z)

≈ 1

k

k∑
i=1

∇θ log pθ(x, z
i)

Learning Variational Autoencoder 18/61

▶ The gradient with respect to ϕ is more complicated
because the expectation depends on ϕ

▶ We can use score function estimator (or REINFORCE)
with control variates. When qϕ(z) is reparameterizable, we
can also use the reparameterization trick.

▶ If these exists gϕ and qϵ, s.t. z = gϕ(ϵ), ϵ ∼ qϵ ⇒ z ∼ qϕ(z)

∇ϕL(x; θ, ϕ) = ∇ϕEqϵ(ϵ) (log pθ(x, gϕ(ϵ))− log qϕ(gϕ(ϵ)))

= Eqϵ(ϵ) (∇ϕ log pθ(x, gϕ(ϵ))−∇ϕ log qϕ(gϕ(ϵ)))

≈ 1

k

k∑
i=1

(
∇ϕ log pθ(x, gϕ(ϵ

i))−∇ϕ log qϕ(gϕ(ϵ
i))

)
where ϵi ∼ qϵ(ϵ), i = 1, . . . , k

▶ Example: z = µ+ σϵ, ϵ ∼ N (0, 1) ⇔ z ∼ N (µ, σ2) = qϕ(z)

Amortized Inference 19/61

max
θ

ℓ(θ;D) ≥ max
θ,ϕ1:M

M∑
i=1

L(xi; θ, ϕi)

▶ So far we have used a set of variational parameters ϕi for
each data point xi. Unfortunately, this does not scale to
large datasets.

▶ Amortization: Learn a single parameteric function fλ
that maps each x to a set of variational parameters. Like
doing regression xi 7→ ϕi,∗

▶ For example, if q(z|xi) are Gaussians with different means
µ1, . . . , µm, we learn a single neural network fλ mapping xi

to µi

▶ We approximate the posteriors q(z|xi) using this
distribution qλ(z|xi)

Amortized Inference 20/61

▶ Assume pθ(z, x
i) is close to pdata(z, x

i). Suppose z captures
information such as digit identity (label), style, etc.

▶ Suppose qϕi(z) is a probability distribution over the hidden
variable z parameterized by ϕi

▶ For each xi, need to find a good ϕi,∗ via optimization,
expensive for large dataset

▶ Amortized Inference: learn how to map xi to a good set of
parameters ϕi via q(z; fλ(x

i)). fλ learns how to solve the
optimization problem for you, jointly across all datapoints.

▶ In the literature, q(z; fλ(x
i)) often denoted as qϕ(z|xi)

Autoencoder Perspective 21/61

L(x; θ, ϕ) = Eqϕ(z|x) (log pθ(x, z)− log qϕ(z|x))
= Eqϕ(z|x) (log pθ(x|z) + log p(z)− log qϕ(z|x))
= Eqϕ(z|x) log p(x|z; θ)−KL (qϕ(z|x)∥p(z))

Take a data point xi → Map it to ẑ by sampling from qϕ(z|xi)
(encoder) → Reconstruct x̂ by sampling from p(x|ẑ; θ) (decoder)
What does the training objective L(x; θ, ϕ) do?
▶ First term encourages x̂ ≈ xi (xi likely under p(x|ẑ; θ))
▶ Second term encourages ẑ to be likely under the prior p(z)

Variational AutoEncoder 22/61

▶ Alice goes on a space mission and needs to send images to
Bob. Given an image xi, she (stochastically) compress it
using ẑ ∼ qϕ(z|xi) obtaining a message ẑ. Alice sends the
message ẑ to Bob

▶ Given ẑ, Bob tries to reconstruct the image using pθ(x|ẑ)
▶ This scheme works well if Eqϕ(z|x) log pθ(x|z) is large
▶ The term KL (qϕ(z|x)∥p(z)) forces the distribution over

messages to have a specific shape p(z). If Bob knows p(z),
he can generate realistic messages ẑ ∼ p(z) and the
corresponding image, as if he had received them from Alice!

