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▶ While EM increases the marginal likelihood in each
iteration and often converges to a stationary point, we are
not clear about the convergence rate and how does that
relate to the missing data scenario.

▶ Moreover, the requirements of tractable conditional
distribution and easy complete data MLE may be too
restrictive in practice.

▶ In this lecture, we will discuss the convergence theory for
EM and introduce some variants of it that can be applied
in more general settings.
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▶ Recall that in the censored survival times example, given
the observed data Y = {(t1, δ1), . . . , (tn, δn)}, where tj
follows an exponential distribution with mean µ and can be
either censored or not as indicated by δj .

▶ Assume δi = 0, i ≤ r, δi = 1, i > r. The MLE of µ is
µ̂ =

∑n
i=1 ti/r

▶ EM update formula

µ(k+1) =

∑n
i=1 ti + (n− r)µ(k)

n

▶ Therefore,

µ(k+1) − µ̂ =
n− r

n
(µ(k) − µ̂)

Linear convergence, rate depends on the amount of missing
information
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We can view EM update as a map

θ(t+1) = Φ(θ(t)), Φ(θ) = argmax
θ′

Q(θ′|θ)

where Q(θ′|θ) = Ep(z|x,θ) log p(x, z|θ′)

Lemma 1
If for some θ∗, L(θ∗) ≥ L(θ), ∀θ, then for every EM algorithm

L(Φ(θ∗)) = L(θ∗), Q(Φ(θ∗)|θ∗) = Q(θ∗|θ∗)

and
p(z|x,Φ(θ∗)) = p(z|x, θ∗), a.s.
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Lemma 2
If for some θ∗, L(θ∗) > L(θ), ∀θ ̸= θ∗, then for every EM
algorithm

Φ(θ∗) = θ∗

Theorem 1
Suppose that θ(t), t = 0, 1, . . . is an instance of an EM algorithm
such that

▶ the sequence L(θ(t)) is bounded and L(θ(t)) → L∗.

▶ M(L∗) = {θ∗ : L(θ∗) = L∗} is a discrete set.

▶ ∥θ(t+1) − θ(t)∥ → 0.

Then all the limit points of the sequence θ(t) converges to some
θ∗ ∈ M(L∗). See Wu (1983) for more details.
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▶ Since θ(t+1) = Φ(θ(t)) maximizes Q(θ′|θ(t)), we have

∂Q

∂θ′
(θ(t+1)|θ(t)) = 0

▶ For all t, there exists a 0 ≤ α
(t+1)
0 ≤ 1 such that

Q(θ(t+1)|θ(t))−Q(θ(t)|θ(t)) = −(θ(t+1) − θ(t))·
∂2Q

∂θ′2
(θ

(t+1)
0 |θ(t))(θ(t+1) − θ(t))T

where θ
(t+1)
0 = α0θ

(t) + (1− α0)θ
(t+1)

▶ If the sequence ∂2Q
∂θ′2 (θ

(t+1)
0 |θ(t)) is negative definite with

eigenvalues bounded away from zero and L(θ(t)) is
bounded, by Theorem 1, θ(t) converges to some θ∗
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▶ When EM converges, it converges to a fixed point of the
map

θ∗ = Φ(θ∗)

▶ Taylor expansion of Φ at θ∗ yields

θ(t+1) − θ∗ = Φ(θ(t))− Φ(θ∗) ≈ ∇Φ(θ∗)(θ(t) − θ∗)

▶ The global rate of EM defined as

ρ = lim
t→∞

∥θ(t+1) − θ∗∥
∥θ(t) − θ∗∥

equals the largest eigenvalue of ∇Φ(θ∗) and ρ < 1 when the
observed Fisher information −∇2L(θ∗) is positive definite.
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▶ As aforementioned, Φ(θ) maximize Q(θ′|θ), therefore

∂Q

∂θ′
(Φ(θ)|θ) = 0, ∀θ

▶ Differentiate w.r.t. θ

∂2Q

∂θ′2
(Φ(θ)|θ)∇Φ(θ) +

∂2Q

∂θ∂θ′
(Φ(θ)|θ) = 0

let θ = θ∗

∇Φ(θ∗) =

(
−∂2Q

∂θ′2
(θ∗|θ∗)

