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Introduction 2/35

▶ So far, we have only used the KL divergence as a distance
measure in VI.

▶ Other than the KL divergence, there are many alternative
statistical distance measures between distributions that
admit a variety of statistical properties.

▶ In this lecture, we will introduce several alternative
divergence measures to KL, and discuss their statistical
properties, with applications in VI.



Potential Problems with The KL Divergence 3/35

▶ VI does not work well for non-smooth potentials

▶ This is largely due to the zero-avoiding behaviour
▶ The area where p(θ) is close to zero has very negative log p,

so does the variational distribution q when trained to
minimize the KL.

▶ In this truncated normal example, VI will fit a delta
function!
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Beyond The KL Divergence 4/35

▶ Recall that the KL divergence from q to p is

DKL(q∥p) = Eq log
q(x)

p(x)
=

∫
q(x) log

q(x)

p(x)
dx

▶ An alternative: the reverse KL divergence

DRev
KL (p∥q) = Ep log

p(x)

q(x)
=

∫
p(x) log

p(x)

q(x)
dx

Reverse KL KL



The f -Divergence 5/35

▶ The f -divergence from q to p is defined as

Df (q∥p) =
∫

p(x)f

(
q(x)

p(x)

)
dx

where f is a convex function such that f(1) = 0.

▶ The f -divergence defines a family of valid divergences

Df (q∥p) =
∫

p(x)f

(
q(x)

p(x)

)
dx

≥ f

(∫
p(x)

q(x)

p(x)
dx

)
= f(1) = 0

and
Df (q∥p) = 0⇒ q(x) = p(x) a.s.



The f -Divergence 6/35

Many common divergences are special cases of f -divergence,
with different choices of f .

▶ KL divergence. f(t) = t log t

▶ reverse KL divergence. f(t) = − log t

▶ Hellinger distance. f(t) = 1
2(
√
t− 1)2

H2(p, q) =
1

2

∫
(
√

q(x)−
√
p(x))2dx =

1

2

∫
p(x)

(√
q(x)

p(x)
− 1

)2

dx

▶ Total variation distance. f(t) = 1
2 |t− 1|

dTV(p, q) =
1

2

∫
|p(x)− q(x)|dx =

1

2

∫
p(x)

∣∣∣∣q(x)p(x)
− 1

∣∣∣∣ dx



Amari’s α-Divergence 7/35

When f(t) = tα−t
α(α−1) , we have the Amari’s α-divergence (Amari,

1985; Zhu and Rohwer, 1995)

Dα(p∥q) =
1

α(1− α)

(
1−

∫
p(θ)αq(θ)1−α dθ

)

Adapted from Hernández-Lobato et al.

DKL(q∥p) = lim
α→0

Dα(p∥q)

DKL(p∥q) = lim
α→1

Dα(p∥q)



Rényi’s α-Divergence 8/35

Dα(q∥p) =
1

α− 1
log

∫
q(θ)αp(θ)1−α dθ

▶ Some special cases of Rényi’s α-divergence
▶ D1(q∥p) := limα→1 Dα(q∥p) = DKL(q∥p)
▶ D0(q∥p) = − log

∫
q(θ)>0

p(θ)dθ = 0 iff supp(p) ⊂ supp(q).

▶ D+∞(q∥p) = logmaxθ
q(θ)
p(θ)

▶ D 1
2
(q∥p) = −2 log

(
1−Hel2(q∥p)

)
▶ Importance properties

▶ Rényi divergence is non-decreasing in α

Dα1
(q∥p) ≥ Dα2

(q∥p), if α1 ≥ α2

▶ Skew symmetry: D1−α(q∥p) = 1−α
α Dα(p∥q)



The Rényi Lower Bound 9/35

▶ Consider approximating the exact posterior p(θ|x) by
minimizing Rényi’s α-divergence Dα(q(θ)∥p(θ|x)) for some
selected α > 0

▶ Using p(θ|x) = p(θ, x)/p(x), we have

Dα(q(θ)∥p(θ|x)) =
1

α− 1
log

∫
q(θ)αp(θ|x)1−α dθ

= log p(x)− 1

1− α
log

∫
q(θ)αp(θ, x)1−α dθ

= log p(x)− 1

1− α
logEq

(
p(θ, x)

q(θ)

)1−α

▶ The Rényi lower bound (Li and Turner, 2016)

Lα(q) ≜
1

1− α
logEq

(
p(θ, x)

q(θ)

)1−α



The Rényi Lower Bound 10/35

▶ Theorem(Li and Turner 2016). The Rényi lower bound is
continuous and non-increasing on α ∈ [0, 1] ∪ {|Lα| < +∞}.
Especially for all 0 < α < 1

LVI(q) = lim
α→1

Lα(q) ≤ Lα(q) ≤ L0(q)

L0(q) = log p(x) iff supp(p(θ|x)) ⊂ supp(q(θ)).