Summary on Latent Variable Models 23/61

▶ Combine simple models to get a more flexible one (e.g.,
mixture of Gaussians)

▶ Directed model permits ancestral sampling (efficient
generation): z ∼ p(z), x ∼ pθ(x|z)

▶ However, log-likelihood is generally intractable, hence
learning is difficult (compared to autoregressive models)

▶ Joint learning of a model (θ) and an amortized inference
component ϕ to achieve tractability via ELBO optimization

▶ Latent representations for any x can be inferred via qϕ(z|x)

Recap on Deep Generative Models 24/61

▶ Model families
▶ Autoregressive Models: pθ(x) =

∏n
i=1 pθ(xi|x<i)

▶ Variational Autoencoders: pθ(x) =
∫
z
pθ(x, z)dz

▶ Normalizing Flow Models:

pX(x; θ) = pZ(f
−1
θ (x))

∣∣∣det(∂f−1
θ (x)

∂x

)∣∣∣
▶ All the above families are based on maximizing likelihoods

(or approximations, e.g., lower bound)

▶ Is the likelihood a good indicator of the quality of samples
generated by the model?

Sample Quality and Likelihood 25/61

▶ Optimal generative model will give best sample quality and
highest test log-likelihood. However, in practice, high
log-likelihoods ̸= good sample quality (Theis et al., 2016)

▶ Case 1: great test log-likelihoods, poor samples. Consider a
mixture model pθ(x) = 0.01pdata(x) + 0.99pnoise(x), we have

Epdata log pdata(x) ≥ Epdata log pθ(x) ≥ Epdata log pdata(x)−log 100

This means Epdata log pθ(x) ≈ Epdata log pdata(x) when the
dimension of x is large.

▶ Case 2: great samples, poor test log-likelihoods. E.g.,
memorizing training set: samples look exactly like the
training set; test set will have zero probability

▶ The above cases suggest that it might be useful to
disentangle likelihoods and samples ⇒ likelihood-free
learning!

Comparing Distributions via Samples 26/61

Given samples from two distributions S1 = {x ∼ P} and
S2 = {x ∼ Q}, how can we tell if these samples are from the
same distribution? (i.e., P = Q?)

Two-sample Tests 27/61

▶ Given S1 = {x ∼ P} and S2 = {x ∼ Q}, a two-sample test
considers the following hypotheses
▶ Null hypothesis H0 : P = Q
▶ Alternative hypothesis H1 : p ̸= Q

▶ Test statistic T compares S1 and S2, e.g., difference in
means, variances of the two sets of samples

▶ If T is less than a threshold α, the accept H0 else reject it

▶ Key observation: Test statistics is likelihood-free since it
does not involve the densities P or Q (only samples)

Generative Modeling and Two-sample Tests 28/61

▶ Suppose we have direct access to the data set
S1 = D = {x ∼ pdata}

▶ Now assume that the model distribution pθ permits efficient
sampling (e.g., directed models). Let S2 = {x ∼ pθ}

▶ Use a two-sample test objective to measure the distance
between distributions and train the generative model pθ to
minimize this distance between S1 and S2

Two-Sample Test via a Discriminator 29/61

▶ Finding a two-sample test objective in high dimensions is
non-trivial

▶ In the generative model setup, we know that S1 and S2

come from different distributions pdata and pθ respectively

▶ Key idea: Learn a statistic that maximizes a suitable
notion of distance between the two sets of samples S1 and
S2

A Two Player Game 30/61

The generator and discriminator play a minimax game!

Generator

▶ Directed, latent variable model with a deterministic
mapping between z and x given by Gθ

▶ Minimizes a two-sample test objective (in support of the
null hypothesis pdata = pθ

A Two Player Game 31/61

The generator and discriminator play a minimax game!

Discriminator

▶ Any function (e.g., neural network) which tries to
distinguish “real” samples from the dataset and “fake”
sampels generated from the model

▶ Maximizes the two-sample test objectivee (in support of
the alternative hypothesis pdata ̸= pθ)

Discriminator Training Objective 32/61

▶ Training objective for discriminator:

max
D

V (G,D) = Ex∼pdata logD(x) + Ex∼pG log(1−D(x))

▶ For a fixed generator G, the discriminator is performing
binary classification with the cross entropy objective
▶ Assign probability 1 to true data points x ∼ pdata
▶ Assign probability 0 to fake samples x ∼ pG

▶ Optimal discriminator

D∗
G(x) =

pdata(x)

pdata(x) + pG(x)

