
Statistical Models & Computing Methods

Lecture 17: Generative Models – I

Cheng Zhang

School of Mathematical Sciences, Peking University

December 02, 2024



Introduction 2/41

▶ Statistical models and inference methods allow us to learn
and explain the generative process of the observed data.

▶ However, real data distributions are often too complicated
to be handled by standard statistical models in a
satisfactory manner.

▶ In this lecture, we will introduce some recent techniques
that combine deep neural networks and statistical inference
methods for expressive generative models.

▶ The materials for deep generative models are mainly
adapted from Ermon and Grover, 2019.



Generative Models 3/41

We are given a training set of examples, e.g., images of dogs

Goal: learn a probability distribution p(x) over x such that

▶ Generation: If we sample xnew ∼ p(x), xnew should look
like a real image.

▶ Density estimation: p(x) should be high if x looks like a
real image, and low otherwise (anomaly detection).

▶ Unsupervised representation learning: We should be able to
learn high level features of these images, e.g., ears, tail, etc.

Two key questions: (1) How to construct p(x)? (2) How to
learn p(x)?



Chain Rule in Probability 4/41

We can decompose the joint probability using Chain Rule

p(x1, x2, x3, x4) = p(x1)p(x2|x1)p(x3|x1, x2)p(x4|x1, x2, x3)

Fully general (exponential size, no free lunch)

▶ Bayes Net: assumes conditional independencies; tabular
representations via conditional probability tables (CPT)

p(x1, x2, x3, x4) ≈ p(x1)p(x2|x1)p(x3|x2)p(x4|x3)

▶ Neural Models: assume specific functional form for the
conditionals. A sufficiently deep neural net can
approximate any function.

p(x1, x2, x3, x4) ≈ p(x1)p(x2|x1)pNeural(x3|x1, x2)
pNeural(x4|x1, x2, x3)



Neural Models for Classification 5/41

▶ Input features X ∈ {0, 1}n, response variable Y ∈ {0, 1}.
▶ For classification, we care about p(Y |x), and assume that

p(Y = 1|x;α) = f(x, α)

▶ Logistic regression: let z(α, x) = α0 +
∑n

i=1 αixi

plogit(Y = 1|x;α) = σ(z(α, x)), σ(z) =
1

1 + exp(−z)

▶ Neural Nets: let h(x;A, b) be a non-linear transformation
of the input features.

pNeural(Y = 1|x;α,A, b) = σ(z(α, h))

More parameters ⇒ more flexibility. Can repeat multiple
times to get a multilayer perceptron.



Example: MNIST 6/41

Consider a dataset D of handwritten digits (binarized MNIST)

▶ Each image has n = 28× 28 = 784 pixels. Each pixel can
either be black (0) or white (1).

▶ Goal: Learn a probability distribution
p(x) = p(x1, . . . , x784) over x ∈ {0, 1}784 such that x ∼ p(x)
looks like a handwritten digit.

▶ Two step process as mentioned before:
▶ Parameterize a family of flexible models {pθ(x), θ ∈ Θ}
▶ Search for model parameters θ based on training data D

We start with the first step.



Autoregressive Models 7/41

▶ Pick an order of all random variables, i.e., raster scan order
of pixels from top-left (x1) to bottom-right (xn=784)

▶ Without loss of generality, we can use chain rule for
factorization

p(x1, . . . , xn) = p(x1)p(x2|x1)p(x3|x1, x2) · · · p(xn|x1, . . . , xn−1)

▶ However, the above parameterization is too heavy to be
practical. We can use neural models to simplify it

p(x1, . . . , x784) = p(x1;α
1)plogit(x2|x1;α2) · · ·
plogit(xn|x1, . . . , xn−1;α

n)

Remark: This is a modeling assumption. We are using
parameterized functions to predict next pixel given all the
previous ones (autoregressive models).



Fully Visible Sigmoid Belief Network 8/41

▶ The conditional distributions Xi|X<i are Bernoulli with
parameters

p(xi = 1|x<i;α
i) = σ(αi

0 +
∑i−1

j=1
αi
jxj)

▶ We can evaluate p(x) as a product of all the conditionals.

▶ How to sample from p(x)? Sequential sampling!
▶ Sample x̄1 ∼ p(x1)
▶ Sample x̄i ∼ p(xi|x<i), i = 2, . . . , n

▶ How many parameters do we have?
∑n

i=1 i = O(n2)



FVSBN Results 9/41

Training data on the left (Caltech 101 Silhouettes). Samples
from the model on the right.

