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Introduction 2/41

▶ Statistical models and inference methods allow us to learn
and explain the generative process of the observed data.

▶ However, real data distributions are often too complicated
to be handled by standard statistical models in a
satisfactory manner.

▶ In this lecture, we will introduce some recent techniques
that combine deep neural networks and statistical inference
methods for expressive generative models.

▶ The materials for deep generative models are mainly
adapted from Ermon and Grover, 2019.
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We are given a training set of examples, e.g., images of dogs

Goal: learn a probability distribution p(x) over x such that

▶ Generation: If we sample xnew ∼ p(x), xnew should look
like a real image.

▶ Density estimation: p(x) should be high if x looks like a
real image, and low otherwise (anomaly detection).

▶ Unsupervised representation learning: We should be able to
learn high level features of these images, e.g., ears, tail, etc.

Two key questions: (1) How to construct p(x)? (2) How to
learn p(x)?



Chain Rule in Probability 4/41

We can decompose the joint probability using Chain Rule

p(x1, x2, x3, x4) = p(x1)p(x2|x1)p(x3|x1, x2)p(x4|x1, x2, x3)

Fully general (exponential size, no free lunch)

▶ Bayes Net: assumes conditional independencies; tabular
representations via conditional probability tables (CPT)

p(x1, x2, x3, x4) ≈ p(x1)p(x2|x1)p(x3|x2)p(x4|x3)

▶ Neural Models: assume specific functional form for the
conditionals. A sufficiently deep neural net can
approximate any function.

p(x1, x2, x3, x4) ≈ p(x1)p(x2|x1)pNeural(x3|x1, x2)
pNeural(x4|x1, x2, x3)



Neural Models for Classification 5/41

▶ Input features X ∈ {0, 1}n, response variable Y ∈ {0, 1}.
▶ For classification, we care about p(Y |x), and assume that

p(Y = 1|x;α) = f(x, α)

▶ Logistic regression: let z(α, x) = α0 +
∑n

i=1 αixi

plogit(Y = 1|x;α) = σ(z(α, x)), σ(z) =
1

1 + exp(−z)

▶ Neural Nets: let h(x;A, b) be a non-linear transformation
of the input features.

pNeural(Y = 1|x;α,A, b) = σ(z(α, h))

More parameters ⇒ more flexibility. Can repeat multiple
times to get a multilayer perceptron.
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Consider a dataset D of handwritten digits (binarized MNIST)

▶ Each image has n = 28× 28 = 784 pixels. Each pixel can
either be black (0) or white (1).

▶ Goal: Learn a probability distribution
p(x) = p(x1, . . . , x784) over x ∈ {0, 1}784 such that x ∼ p(x)
looks like a handwritten digit.

▶ Two step process as mentioned before:
▶ Parameterize a family of flexible models {pθ(x), θ ∈ Θ}
▶ Search for model parameters θ based on training data D

We start with the first step.



Autoregressive Models 7/41

▶ Pick an order of all random variables, i.e., raster scan order
of pixels from top-left (x1) to bottom-right (xn=784)

▶ Without loss of generality, we can use chain rule for
factorization

p(x1, . . . , xn) = p(x1)p(x2|x1)p(x3|x1, x2) · · · p(xn|x1, . . . , xn−1)

▶ However, the above parameterization is too heavy to be
practical. We can use neural models to simplify it

p(x1, . . . , x784) = p(x1;α
1)plogit(x2|x1;α2) · · ·
plogit(xn|x1, . . . , xn−1;α

n)

Remark: This is a modeling assumption. We are using
parameterized functions to predict next pixel given all the
previous ones (autoregressive models).



Fully Visible Sigmoid Belief Network 8/41

▶ The conditional distributions Xi|X<i are Bernoulli with
parameters

p(xi = 1|x<i;α
i) = σ(αi

0 +
∑i−1

j=1
αi
jxj)

▶ We can evaluate p(x) as a product of all the conditionals.

▶ How to sample from p(x)? Sequential sampling!
▶ Sample x̄1 ∼ p(x1)
▶ Sample x̄i ∼ p(xi|x<i), i = 2, . . . , n

▶ How many parameters do we have?
∑n

i=1 i = O(n2)



FVSBN Results 9/41

Training data on the left (Caltech 101 Silhouettes). Samples
from the model on the right.