Generator Training Objective 33/61

▶ Training Objective for generator:

min
G

V (G,D) = Ex∼pdata logD(x) + Ex∼pG log(1−D(x))

▶ For the optimal discriminator D∗
G(·), we have

V (G,D∗
G) = Ex∼pdata

log
pdata(x)

pdata(x) + pG(x)
+ Ex∼pG

log
pG(x)

pdata(x) + pG(x)

= Ex∼pdata
log

pdata(x)
pdata(x)+pG(x)

2

+ Ex∼pG
log

pG(x)
pdata(x)+pG(x)

2

− log 4

= KL

(
pdata

∥∥∥∥pdata + pG
2

)
+KL

(
pG

∥∥∥∥pdata + pG
2

)
− log 4

▶ The sum of KL in the above equation is known as
Jensen-Shannon divergence (JSD)

Jensen-Shannon Divergence 34/61

JSD(p, q) = KL

(
p

∥∥∥∥p+ q

2

)
+KL

(
q

∥∥∥∥p+ q

2

)
▶ Properties

▶ JSD(p, q) ≥ 0
▶ JSD(p, q) = 0 iff p = q
▶ JSD(p, q) = JSD(q, p)
▶

√
JSD(p, q) satisfies triangle inequality

▶ Optimal generator for the JSD GAN

pG = pdata

▶ For the optimal discriminator D∗
G∗(·) and generator G∗(·),

we have
V (G∗, D∗

G∗(x)) = − log 4

Alternating Optimization in GAN 35/61

min
θ

max
ϕ

V (Gθ, Dϕ) = Ex∼pdata logDϕ(x)+Ez∼p(z) log(1−Dϕ(Gθ(z)))

▶ sample m training points x(1), x(2), . . . , x(m) from D
▶ sample m noise vectors z(1), z(2), . . . , z(m) from pz

▶ generator parameters θ update: stochastic gradient descent

∇θV (Gθ, Dϕ) =
1

m
∇θ

m∑
i=1

log(1−Dϕ(Gθ(z
(i))))

▶ discriminator parameters ϕ update: stochastic gradient
ascent

∇ϕV (Gθ, Dϕ) =
1

m
∇ϕ

m∑
i=1

logDϕ(x
(i))+log(1−Dϕ(Gθ(z

(i))))

▶ Repeat for fixed number of epochs

A Toy Example 36/61

Adapted from Goodfellow, 2014

Frontiers in GAN Research 37/61

▶ GANs have been successfully applied to several domains
and tasks

▶ However, working with GANs can be very challenging in
practice: unstable optimization/mode collapse/evaluation

▶ Many bag of tricks applied to train GANs successfully

Image source: Ian Goodfellow. Samples from Goodfellow et al.,
2014, Radford et al., 2015, Liu et al., 2016, Karras et al., 2017,
Karras et al., 2018

Optimization Challenges 38/61

▶ Theorem: If the generator updates are made in function
space and discriminator is optimal at every step, then the
generator is guaranteed to converge to the data distribution

▶ Unrealistic assumptions! In practice, the generator and
discriminator loss keeps oscillating during GAN training

▶ No robust stopping criteria in practice (unlike MLE)

Mode Collapse 39/61

▶ GANs are notorious for suffering from mode collapse

▶ Intuitively, this refers to the phenomena where the
generator of a GAN collapse to one or few samples (i.e.,
“modes”)

Mode Collapse 40/61

▶ True distribution is a mixture of Gaussians

▶ The generator distribution keeps oscillating between
different models

Mode Collapse 41/61

▶ Fixes to mode collapse are mostly empirically driven:
alternate architectures, adding regularization terms,
injecting small noise perturbations etc.

▶ Tips and tricks to make GAN work by Soumith Chintala:
https://github.com/soumith/ganhacks

https://github.com/soumith/ganhacks

GAN Generated Artworks 42/61

GAN generated art auctioned at Christie’s.
Expected Price: $7,000 – $10,000
True Price: $432,500

Advanced GAN Variants 43/61

▶ The GAN Zoo:
https://github.com/hindupuravinash/the-gan-zoo

▶ Examples
▶ Rich class of likelihood-free objectives
▶ Combination with latent representations
▶ Application: Image-to-image translation, etc.

https://github.com/hindupuravinash/the-gan-zoo

f Divergence 44/61

▶ Given two densities p and q, the f− divergence is given by

Df (p∥q) = Ex∼q f

(
p(x)

q(x)

)
where f is any convex, lower-semicontinuous function with
f(1) = 0

▶ Lower-semicontinuous: function value at any pint x0 is
close to f(x0) or greater than f(x0)

▶ Example: KL divergence with f(u) = u log u

f Divergence 45/61

Many more f -divergence!