)−1
∂2Q

∂θ∂θ′
(θ∗|θ∗) (1)
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▶ If ∂2Q
∂θ′2 (θ

(t+1)|θ(t)) is negative definite with eigenvalues
bounded away from zero, then

−∂2Q

∂θ′2
(θ∗|θ∗) = Ep(z|x,θ∗)

(
−∇2 log p(x, z|θ∗)

)
is positive definite, known as the complete information

▶ The marginal log-likelihood can be rewritten as

L(θ′) = Ep(z|x,θ) log p(x, z|θ′)− Ep(z|x,θ) log p(z|x, θ′)
= Q(θ′|θ)−H(θ′|θ)

Therefore
∂2Q

∂θ∂θ′
(θ′|θ) = ∂2H

∂θ∂θ′
(θ′|θ)
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▶ Some properties of H(θ|θ) = Ep(z|x,θ) log p(z|x, θ)

∂H

∂θ′
(θ|θ) = 0

∂2H

∂θ∂θ′
(θ|θ) = −∂2H

∂θ′2
(θ|θ)

▶ Therefore,

∂2Q

∂θ∂θ′
(θ∗|θ∗) = ∂2H

∂θ∂θ′
(θ∗|θ∗) = −∂2H

∂θ′2
(θ∗|θ∗)

is positive semidefinite (variance of the score
∇ log p(z|x, θ∗)), known as the missing information
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L(θ′) = Q(θ′|θ)−H(θ′|θ)

▶ Differentiate both side w.r.t. θ′ twice

∇2L(θ′) = ∂2Q

∂θ′2
(θ′|θ)− ∂2H

∂θ′2
(θ′|θ)

▶ The missing-information principle

−∂2Q

∂θ′2
(θ|θ)︸ ︷︷ ︸

Icomplete

= −∇2L(θ)︸ ︷︷ ︸
Iobserved

+−∂2H

∂θ′2
(θ|θ)︸ ︷︷ ︸

Imissing

▶ Substitute in (1)

∇Φ(θ∗) = I−1
complete(θ

∗)Imissing(θ
∗)

= (Iobserved(θ
∗) + Imissing(θ

∗))−1 Imissing(θ
∗)
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▶ When Iobserved = −∇2L(θ∗) is positive definite, the
eigenvalues of ∇Φ(θ∗) are all less than 1, EM has a linear
convergence rate.

▶ The rate of convergence depends on the relative size of
Iobserved(θ

∗) and Imissing(θ
∗). EM converges rapidly when

the missing information is small.

▶ The fraction of information loss may vary across different
component of θ, so some component may converge faster
than other components.

▶ See Wu (1983) for more detailed discussions.
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▶ EM can be easily modified for the Maximum A Posterior
(MAP) estimate instead of the MLE.

▶ Suppose the log-prior penalty term is R(θ). We only have
to maximize

Q(θ|θ(t)) +R(θ) (2)

in the M-step

▶ Monotonicity.

L(θ(t+1)) +R(θ(t+1)) ≥ F(θ(t+1)|θ(t)) +R(θ(t+1))

≥ F(θ(t)|θ(t)) +R(θ(t))

= L(θ(t)) +R(θ(t))

▶ If R(θ) corresponds to a conjugate prior, (2) can be
maximized in the same manner as Q(θ|θ(t)).
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▶ The E-step requires finding the expected complete data
log-likelihood Q(θ|θ(t)). When this expectation is difficult
to compute, we can approximate it via Monte Carlo
methods

▶ Monte Carlo EM (Wei and Tanner, 1990)

▶ Draw missing data z
(t)
1 , . . . , z

(t)
m from the conditional

distribution p(z|x, θ(t))
▶ Compute a Monte Carlo estimate of Q(θ|θ(t))

Q̂(t+1)(θ|θ(t)) = 1

m

m∑
i=1

log p(x, z
(t)
i |θ)

▶ Update θ(t+1) to maximize Q̂(t+1)(θ|θ(t)).
Remark: It is recommended to let m changes along
iterations (small at the beginning and increases as
iterations progress)
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▶ By the lack of memory, it is easy to compute the expected
complete data log-likelihood, which lead to the ordinary
EM update