Adapted from Gan et al., 2015



Neural Autoregressive Density Estimation 10/41

▶ Use one layer neural network instead of logistic regression

p(xi = 1|x<i;Ai, ci, αi, bi) = σ(αT
i hi+bi), hi = σ(Aix<i+ci)

▶ For example: h2 = σ (A2x1 + c2) , h2 = σ

(
A3

[
x1
x2

]
+ c3

)



Neural Autoregressive Density Estimation 11/41

▶ Tie weights to reduce the number of parameters

p(xi = 1|x<i;Ai, ci, αi, bi) = σ(αT
i hi+bi), hi = σ(W.,<ix<i+c)

▶ For example: h2=σ
([
w1

]
x1+c

)
, h3=σ

([
w1 w2

][x1
x2

]
+c

)
▶ If hi ∈ Rd, weights W ∈ Rd×n, biases c ∈ Rd, and n logistic

regression coefficient αi, bi ∈ Rd+1. Probability is evaluated
in O(nd).



NADE Results 12/41

Samples on the left. Conditional probabilities on the right.

Adapted from Larochelle and Murray, 2011



General Discrete Distributions 13/41

▶ What about multi-class discrete random variables
Xi ∈ {1, . . . ,K}? E.g., pixel intensities varying from 0 to
255

▶ One solution: use categorical distribution instead of a
binary one

xi|x<i ∼ Cat(πi), πi = softmax(αT
i hi + bi)

▶ Softmax generalizes the sigmoid/logistic function σ(·) and
transforms a vector of K numbers into a vector of K
probabilities

softmax(a) =

(
exp(a1)∑
i exp(ai)

, · · · , exp(aK)∑
i exp(ai)

)
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▶ How to model continuous random variables Xi ∈ R? E.g.,
speech signals.

▶ Solution: Use a continuous distribution instead! For
example, a mixture of K Gaussians

p(xi|x<i) =
1

K

K∑
j=1

N
(
µj
i , (σ

j
i )

2
)

where µj
i , σ

j
i can be functions of hi, e.g., neural networks.

Can use exponential function to ensure σj
i > 0.



Autoregressive Models vs Autoencoders 15/41

▶ FVSBN and NADE look similar to an autoencoder.

▶ Encoder e(·). E.g., e(x) = σ(W 2(W 1x+ b1) + b2).

▶ Decoder such that d(e(x)) ≈ x. E.g., d(h) = σ(V h+ c).

▶ Autoencoder can be trained by minimizing some loss
function, e.g., cross-entropy/mean square error.

▶ In practice, e and d are often constrained so that we don’t
learn identity mappings. Hopefully, e(x) would be a
meaningful, compressed representation of x.

▶ Note that a vanilla autoencoder is not a generative model



Autoregressive Autoencoders 16/41

▶ Can we get a generative model from an autoencoder?

▶ We need to make sure it corresponds to an autoregressive
architecture, which requires a pre-specified order, say
x1, x2, . . . , xn, then x̂i can only depend on x<i, ∀i.

▶ Benefit: we can use a single neural network to produce all
the parameters, In contrast, NADE requires n passes.
Much more efficient on modern hardware.



Masked Autoencoder for Distribution Estimation 17/41

▶ Challenge: An autoencoder that is autoregressive.

▶ Solution: use mask to disallow certain paths (Germain et
al., 2015).

hℓ(x) = σ((W ℓ ⊙MW ℓ
)hℓ−1(x) + bℓ), ℓ = 1, . . . , L

where the masks satisfies

MW ℓ

k′,k = 1mℓ(k′)≥mℓ−1(k), 1 ≤ ℓ ≤ L, MV
d,k = 1d>mL(k).



Recurrent Neural Nets 18/41

▶ Challenge: In autoregressive models, the history x1:t−1 in
conditional distributions p(xt|x<t;α

t) keeps getting longer.