Monte Carlo Estimation 11/35

▶ Monte Carlo estimation of the Rényi lower bound

L̂α,K(q) =
1

1− α
log

1

K

K∑
i=1

(
p(θi, x)

q(θi)

)1−α

, θi ∼ q(θ)

▶ Unlike traditional VI, here the Monte Carlo estimate is
biased. Fortunately, the bias can be characterized by the
following theorem

▶ Theorem(Li and Turner, 2016). E{θi}Ki=1
(L̂α,K(q)) as a

function of α and K is
▶ non-decreasing in K for fixed α ≤ 1, and converges to Lα(q)

as K → +∞ if supp(p(θ|x)) ⊂ supp(q(θ)).
▶ continuous and non-increasing in α on [0, 1] ∪ {|Lα| < +∞}



Multiple Sample ELBO 12/35

▶ When α = 0, the Monte Carlo estimate reduces to the
multiple sample lower bound (Burda et al., 2015)

L̂K(q) = log

(
1

K

K∑
i=1

p(x, θi)

q(θi)

)
, θi ∼ q(θ)

▶ This recovers the standard ELBO when K = 1.

▶ Using more samples improves the tightness of the bound
(Burda et al., 2015)

log p(x) ≥ E(L̂K+1(q)) ≥ E(L̂K(q))

Moreover, if p(x, θ)/q(θ) is bounded, then

E(L̂K(q))→ log p(x), as K → +∞



Lower Bound Maximization 13/35

Using the reparameterization trick

θ ∼ qϕ(θ)⇔ θ = gϕ(ϵ), ϵ ∼ qϵ(ϵ)

∇ϕL̂α,K(qϕ) =

K∑
i=1

(
ŵα,i∇ϕ log

p(gϕ(ϵi), x)

qϕ(gϕ(ϵi))

)
, ϵi ∼ qϵ(ϵ)

where

ŵα,i ∝
(
p(gϕ(ϵi), x)

qϕ(gϕ(ϵi))

)1−α

,

the normalized importance weight with finite samples. This is a
biased estimate of ∇ϕLα(qϕ) (except α = 1).

▶ α = 1: Standard VI with the reparamterization trick

▶ α = 0: Importance weighted VI (Burda et al., 2015)



Minibatch Training 14/35

▶ Full batch training for maximizing the Rényi lower bound
could be very inefficient for large datasets

▶ Stochastic optimization is non-trivial since the Rényi lower
bound can not be represented as an expectation on a
datapoint-wise loss, except for α = 1.

▶ Two possible methods:
▶ derive the fixed point iteration on the whole dataset, then

use the minibatch data to approximately compute it (Li et
al., 2015)

▶ approximate the bound using the minibatch data, then
derive the gradient on this approximate objective
(Hernández-Lobato et al., 2016)

Remark: the two methods are equivalent when α = 1
(standard VI).



Minibatch Training: Energy Approximation 15/35

▶ Suppose the true likelihood is

p(x|θ) =
N∏

n=1

p(xn|θ)

▶ Approximate the likelihood as

p(x|θ) ≈

(∏
n∈S

p(xn|θ)

) N
|S|

≜ f̄S(θ)
N

▶ Use this approximation for the energy function

L̃α(q,S) =
1

1− α
logEq

(
p0(θ)f̄S(θ)

N

q(θ)

)1−α



Example: Bayesian Neural Network 16/35

Adapted from Li and Turner, 2016

▶ The optimal α may vary for different data sets.

▶ Large α improves the predictive error, while small α
provides better test log-likelihood.

▶ α = 0.5 seems to produce overall good results for both test
LL and RMSE.



