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Overview 2/30

> Statistical inference often depends on intractable integrals
I(f) = Jq f(z)dx

» This is especially true in Bayesian statistics, where a
posterior distribution is usually non-trivial.

» In some situations, the likelihood itself may depend on
intractable integrals so frequentist methods would also
require numerical integration

» In this lecture, we start by discussing some simple
numerical methods that can be easily used in low
dimensional problems

> Next, we will discuss several Monte Carlo strategies that
could be implemented even when the dimension is high
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Newton-Cotes Quadrature 3/30

» Consider a one-dimensional integral of the form
1(f) = [, f(x)de

» A common strategy for approximating this integral is to
use a tractable approximating function f (z) that can be
integrated easily

» We typically constrain the approximating function to agree
with f on a grid of points: x1,x9,..., Ty,
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Newton-Cotes Quadrature 4/30

v

Newton-Cotes methods use equally-spaced grids
The approximating function is a polynomial

The integral then is approximated with a weighted sum as
follows

I=> wif(x)
i=1

In its simplest case, we can use the Riemann rule by
partitioning the interval [a, b] into n subintervals of length
h = b_Ta; then

This is obtained using a piecewise constant function f that
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Newton-Cotes Quadrature 5/30

» Alternatively, the approximating function could agree with
the integrand at the right or middle point of each
subinterval

n n—1
Ip= hZf(a—H‘h), Iv=h> fla+(i+ %)h)

=1 i=0
» In either case, the approximating function is a zero-order
polynomial

» To improve the approximation, we can use the trapzoidal
rule by using a piecewise linear function that agrees with
f(x) at both ends of subintervals
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Newton-Cotes Quadrature 6/30

» We would further improve the approximation by using
higher order polynomials

> Simpson’s rule uses a quadratic approximation over each
subinterval

/Z”l fla)dz ~ w <f(1‘i) + 4f(%) * f(xiﬂ))

i

» In general, we can use any polynomial of degree k
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Gaussian Quadrature 7/30

» Newton-Cotes rules require equally spaced grids

» With a suitably flexible choice of n + 1 nodes,
0,21, ..., Ty, and corresponding weights, Ag, A1,..., Ap,

Z Aif (i)
i=0

gives the exact integration for all polynomials with degree
less than or equal to 2n + 1

» This is called Gaussian quadrature, which is especially
useful for the following type of integrals f: f(@)w(z)dx
Where w(m) is a nonnegative function and
f x)dr < oo for all k >0
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Orthogonal Functions 8/30

» In general, for squared integrable functions,

/f x)dr < oo

denoted as f € Ei} (b We define the inner product as

b
(fs 9w, fa] =/ f(2)g(x)w(z)dx

where f,g € ﬁ?u,[a,b]

> We said two functions to be orthogonal if (f, g)y (a4 = 0. If
f and g are also scaled so that (f, f>w7[a7b] =1
(9, 9)w,jap) = 1, then f and g are orthonormal
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Orthogonal Polynomials 9/30

» We can define a sequence of orthogonal polynomials by a
recursive rule

Tiot1(2) = (gt + Br12) T () — Y1 Tho—1(2)
» Example: Chebyshev polynomials (first kind).

1, Ti(x)==
Thi1(z) = 22T, (z) — Th—1(2)

» T, (x) are orthogonal with respect to w(x) = \/1%7 and
[_17 1]

! 1
/ To(x) () ——=dx =0, Vn#m
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Orthogonal Polynomials 10/30

» In general orthogonal polynomials are not unique since
(f,9) = 0 implies (cf,dg) =0

» To make the orthogonal polynomial unique, we can use the
following standarizations

» make the polynomial orthonormal: (f, f) =0
» set the leading coefficient of T (z) to 1

» Orthogonal polynomials form a basis for E?U [a,p] 5O ANy
function in this space can be written as

f(x) = ZanTn(aj)
n=0

where a,, = <§F{:7;7F1n>>
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Gaussian Quadrature 11/30

>

>

Let {7, ()}, be a sequence of orthogonal polynomials
with respect to w on [a, b].

Denote the n + 1 roots of T,,41(x) by
a<xp<x1 <...<xy <Db.