▶ Idea: keep a summary and recursively update it

update rule: ht+1 = tanh(Whhht +Wxhxt+1)

output: ot+1 = Whyht+1

initialization: h0 = b0

▶ ht is a summary of the inputs seen till time t
▶ ot−1 specifies parameters for conditional p(xt|x<t)
▶ Parameterized by b0, and matrices Whh,Wxh,Why.

Constant number of parameters w.r.t. n.



Character RNN 19/41

▶ Suppose xi ∈ {h, e, l, o}. Use one-hot encoding (e.g., h
encoded as [1, 0, 0, 0], e encoded as [0, 1, 0, 0].

▶ Autoregressive modeling: p(x = hello) = p(x1 = h)p(x2 =
e|x1 = h) · · · p(x5 = o|x1 = h, x2 = e, x3 = l, x4 = l)

▶ For example:

p(x2 = e|x1 = h) = softmax(o1) =
exp(2.2)

exp(1.0) + · · ·+ exp(4.0)



Recursive Neural Nets 20/41

Pros:

▶ Can be applied to sequences of arbitrary length.

▶ Very general: for every computable function, there exists a
finite RNN that can compute it.

Cons:

▶ Still requires an ordering

▶ Sequential likelihood evaluation (very slow for training)

▶ Sequential generation (unavoidable in an autoregressive
model)

▶ Can be difficult to train (vanishing/exploding gradients)



Examples: Character RNN 21/41

Train 3-layer RNN with 512 hidden nodes on all the works of
Shakespeare. Then sample from the model:

Remark: generation happens character by character. Needs to
learn valid words, grammar, punctuation, etc.



Examples: Character RNN 22/41

Train on Wikipedia. Then sample from the model:

Remark: correct Markdown syntax. Opening and closing of
brackets [[·]]



Examples: Character RNN 23/41

Train on data set of baby names. Then sample from the model:



Pixel RNN 24/41

▶ Model images pixel by pixel using raster scan order
▶ Each pixel conditional p(xt|x1:t−1) needs to specify 3 colors

p(xt|x1:t−1) = p(xred
t |x1:t−1)p(x

green
t |x1:t−1, x

red
t )p(xblue

t |x1:t−1, x
red
t , xgreen

t )

▶ Conditionals modeled using RNN variants. LSTM +
Masking (like MADE)



Pixel RNN 25/41

Results on downsampled ImageNet. Very slow: sequential
likelihood evaluation.



Convolutional Architectures 26/41

Convolutions are natural for image data and easy to parallelize
on modern hardware.



Pixel CNN 27/41

Idea: use convolutional architecture to predict next pixel given
context (a neighborhood of pixels)
Challenge: Has to be autoregressive. Masked convolutions
preserve raster scan order. Additional masking for colors order.



Examples: Pixel CNN 28/41

Samples from the PixelCNN model trained on Imagenet (32×32
pixels). Similar performance to PixelRNN, but much faster.



Adversarial Attacks 29/41

Machine learning methods are vulnerable to adversarial
examples

Can we detect them?



PixelDefend 30/41

▶ Train a generative model p(x) on clean inputs (PixelCNN)

▶ Given a new input x̄, evaluate p(x̄)

▶ Adversarial examples are significantly less likely under p(x)



WaveNet 31/41

State of the art model for speech:

Dilated convolutions increases the receptive field: kernel only
touches the signal at every 2d entries.



Summary of Autoregressive Models 32/41

▶ Easy to sample from via sequential sampling

x0 ∼ p(x0), x1 ∼ p(x1|x0), . . . , xn ∼ p(xn|x<n)

▶ Easy to compute probability p(x)

p(x) = p(x0)p(x1|x0) · · · p(xn|x<n)

Ideally, these conditional distributions can be computed in
parallel for fast training

▶ Easy to extend to continuous variables. For example,
p(xt|x<t) = N (µθ(x<t),Σθ(x<t))) or mixture of logistics

▶ No natural way to get features, cluster points, do
unsupervised learning

▶ Next, we will discuss learning methods for autoregressive
models



Setting 33/41

▶ Assume that the domain is governed by some underlying
distribution pdata.

▶ We are given a dataset D of m samples from pdata. Each
sample is an assignment of values to the variables, e.g.,
Xbank = 1, Xdollar = 0, . . . , Y = 1 or pixel intensities.