Adapted from Gan et al., 2015



Neural Autoregressive Density Estimation 10/41

▶ Use one layer neural network instead of logistic regression

p(xi = 1|x<i;Ai, ci, αi, bi) = σ(αT
i hi+bi), hi = σ(Aix<i+ci)

▶ For example: h2 = σ (A2x1 + c2) , h2 = σ

(
A3

[
x1
x2

]
+ c3

)



Neural Autoregressive Density Estimation 11/41

▶ Tie weights to reduce the number of parameters

p(xi = 1|x<i;Ai, ci, αi, bi) = σ(αT
i hi+bi), hi = σ(W.,<ix<i+c)

▶ For example: h2=σ
([
w1

]
x1+c

)
, h3=σ

([
w1 w2

][x1
x2

]
+c

)
▶ If hi ∈ Rd, weights W ∈ Rd×n, biases c ∈ Rd, and n logistic

regression coefficient αi, bi ∈ Rd+1. Probability is evaluated
in O(nd).



NADE Results 12/41

Samples on the left. Conditional probabilities on the right.

Adapted from Larochelle and Murray, 2011



General Discrete Distributions 13/41

▶ What about multi-class discrete random variables
Xi ∈ {1, . . . ,K}? E.g., pixel intensities varying from 0 to
255

▶ One solution: use categorical distribution instead of a
binary one

xi|x<i ∼ Cat(πi), πi = softmax(αT
i hi + bi)

▶ Softmax generalizes the sigmoid/logistic function σ(·) and
transforms a vector of K numbers into a vector of K
probabilities

softmax(a) =

(
exp(a1)∑
i exp(ai)

, · · · , exp(aK)∑
i exp(ai)

)



RNADE 14/41

▶ How to model continuous random variables Xi ∈ R? E.g.,
speech signals.

▶ Solution: Use a continuous distribution instead! For
example, a mixture of K Gaussians

p(xi|x<i) =
1

K

K∑
j=1

N
(
µj
i , (σ

j
i )

2
)

where µj
i , σ

j
i can be functions of hi, e.g., neural networks.

Can use exponential function to ensure σj
i > 0.



Autoregressive Models vs Autoencoders 15/41

▶ FVSBN and NADE look similar to an autoencoder.

▶ Encoder e(·). E.g., e(x) = σ(W 2(W 1x+ b1) + b2).

▶ Decoder such that d(e(x)) ≈ x. E.g., d(h) = σ(V h+ c).

▶ Autoencoder can be trained by minimizing some loss
function, e.g., cross-entropy/mean square error.

▶ In practice, e and d are often constrained so that we don’t
learn identity mappings. Hopefully, e(x) would be a
meaningful, compressed representation of x.

▶ Note that a vanilla autoencoder is not a generative model



Autoregressive Autoencoders 16/41

▶ Can we get a generative model from an autoencoder?

▶ We need to make sure it corresponds to an autoregressive
architecture, which requires a pre-specified order, say
x1, x2, . . . , xn, then x̂i can only depend on x<i, ∀i.

▶ Benefit: we can use a single neural network to produce all
the parameters, In contrast, NADE requires n passes.
Much more efficient on modern hardware.



Masked Autoencoder for Distribution Estimation 17/41

▶ Challenge: An autoencoder that is autoregressive.

▶ Solution: use mask to disallow certain paths (Germain et
al., 2015).

hℓ(x) = σ((W ℓ ⊙MW ℓ
)hℓ−1(x) + bℓ), ℓ = 1, . . . , L

where the masks satisfies

MW ℓ

k′,k = 1mℓ(k′)≥mℓ−1(k), 1 ≤ ℓ ≤ L, MV
d,k = 1d>mL(k).



Recurrent Neural Nets 18/41

▶ Challenge: In autoregressive models, the history x1:t−1 in
conditional distributions p(xt|x<t;α

t) keeps getting longer.

▶ Idea: keep a summary and recursively update it

update rule: ht+1 = tanh(Whhht +Wxhxt+1)

output: ot+1 = Whyht+1

initialization: h0 = b0

▶ ht is a summary of the inputs seen till time t
▶ ot−1 specifies parameters for conditional p(xt|x<t)
▶ Parameterized by b0, and matrices Whh,Wxh,Why.

Constant number of parameters w.r.t. n.



Character RNN 19/41

▶ Suppose xi ∈ {h, e, l, o}. Use one-hot encoding (e.g., h
encoded as [1, 0, 0, 0], e encoded as [0, 1, 0, 0].