Variational Divergence Minimization 46/61

▶ To use f -divergences as a two-sample test objective for
likelihood-free learning, we need to be able to estimate it
only via samples

▶ Fenchel conjugate: For any function f(·), its convex
conjugate is defined as

f∗(t) = sup
u∈domf

ut− f(u)

▶ Duallity: f∗∗ = f . When f(·) is convex, lower
semicontinuous, so is f∗(·)

f(u) = sup
t∈domf∗

tu− f∗(t)

Variational Divergence Minimization 47/61

▶ We can obtain a lower bound to any f -divergence via its
Fenchel conjugate

Df (p∥q) = Ex∼q f

(
p(x)

q(x)

)
= Ex∼q sup

t∈domf∗

(
t
p(x)

q(x)
− f∗(t)

)
≥ Ex∼q t(x)

p(x)

q(x)
− f∗(t(x))

=

∫
X
t(x)p(x)− f∗(t(x))q(x)dx

= Ex∼p t(x)− Ex∼q f
∗(t(x))

for any function t : X 7→ domf∗

f -GAN 48/61

▶ Variational lower bound

Df (p∥q) ≥ sup
t∈T

(Ex∼p t(x)− Ex∼q f
∗(t(x)))

▶ Choose any f -divergence

▶ Let p = pdata and q = pG
▶ Parameterize t by ϕ and G by θ

▶ Consider the following f -GAN objective

min
θ

max
ϕ

F (θ, ϕ) = Ex∼pdata tϕ(x)− Ex∼pGθ
f∗(tϕ(x))

▶ Generator Gθ tries to minimize the divergence estimate
and discriminator tϕ tries to tighten the lower bound

Inferring Latent Representation in GANs 49/61

▶ The generator of a GAN is typically a directed, latent
variable model with latent variable z and observed
variables x. How can we infer the latent feature
representations in a GAN?

▶ Unlike a normalizing flow model, the mapping G : z 7→ x
need not to be invertible

▶ Unlike a variational autoencoder, there is no inference
network q(·) which can learn a variational posterior over
latent variables

▶ Solution 1: For any point x, use the activations of the
prefinal layer of a discriminator as a feature representation

▶ Intuition: similar to supervised deep neural networks, the
discriminator would have learned useful representations for
x while distinguishing real and fake x

Inferring Latent Representation in GANs 50/61

▶ If we want to directly learn the latent representation of x,
we need a different learning algorithm

▶ A regular GAN optimizes a two-sample test objective that
compares samples of x from the generator and the data
distribution

▶ Solution 2: To infer latent representations, we will compare
samples of x, z from joint distributions of observed and
latent variables as per the model and the data distribution

▶ For any x generated via the model, we have access to z
(sampled from a simple prior p(z))

▶ For any x from the data distribution, the z is however
unobserved (latent)

Bidirectional GAN 51/61

▶ In a BiGAN, we have an encoder network E in addtion to
the generator network G

▶ The encoder network only observes x ∼ pdata(x) during
training to learn a mapping E : x 7→ z

▶ As before, the generator network only observes the samples
from the prior z ∼ p(z) during training to learn a mapping
G : z 7→ x

Bidirectional GAN 52/61

▶ The discriminator D observes samples from the generative
model z,G(z) and encoding distribution E(x), x

▶ The goal of the discriminator is the maximize the
two-sample test objective between z,G(z) and E(x), x

▶ After training is complete, new samples are generated via
G and latent representations are inferred via E

Translating Across Domains 53/61

▶ Image-to-image translation: we are given image from two
domains, X and Y

▶ Paired vs. unpaired examples

▶ Paired examples can be expensive to obtain. Can we
translate from X ⇔ Y in an unsupervised manner?