We can find weights Ay, As, ..., Apt1 such that

To do that, we first show: there exists weights
Ay, As, ..., Apy1 such that

/ ! Py = an AP(z;), ¥ deg(P) <n+1
a i=0
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Gaussian Quadrature 12/30

» Sketch of proof. We only need to satisfy

b n
/ ka(w)dx:ZAixf, Vk=0,1,....n
@ i=0

This leads to a system of linear equations

1 1 ... 17 4 I
o T1 ... xnl| | A1 L
xg b ... ozp| [An I,

where [}, = ff 2*w(z)dz. The determinant of the
coefficient matrix is a Vandermonde determinant, and is
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Gaussian Quadrature 13/30

» Now we show that the above Gaussian Quadrature can be
exact for polynomials of degree < 2n + 1

» Let P(x) be a polynomial with deg(P) < 2n + 1, there
exist polynomials g(x) and r(z) such that

P(z) = g(2)Thya1(z) + ()

with deg(g) < n,deg(r) < n, Therefore,
b b
/ P(z)w(z)dx = / r(z)w(z)dr = ZAZT(.%'Z)

=0
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Monte Carlo Method 14/30

» We now discuss the Monte Carlo method mainly in the
context of statistical inference

» As before, suppose we are interested in estimating
I(h) = [”h(z)dz

» If we can draw iid samples, 2 2@ ) uniformly
from (a,b), we can approximate the integral as

. 1< .
In=0b-a)=> hz®
(0= 0)5 )
> Note that we can think about the integral as

b
(b—a)/ h(:n)-biadx

where ;L is the density of Uniform(a, b)
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Monte Carlo Method 15/30

> In general we are interested in integrals of the form
Sy h x)dx, where f(x) is a probability density function

> Analogous to the above argument, we can approximate this
integral (or expectation) by drawing iid samples
M, 2@ 2™ from the density f(x) and then

1 n
I== n®
» Based on the law of large numbers, we know that
lim I, & 1
n—oo

» And based on the central limit theorem

Vvn(l, —I) = N(0,6%), o*= Var(h(X))
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Example: estimating 16/30

» Let h(:l,‘) = 13(0’1)(51,‘), then m = 4]‘[_1’1]2 h(l‘) . % dx
» Monte Carlo estimate of m

. 4 < ;
i=1

2@ ~ Uniform([—1, 1]2)
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Example: estimating 17/30

Monte Carlo estimate of 7 (with 90% confidence interval)

3.0

Estimate of 7
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Sample size
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Monte Carlo vs Quadrature 18/30

» Convergence rate for Monte Carlo: O(n~1/2)

7
vné

often slower than quadrature methods (O(n~2) or better)

p(rfn—ﬂs )21—6, v

» However, the convergence rate of Monte Carlo does not
depend on dimensionality

» On the other hand, quadrature methods are difficult to
extend to multidimensional problems, because of the curse
of dimensionality. The actual convergence rate becomes
O(n~*/4), for any order k method in dimension d

» This makes Monte Carlo strategy very attractive for high
dimensional problems

ez x Y

@

PEKING UNIVERSITY




Exact Simulation 19/30

» Monte Carlo methods require sampling a set of points
chosen randomly from a probability distribution

» For simple distribution f(z) whose inverse cumulative
distribution functions (CDF) exists, we can sampling x
from f as follows

= FY(u), wu~ Uniform(0,1)

where F~! is the inverse CDF of f
» Proof.

pla < <b) =p(F(a) <u < F(b)) = F(b) - Fa)
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Examples 20/30

» Exponential distribution: f(z) = 6 exp(—60x). The CDF is
F(a) = / 0 exp(—0z) =1 — exp(—ba)
0

therefore, z = F~'(u) = —$log(1 — u) ~ f(z). Since 1 —u
also follows the uniform distribution, we often use

z = —% log(u) instead
2
» Normal distribution: f(z) = \/% exp(f?). Box-Muller
Transform
X =+/—2logUj cos2wU,
Y =+/—2logU; sin 27U,

where Uy ~ Uniform(0,1), Us ~ Uniform(0,1)
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Intuition for Box-Muller Transform 21/30