▶ Autoregressive modeling: p(x = hello) = p(x1 = h)p(x2 =
e|x1 = h) · · · p(x5 = o|x1 = h, x2 = e, x3 = l, x4 = l)

▶ For example:

p(x2 = e|x1 = h) = softmax(o1) =
exp(2.2)

exp(1.0) + · · ·+ exp(4.0)



Recursive Neural Nets 20/41

Pros:

▶ Can be applied to sequences of arbitrary length.

▶ Very general: for every computable function, there exists a
finite RNN that can compute it.

Cons:

▶ Still requires an ordering

▶ Sequential likelihood evaluation (very slow for training)

▶ Sequential generation (unavoidable in an autoregressive
model)

▶ Can be difficult to train (vanishing/exploding gradients)



Examples: Character RNN 21/41

Train 3-layer RNN with 512 hidden nodes on all the works of
Shakespeare. Then sample from the model:

Remark: generation happens character by character. Needs to
learn valid words, grammar, punctuation, etc.



Examples: Character RNN 22/41

Train on Wikipedia. Then sample from the model:

Remark: correct Markdown syntax. Opening and closing of
brackets [[·]]



Examples: Character RNN 23/41

Train on data set of baby names. Then sample from the model:



Pixel RNN 24/41

▶ Model images pixel by pixel using raster scan order
▶ Each pixel conditional p(xt|x1:t−1) needs to specify 3 colors

p(xt|x1:t−1) = p(xred
t |x1:t−1)p(x

green
t |x1:t−1, x

red
t )p(xblue

t |x1:t−1, x
red
t , xgreen

t )

▶ Conditionals modeled using RNN variants. LSTM +
Masking (like MADE)



Pixel RNN 25/41

Results on downsampled ImageNet. Very slow: sequential
likelihood evaluation.



Convolutional Architectures 26/41

Convolutions are natural for image data and easy to parallelize
on modern hardware.



Pixel CNN 27/41

Idea: use convolutional architecture to predict next pixel given
context (a neighborhood of pixels)
Challenge: Has to be autoregressive. Masked convolutions
preserve raster scan order. Additional masking for colors order.



Examples: Pixel CNN 28/41

Samples from the PixelCNN model trained on Imagenet (32×32
pixels). Similar performance to PixelRNN, but much faster.



Adversarial Attacks 29/41

Machine learning methods are vulnerable to adversarial
examples

Can we detect them?



PixelDefend 30/41

▶ Train a generative model p(x) on clean inputs (PixelCNN)

▶ Given a new input x̄, evaluate p(x̄)

▶ Adversarial examples are significantly less likely under p(x)



WaveNet 31/41

State of the art model for speech:

Dilated convolutions increases the receptive field: kernel only
touches the signal at every 2d entries.



Summary of Autoregressive Models 32/41

▶ Easy to sample from via sequential sampling

x0 ∼ p(x0), x1 ∼ p(x1|x0), . . . , xn ∼ p(xn|x<n)

▶ Easy to compute probability p(x)

p(x) = p(x0)p(x1|x0) · · · p(xn|x<n)

Ideally, these conditional distributions can be computed in
parallel for fast training

▶ Easy to extend to continuous variables. For example,
p(xt|x<t) = N (µθ(x<t),Σθ(x<t))) or mixture of logistics

▶ No natural way to get features, cluster points, do
unsupervised learning

▶ Next, we will discuss learning methods for autoregressive
models



Setting 33/41

▶ Assume that the domain is governed by some underlying
distribution pdata.

▶ We are given a dataset D of m samples from pdata. Each
sample is an assignment of values to the variables, e.g.,
Xbank = 1, Xdollar = 0, . . . , Y = 1 or pixel intensities.

▶ The standard assumption is that the data instances are
independent and identically distributed (IID)

▶ We are also given a family of models M, and our task is to
learn some “good” model M̂ ∈ M that defines a
distribution pM̂. For example
▶ All Bayes nets with a given graph structure, for all possible

choices of the CPD tables
▶ A FVSBN for all possible choice of the logistic regression

parameters. M = {pθ; θ ∈ Θ}, where θ is the concatenation
of all logistic regression coefficients.



Goal of Learning 34/41

▶ The goal of learning is to return a model M̂ that precisely
captures the distribution pdata from which our data was
sampled

▶ This is in general not achievable because of
▶ limited data only provides a rough approximation of the

true underlying distribution
▶ can not handle too complicated models due to

computational reasons

▶ Binary MNIST Example: The number of possible states is
2784 ≈ 10236. Even 107 training examples provide
extremely sparse coverage!