Expectation Propagation 17/35

▶ In standard VI, we often minimize DKL(q∥p). Sometimes,
we can also minimize DKL(p∥q) (can be viewed as MLE).

q∗ = argmin
q

DKL(p∥q) = argmax
q

Ep log q(θ)

▶ Assume q is from the exponential family

q(θ|η) = h(θ) exp
(
η⊤T (θ)−A(η)

)
▶ The optimal η∗ satisfies

η∗ = argmax
η

Ep log q(θ|η)

= argmax
η

(
η⊤Ep (T (θ))−A(η)

)
+Const



Moment Matching 18/35

▶ Differentiate with respect to η

Ep (T (θ)) = ∇ηA(η∗)

▶ Note that q(θ|η) is a valid distribution ∀η

0 = ∇η

∫
h(θ) exp

(
η⊤T (θ)−A(η)

)
dθ

=

∫
q(θ|η) (T (θ)−∇ηA(η)) dθ

= Eq (T (θ))−∇ηA(η)

▶ The KL divergence is minimized if the expected sufficient
statistics are the same

Eq (T (θ)) = Ep (T (θ))



Expectation Propagation 19/35

▶ An approximate inference method proposed by Minka 2001.

▶ Suitable for approximating product forms. For example,
with iid observations, the posterior takes the following form

p(θ|x) ∝ p(θ)

n∏
i=1

p(xi|θ) =
n∏

i=0

fi(θ)

▶ We use an approximation

q(θ) ∝
n∏

i=0

f̃i(θ)

One common choice for f̃i is the exponential family

f̃i(θ) = h(θ) exp
(
η⊤i T (θ)−A(ηi)

)
▶ Iteratively refinement of the terms f̃i(θ)



Iterative Updating 20/35

▶ Take out term approximation i

q\i(θ) ∝
∏
j ̸=i

f̃j(θ)

▶ Put back in term i

p̂(θ) ∝ fi(θ)
∏
j ̸=i

f̃j(θ)

▶ Match moments. Find q such that

Eq(T (θ)) = Ep̂(T (θ))

▶ Update the new term approximation

f̃new
i (θ) ∝ q(θ)

q\i(θ)



How Does EP Work? 21/35

▶ Minimize the KL divergence from p̂ to q

DKL(p̂∥q) = Ep̂ log

(
p̂(θ)

q(θ)

)
▶ Equivalent to moment matching when q is in the

exponential family.



Particle Based Variational Inference 22/35

▶ The approximating distributions that we discussed so far
are assumed to have a parametric form, that is qθ(x) with
parameter θ.

▶ This parametric form often limits the power of the
approximating distributions.

▶ In what follows, we will introduce a particle based VI
introduced by Liu et al. that uses non-parameteric
approximating distributions.



Stein’s Method 23/35

▶ A general theoretical tool for bounding differences between
distributions, introduced by Charles Stein.

▶ The key idea is to characterize a distribution p with a Stein
operator Ap, such that

p = q ⇐⇒ Ex∼q[Apf(x)] = 0, ∀f ∈ F

For continuous distributions with smooth density p(x),

Apf(x) := sp(x)
T f(x) +∇x · f(x)

where sp(x) = ∇x log p(x) is the score function.

Note that sp(x) does not dependent on the normalizing
constant of p(x), so p(x) can be unnormalized.



Stein’s Method 24/35

▶ When p = q, we have Stein’s Identity

Ex∼p [sp(x)
T f(x) +∇x · f(x)] = 0

▶ Stein’s identity defines an infinite number of identities
indexed by test function f , widely applied in learning
probabilistic models, variance reduction, optimization and
many more.

▶ When p ̸= q, we have (also by Stein’s Identity)

Ex∼q[Apf(x)] = Ex∼q[(sp(x)− sq(x))
T f(x)] (1)

Easy to find test function f(x) such that (1) is non-zero.
For example:

f(x) = sp(x)− sq(x)



Stein Discrepancy 25/35

▶ We therefore, define Stein Discrepancy between p and q as
follows

D(q∥p) := max
f∈F

Ex∼q[Apf(x)] (2)

where F is a rich enough set of functions.

▶ Traditionally, Stein’s method takes F to be sets of
functions with bounded Lipschitz norm, which is
computationally difficult for practical use.