CycleGAN 54/61

▶ To match the two distributions, we learn two parameterized
conditional generative models G : X 7→ Y and F : Y 7→ X

▶ G maps an element of X to an element of Y. A
discriminator DY compares the observed dataset Y and the
generated samples Ŷ = G(X)

▶ Similarly, F maps an element of Y to an element of X . A
discriminator DX compares the observed dataset X and
the generated samples X̂ = F (Y)

CycleGAN 55/61

▶ Cycle consistency: If we can go from X to Ŷ via G, then it
should also be possible to go from Ŷ back to X via F
▶ F (G(X)) ≈ X
▶ Similarly, vice versa: G(F (Y)) ≈ Y

▶ Overall loss function

LGAN(G,DY , X, Y) + LGAN(F,DX , X, Y)

+λ(EX∥F (G(X))−X∥1 + EY ∥G(F (Y))− Y ∥1)

CycleGAN in Practice 56/61

Summary of Generative Adversarial Networks 57/61

▶ Key observation: Samples and likelihoods are not
correlated in practice

▶ Two-sample test objectives allow for learning generative
mdoels only via samples (likelihood-free)

▶ Wide range of two-sample test objectives covering
f -divergences (and more)

▶ Latent representations can be inferred via BiGAN (and
other GANs with similar autoencoder structures)

▶ Cycle-consistent domain translations via CycleGAN and
other variants

References 58/61

▶ Diederik P Kingma and Max Welling. Auto-encoding
variational bayes. arXiv preprint arXiv:1312.6114, 2013.

▶ Samuel Gershman and Noah Goodman. Amortized
inference in probabilistic reasoning. In Proceedings of the
Cognitive Science Society, volume 36, 2014.

▶ R. Shu, H. H. Bui, S. Zhao, M. J. Kochenderfer, and S.
Ermon. Amortized inference regularization. In Advances in
Neural Information Processing Systems, pages 4393–4402,
2018.

▶ Naesseth, C. A., Linderman, S. W., Ranganath, R., and
Blei, D. M. Variational sequential Monte Carlo. In Interna-
tional Conference on Artificial Intelligence and Statistics,
2018.

References 59/61

▶ C.J. Maddison, D. Lawson, G. Tucker, N. Heess, M.
Norouzi, A. Mnih, A. Doucet, and Y. Whye Teh. Filtering
variational objectives. In Advances in Neural Information
Processing Systems, 2017.

▶ Le, T. A., Igl, M., Rainforth, T., Jin, T., and Wood, F.
(2018). Auto-Encoding Sequential Monte Carlo.
International Conference on Learning Representations.

▶ L. Theis, A. v. d. Oord, and M. Bethge. A note on the
evaluation of generative models. International Conference
on Learning Representations, 2016.

▶ Zhao, S., Song, J., and Ermon, S. Infovae: Information
maximizing variational autoencoders. arXiv preprint
arXiv:1706.02262, 2017.

References 60/61

▶ L. Theis, A. van den Oord, and M. Bethge. A note on the
evaluation of generative models. In ICLR, 2016

▶ Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville,
and Yoshua Bengio. Generative adversarial nets. In
Advances in neural information processing systems, pages
2672–2680, 2014.

▶ Alec Radford, Luke Metz, and Soumith Chintala.
Unsupervised representation learning with deep
convolutional generative adversarial networks. arXiv
preprint arXiv:1511.06434, 2015.

▶ Martin Arjovsky, Soumith Chintala, and Léon Bottou.
Wasserstein gan. arXiv preprint arXiv:1701.07875, 2017.

References 61/61

▶ L. Metz, B. Poole, D. Pfau, and J. Sohl-Dickstein.
Unrolled generative adversarial networks. arXiv preprint
arXiv:1611.02163, 2016.

▶ S. Nowozin, B. Cseke, and R. Tomioka. f-gan: Training
generative neural samplers using variational divergence
minimization. In Advances in neural information
processing systems, pages 271–279, 2016.

▶ Jeff Donahue, Philipp Krähenbühl, and Trevor Darrell.
Adversarial feature learning. arXiv preprint
arXiv:1605.09782, 2016.

▶ Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A
Efros. Unpaired image-to-image translation using
cycle-consistent adversarial networks. In ICCV, 2017.