▶ We want to select M̂ to provide the “best” approximation
to the underlying distribution pdata

▶ So, what is the “best”?



Learning as Density Estimation 35/41

▶ If our goal is to learn the full distribution so that later we
can answer any probabilistic inference query, we can view
the learning problem as density estimation.

▶ Therefore, we want to construct pθ as “close” as possible to
pdata (where we assume the dataset D come from)

▶ How do we measure “closeness”?



KL-divergence and Expected Log-likelihood 36/41

▶ One possibility is to use KL-divergence

KL(pdata∥pθ) = Ex∼pdata

(
log

pdata(x)

pθ(x)

)
=

∑
x

pdata(x) log
pdata(x)

pθ(x)

▶ Minimizing KL divergence is equivalent to maximizing the
expected log-likelihood

argmin
pθ

KL(pdata∥pθ) = argmax
pθ

Ex∼pdata log pθ(x)

▶ Ask that pθ assign high probability to instances sampled
from pdata so as to reflect the true distribution

▶ Heavily penalize samples x where pθ(x) ≈ 0

▶ Remark: we do not know how close we are to the data
distribution since we do not know pdata



MLE Learning for Autoregressive Models 37/41

▶ Log-likelihood of an autoregressive model

ℓ(θ) = log p(θ,D) =

m∑
j=1

n∑
i=1

log pneural(x
(j)
i |pa(xi)(j); θi)

▶ This is an empirical version of Ex∼pdata log pθ(x). Its
negative value can be taken as an Empirical Risk

▶ Can be trained via gradient ascent

θt+1 = θ(t) + αt∇θℓ(θ
t)

▶ When the data size m is large, we can use stochastic
gradient ascent

∇θℓ(θ) ≈ m

n∑
i=1

∇θ log pneural(x
(j)
i |pa(xi)(j); θi), x(j) ∼ D



Empirical Risk and Overfitting 38/41

▶ Empirical risk minimization can easily overfit the data.
One extreme case is that the model just memorizes all the
training data.

▶ In practice, people usually care more about generalization:
how the model performs on samples that have not yet been
seen.

▶ Thus, we typically restrict the hypothesis space of
distributions that we search over, which involves a
Bias-Variance trade off
▶ Limited hypothesis space might not be able to represent

pdata, leading to large bias
▶ Highly expressive hypothesis space learns too much from

the dataset D (together with random noises), and small
perturbations on D can result in very different estimates,
i.e., large variance



References 39/41

▶ Zhe Gan, Ricardo Henao, David E. Carlson, and Lawrence
Carin. 2015. Learning deep sigmoid belief networks with
data augmentation. In Proceedings of the AISTATS.

▶ Larochelle, H. and Murray, I. The neural autoregressive
distribution estimator. In Proceedings of the Fourteenth
International Conference on Artificial Intelligence and
Statistics, pp. 29–37, 2011.

▶ Uria, B., Murray, I., and Larochelle, H. Rnade: The
realvalued neural autoregressive density-estimator. In
Advances in Neural Information Processing Systems, pp.
2175–2183, 2013.

▶ M. Germain, K. Gregor, I. Murray, H. Larochelle, “MADE:
Masked autoencoder for distribution estimation” in 32nd
International Conference on Machine Learning, ICML
2015, vol. 2, pp. 881–889



References 40/41

▶ Aäron Van Den Oord, Nal Kalchbrenner, and Koray
Kavukcuoglu. Pixel recurrent neural networks. In
Proceedings of the 33rd International Conference on
International Conference on Machine Learning, pages
1747–1756. JMLR. org, 2016.

▶ A. Van den Oord, N. Kalchbrenner, L. Espeholt, O.
Vinyals, A. Graves, et al. 2016. Conditional image
generation with PixelCNN decoders. In Advances in
Neural Information Processing Systems. 4790–4798.

▶ Yang Song, Taesup Kim, Sebastian Nowozin, Stefano
Ermon, and Nate Kushman. Pixeldefend: Leveraging
generative models to understand and defend against
adversarial examples. In International Conference on
Learning Representations, 2018.



References 41/41

▶ A. v. d. Oord, S. Dieleman, H. Zen, K. Simonyan, O.
Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K.
Kavukcuoglu, “WaveNet: A generative model for raw
audio,” arXiv preprint arXiv:1609.03499, 2016.