▶ We can use a kernel trick to construct a reproducing kernel
Hilbert space (RKHS) where there is a closed form solution
to (2).



Reproducing Kernel Hilbert Space 26/35

▶ Let k(x, x′) be a positive definite kernel, that is∫
X
g(x)k(x, x′)g(x′) dxdx′ > 0, ∀ 0 < ∥g∥22 <∞.

By Mercer’s theorem,

k(x, x′) =
∑

i
λiei(x)ei(x

′)

▶ We can define a RKHS H that contains linear
combinations of these eigenfunctions

f(x) =
∑

i
fiei(x), ⟨f, g⟩H =

∑
i

figi
λi

with ∥f∥2H = ⟨f, f⟩H =
∑

i f
2
i /λi.

▶ Reproducing Property

f(x) = ⟨f, k(·, x)⟩H, k(x, x′) = ⟨k(·, x), k(·, x′)⟩H.



Kernelized Stein Discrepancy 27/35

▶ Given a positive definite kernel k(x, x′), Liu et al. define a
kernelized Stein discrepancy (KSD) D(q∥p) as follows

D(q∥p) =
√

Ex,x′∼q[δp,q(x)Tk(x, x′)δp,q(x′)]

where δp,q(x) = sp(x)− sq(x). Obviously,

D(q∥p) ≥ 0, D(q∥p) = 0⇔ q = p.

▶ With the spectral decomposition, we can rewrite KSD as

D(q∥p) =
√∑

i

λi∥Ex∼q[Apei(x)]∥22



Kernelized Stein Discrepancy 28/35

▶ It turns out that KSD can be viewed as standard Stein
discrepancy over a specific family of functions F , i.e, the
unit ball of Hd = H× · · · × H.

▶ Denote β(x′) = Ex∼q[Apkx′(x)], then

D(q∥p) = ∥β∥Hd

▶ Moreover, we have

⟨β, f⟩Hd = Ex∼q[Apf(x)], ∀f ∈ Hd

▶ Therefore,
D(q∥p) = max

f∈F
Ex∼q[Apf(x)]

where F = {f ∈ Hd : ∥f∥Hd ≤ 1}. The maximum is
achieved at f∗ = β/∥β∥Hd .



Stein Variational Gradient Descent 29/35

Proposed by Liu and Wang, 2016.

Idea: represent the distribution using a collection of particles
{xi}ni=1 and iteratively move these particles toward the target p
by updates of form

xi ← T (xi), T (x) = x+ ϵϕ(x)

where ϕ is a perturbation direction chosen
to maximumly decrease the KL divergence.

ϕ = argmax
ϕ∈F

{
− ∂

∂ϵ
DKL(qT ∥p)

∣∣∣∣
ϵ=0

}
where qT is the density of x′ = T (x) when
the current density of x is q(x).



Stein Variational Gradient Descent 30/35

▶ Perturbation direction is closely related to Stein operator

− ∂

∂ϵ
DKL(qT ∥p)

∣∣∣∣
ϵ=0

= Ex∼q[Apϕ(x)]

▶ This gives another interpretation of Stein discrepancy

D(q∥p) = max
ϕ∈F

{
− ∂

∂ϵ
DKL(qT ∥p)

∣∣∣∣
ϵ=0

}
▶ Most importantly, the optimum direction has a closed form

when F is the unit ball of RKHS Hd:

ϕ∗(·) = Ex∼q[Apk(x, ·)]
= Ex∼q[∇x log p(x)k(x, ·) +∇xk(x, ·)]



Stein Variational Gradient Descent 31/35

We can approximate the expectation Ex∼q with the empirical
average over current particles

xi ← xi+ϵ
1

n

n∑
j=1

[
∇x log p(xj)k(xj , xi) +∇xjk(xj , xi)

]
, 1 ≤ i ≤ n

▶ Deterministically transport probability mass from initial q0
to target p.

▶ Reduces to standard gradient ascent for MAP when using a
single particle (n = 1).

▶ ∇x log p(xj): the gradient term moves the particles towards
high probability domains of p(x).

▶ ∇xk(xj , xi): the repulsive force term enforces diversity in
the particles and prevents them from collapsing to the
modes of p(x).



Examples: Mixture of Gaussian 32/35

Liu et al., 2016



Examples: Bayesian Logistic Regression 33/35

Liu et al., 2016
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