▶ The standard assumption is that the data instances are
independent and identically distributed (IID)

▶ We are also given a family of models M, and our task is to
learn some “good” model M̂ ∈ M that defines a
distribution pM̂. For example
▶ All Bayes nets with a given graph structure, for all possible

choices of the CPD tables
▶ A FVSBN for all possible choice of the logistic regression

parameters. M = {pθ; θ ∈ Θ}, where θ is the concatenation
of all logistic regression coefficients.



Goal of Learning 34/41

▶ The goal of learning is to return a model M̂ that precisely
captures the distribution pdata from which our data was
sampled

▶ This is in general not achievable because of
▶ limited data only provides a rough approximation of the

true underlying distribution
▶ can not handle too complicated models due to

computational reasons

▶ Binary MNIST Example: The number of possible states is
2784 ≈ 10236. Even 107 training examples provide
extremely sparse coverage!

▶ We want to select M̂ to provide the “best” approximation
to the underlying distribution pdata

▶ So, what is the “best”?



Learning as Density Estimation 35/41

▶ If our goal is to learn the full distribution so that later we
can answer any probabilistic inference query, we can view
the learning problem as density estimation.

▶ Therefore, we want to construct pθ as “close” as possible to
pdata (where we assume the dataset D come from)

▶ How do we measure “closeness”?



KL-divergence and Expected Log-likelihood 36/41

▶ One possibility is to use KL-divergence

KL(pdata∥pθ) = Ex∼pdata

(
log

pdata(x)

pθ(x)

)
=

∑
x

pdata(x) log
pdata(x)

pθ(x)

▶ Minimizing KL divergence is equivalent to maximizing the
expected log-likelihood

argmin
pθ

KL(pdata∥pθ) = argmax
pθ

Ex∼pdata log pθ(x)

▶ Ask that pθ assign high probability to instances sampled
from pdata so as to reflect the true distribution

▶ Heavily penalize samples x where pθ(x) ≈ 0

▶ Remark: we do not know how close we are to the data
distribution since we do not know pdata



MLE Learning for Autoregressive Models 37/41

▶ Log-likelihood of an autoregressive model

ℓ(θ) = log p(θ,D) =

m∑
j=1

n∑
i=1

log pneural(x
(j)
i |pa(xi)(j); θi)

▶ This is an empirical version of Ex∼pdata log pθ(x). Its
negative value can be taken as an Empirical Risk

▶ Can be trained via gradient ascent

θt+1 = θ(t) + αt∇θℓ(θ
t)

▶ When the data size m is large, we can use stochastic
gradient ascent

∇θℓ(θ) ≈ m

n∑
i=1

∇θ log pneural(x
(j)
i |pa(xi)(j); θi), x(j) ∼ D



Empirical Risk and Overfitting 38/41

▶ Empirical risk minimization can easily overfit the data.
One extreme case is that the model just memorizes all the
training data.

▶ In practice, people usually care more about generalization:
how the model performs on samples that have not yet been
seen.

▶ Thus, we typically restrict the hypothesis space of
distributions that we search over, which involves a
Bias-Variance trade off
▶ Limited hypothesis space might not be able to represent

pdata, leading to large bias
▶ Highly expressive hypothesis space learns too much from

the dataset D (together with random noises), and small
perturbations on D can result in very different estimates,
i.e., large variance



References 39/41

▶ Zhe Gan, Ricardo Henao, David E. Carlson, and Lawrence
Carin. 2015. Learning deep sigmoid belief networks with
data augmentation. In Proceedings of the AISTATS.

▶ Larochelle, H. and Murray, I. The neural autoregressive
distribution estimator. In Proceedings of the Fourteenth
International Conference on Artificial Intelligence and
Statistics, pp. 29–37, 2011.

▶ Uria, B., Murray, I., and Larochelle, H. Rnade: The
realvalued neural autoregressive density-estimator. In
Advances in Neural Information Processing Systems, pp.
2175–2183, 2013.

▶ M. Germain, K. Gregor, I. Murray, H. Larochelle, “MADE:
Masked autoencoder for distribution estimation” in 32nd
International Conference on Machine Learning, ICML
2015, vol. 2, pp. 881–889



References 40/41
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