µ
(k+1)
EM =

∑n
i=1 ti + (n− r)µ(k)

n

▶ In MCEM, we can sample from the conditional distribution

Tj = (Tj,r+1, . . . , Tj,n), Tj,l−tl ∼ Exp(µ(k)), l = r+1, . . . , n

for j = 1, . . . ,m(k), and the update formula is

µ
(k+1)
MCEM =

∑n
i=1 ti +

1
m(k)

∑m(k)

j=1 T T
j 1

n
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▶ One of the appeals of the EM algorithm is that Q(θ|θ(t)) is
often simpler to maximize than the marginal likelihood

▶ In some cases, however, the M-step cannot be carried out
easily even though the computation of Q(θ|θ(t)) is
straightforward in the E-step

▶ For such situations, Dempster et al (1977) defined a
generalized EM algorithm (GEM) for which the M-step
only requires θ(t+1) to improve Q(θ|θ(t))

Q(θ(t+1)|θ(t)) ≥ Q(θ(t+1)|θ(t))

▶ We can easily show that GEM is also monotonic in L

L(θ(t+1)) ≥ F(q(t), θ(t+1)) ≥ F(q(t), θ(t)) = L(θ(t))
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▶ Meng and Rubin (1993) replaces the M-step with a series
of computationally cheaper conditional maximization (CM)
steps, leading to the ECM algorithm

▶ The M-step in ECM contains a collection of simple CM
steps, called a CM cycle. For s = 1, . . . , S, the s-th CM
step requires the maximization of Q(θ|θ(t)) subject to a
constraint

θ(t+s/S) = argmax
θ

Q(θ|θ(t)), s.t. gs(θ) = gs(θ
(t+(s−1)/S))

▶ The efficiency of ECM depends on the choice of constraints.
Examples: Blockwise updates (coordinate ascent).

▶ One may also insert an E-step between each pair of
CM-steps, updating Q at every stage of the CM cycle.
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▶ Suppose we have n independent observations from the
following k-variate normal model

Yi ∼ N (Xiβ,Σ), i = 1, . . . , n

▶ Xi ∈ Rk×p is a known design matrix for the i-th observation
▶ β is a vector of p unknown parameters
▶ Σ is a d× d unknown variance-covariance matrix

▶ The complete data log-likelihood (up to a constant) is

L(β,Σ|Y ) = −n

2
log |Σ| − 1

2

n∑
i=1

(Yi −Xiβ)
TΣ−1(Yi −Xiβ)

▶ Generally, MLE does not has closed form solution except in
special cases (e.g., Σ = σ2I)
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▶ Although the joint maximization of β and Σ are not
generally in closed form, a coordinate ascent algorithm
does exist

▶ Given Σ = Σ(t), the conditional MLE of β is simply the
weighted least-square estimate

β(t+1) =

(
n∑

i=1

XT
i (Σ

(t))−1Xi

)−1( n∑
i=1

XT
i (Σ

(t))−1Yi

)

▶ Given β = β(t+1), the conditional MLE of Σ is the
cross-product of the residuals

Σ(t+1) =
1

n

n∑
i=1

(Yi −Xiβ
(t+1))(Yi −Xiβ

(t+1))T
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▶ Now suppose that we also have missing data

Yi ∼ N (Xiβ,Σ), i = n+ 1, . . . ,m

for which only the design matrix Xi, i > n are known

▶ The complete data log-likelihood

L(β,Σ|Y ) = −m

2
log |Σ| − 1

2

m∑
i=1

(Yi −Xiβ)
TΣ−1(Yi −Xiβ)

▶ Expected values of sufficient statistics observed data and
current parameter θ(t) = (β(t),Σ(t))

E(Yi|Yobs, θ(t)) = Xiβ
(t)

E(YiY T
i |Yobs, θ(t)) = Σ(t) + (Xiβ

(t))(Xiβ
(t))T
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Expected complete-data log-likelihood

Q(θ|θ(t)) = −m

2
log |Σ| − 1

2

n∑
i=1

(Yi −Xiβ)
TΣ−1(Yi −Xiβ)

− 1

2

m∑
i=n+1

E
(
(Yi −Xiβ)

TΣ−1(Yi −Xiβ)
)

= −m

2
log |Σ| − 1

2

n∑
i=1

(Yi −Xiβ)
TΣ−1(Yi −Xiβ)

− 1

2

m∑
i=n+1

(EYi −Xiβ)
TΣ−1(EYi −Xiβ) + C

where C = 1
2

∑m
i=n+1 E(Yi)TΣ−1E(Yi)− E(Y T

i Σ−1Yi) is a
constant independent of the parameter β.
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▶ The first CM-step, maximize Q given Σ = Σ(t).