» Assume Z = (X,Y) follows the standard bivariate normal
distribution. Consider the following transform

X =Rcos®, Y =Rsin®
» From symmetry, clearly © follows the uniform distribution

on the interval (0,27) and is independent of R

» What distribution does R follow? Let’s take a look at its
CDF

p(R<r)=p(X*+Y?<r?)
1 r 2

¢ (t)dt/%dﬁ 1 — exp(—")
—_ —— _—— e J— X —_—
o J, (TP Py

Therefore, using the inverse CDF rule, R = /—2logU;
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Rejection Sampling 22/30

» If it is difficult or computationally intensive to sample
directly from f(z) (as described above), we need to use
other strategies

» Although it is difficult to sample from f(x), suppose that
we can evaluate the density at any given point up to a
constant f(z) = f*(x)/Z, where Z could be unknown
(remember that this make Bayesian inference convenient
since we usually know the posterior distribution only up to
a constant)

» Furthermore, assume that we can easily sample from
another distribution with the density g(z) = ¢*(x)/Q,
where @ is also a constant
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Rejection Sampling 23/30

» Now we choose the constants ¢ such that cg*(z) becomes
the envelope (blanket) function for f*(z):

cg"(z) = f*(x), Va

» Then, we can use a strategy known as rejection sampling in
order to sample from f(z) indirectly

» The rejection sampling method works as follows

1.
2.

3.

draw a sample = from g(x)
generate u ~ Uniform(0, 1)

ifu< f **(a:) we accept x as the new sample, otherwise,
cg*(z)
reject x (discard it)

return to step 1
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Rejection Sampling 24/30

Rejection sampling generates samples from the target density,
no approximation involved

p(XT <y) =p(X9 <y|U <

=p(X9 <y, U<

f*(2)
B fi/oo focg ) dug(z)dz
- f*(z)
J250 o7 dug(2)dz

= /?; f(2)dz
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Example 25/30

» Assume that it is difficult to sample from the Beta(3, 10)
distribution (this is not the case of course)

» We use the Uniform(0, 1) distribution with
g(x) =1, Vx € [0, 1], which has the envelop proporty:
4g(x) > f(x), Vo € [0,1]. The following graph shows the
result after 3000 iterations

ez x Y

@

PEKING UNIVERSITY




Advanced Rejection Sampling 26/30

Rejection sampling becomes challenging as the dimension of x
increases. A good rejection sampling algorithm must have three
properties

» It should be easy to construct envelops that exceed the
target everywhere

» The envelop distributions should be easy to sample from

» It should have a low rejection rate
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Squeezed Rejection Sampling 27/30

» When evaluating f* is computationally expensive, we can
improve the simulation speed of rejection sampling via
squeezed rejection sampling

> Squeezed rejection sampling reduces the evaluation of f via
a nonnegative squeezing function s that does not exceed f*
anywhere on the support of f: s(z) < f*(x),Vx

» The algorithm proceeds as follows:

1.
2.

3.

draw a sample = from g(x)
generate u ~ Uniform(0, 1)

if u < c;ﬁfi), we accept x as the new sample, return to step

otherwise, determine whether u < (f; **((Z)). If this inequality
holds, we accept x as the new sample, otherwise, we reject
it.

return to step 1
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Squeezed Rejection Sampling 28,30

Keep First  KeepLater

Y

Remark: The proportion of iterations in which evaluation of f
is avoided is [ s(z)dz/ [e(z




Adaptive Rejection Sampling 29/30

» For a continuous, differentiable, log-concave density on a
connected region of support, we can adapt the envelope
construction (Gilks and Wild, 1992)

» Let T'={x1,...,z} be the set of k starting points.

» We first sample z* from the piecewise linear upper envelop
e(x), formed by the tangents to the log-likelihood ¢ at each
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Adaptive Rejection Sampling 29/30

» To sample from the upper envelop, we need to transform
from log space by exponentiating and using properties of
the exponential distribution

> We then either accept or reject z* as in squeeze rejection
sampling, with s(x) being the piecewise linear lower bound
formed from the chords between adjacent points in T’

» Add z* to T whenever the squeezing test fails.
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