▶ Since C is independent of β, we can maximize

−m

2
log |Σ|−1

2

n∑
i=1

(Yi −Xiβ)
TΣ−1(Yi −Xiβ)

−1

2

m∑
i=n+1

(EYi −Xiβ)
TΣ−1(EYi −Xiβ)

⇒ β(t+1) =

(
m∑
i=1

XT
i Σ

(t)Xi

)−1( m∑
i=1

XT
i Σ

(t)Ŷi

)
where

Ŷi =

{
Yi, i ≤ n

Xiβ
(t), i > n
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▶ The second CM-step, maximize Q with β = β(t+1)

▶ Rewrite Q as

Q(θ|θ(t)) = m

2
log |Σ−1| − 1

2

n∑
i=1

Tr
(
Σ−1(Yi −Xiβ)(Yi −Xiβ)

T
)

− 1

2

m∑
i=n+1

Tr
(
Σ−1E

(
(Yi −Xiβ)(Yi −Xiβ)

T
))

▶ Similarly as in the complete data case

Σ(t+1) =
1

m

(
n∑

i=1

(Yi −Xiβ
(t+1))(Yi −Xiβ

(t+1))T +

m∑
i=n+1

Σ(t)

+

m∑
i=n+1

Xi(β
(t) − β(t+1))(β(t) − β(t+1))TXT

i

)
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▶ Both the E-step and the two CM-steps can be implemented
using close form solutions, no numerical iteration required.

▶ Both CM-steps improves Q

Q(β(t+1),Σ(t+1)|β(t),Σ(t)) ≥ Q(β(t+1),Σ(t)|β(t),Σ(t))

≥ Q(β(t),Σ(t)|β(t),Σ(t))

▶ ECM in this case can be viewed as an efficient
generalization of iterative reweighted least squares, in the
presence of missing data.
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We generate 120 design matrices at random and simulate 100

observations with β =

(
2
1

)
, Σ =

(
1, 0.1
0.1 2

)
ECM estimates

β̂ =

(
2.068
1.087

)
, Σ̂ =

(
0.951 0.214
0.214 2.186

)
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▶ Iterative optimization can be considered when direct
maximization is not available.

▶ All numerical optimization can apply and that would yield
an algorithm that has nested iterative loops (e.g., ECM
inserts conditional maximization steps within each CM
cycle)

▶ To avoid the computational burden of nested looping,
Lange proposed to use one single step of Newton’s method

θ(t+1) = θ(t) −
(
∂2Q

∂θ′2
(θ(t)|θ(t))

)−1
∂Q

∂θ′
(θ(t)|θ(t))

= θ(t) −
(
∂2Q

∂θ′2
(θ(t)|θ(t))

)−1

∇L(θ(t))

▶ This EM gradient algorithm has the same rate of
convergence as the full EM algorithm.
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▶ When EM is slow, we can use the relatively simple analytic
setup from EM to motivate particular forms for
Newton-like steps.

▶ Aitken Acceleration. Newton update

θ(t+1) = θ(t) − (∇2L(θ(t)))−1∇L(θ(t)) (3)

Note that ∇L(θ(t)) = ∂Q
∂θ′ (θ

(t)|θ(t)) and

0 =
∂Q

∂θ′
(θ

(t+1)
EM |θ(t)) ≈ ∂Q

∂θ′
(θ(t)|θ(t))+∂2Q

∂θ′2
(θ(t)|θ(t))(θ(t+1)

EM −θ(t))

substitute in (3)

θ(t+1) = θ(t) + (Iobserved(θ
(t)))−1Icomplete(θ

(t))(θ
(t+1)
EM − θ(t))

▶ Many other acceleration exists (e.g., Quasi-Newton
methods).
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