
Statistical Models & Computing Methods

Lecture 3: Advanced Gradient Descent

Cheng Zhang

School of Mathematical Sciences, Peking University

September 18, 2024

Overview 2/45

▶ While gradient descent is simple and intuitive, it has many
problems as well.
▶ Saddle-point problem
▶ Not applicable to non-differentiable objectives
▶ Could be slow
▶ How to scale to big data problems

▶ In this lecture, we will discuss some advanced techniques
that can alleviate these problems

Momentum Method 3/45

▶ Introduced in 1964 by Polyak, momentum method is a
technique that can accelerate gradient descent by taking
accounts of previous gradients in the update rule at each
iteration.

m(k) = µm(k−1) + (1− µ)∇f(x(k))

x(k+1) = x(k) − αm(k)

where 0 ≤ µ < 1

▶ When µ = 0, gradient descent is recovered.

How Does Momentum Work? 4/45

▶ The vanilla gradient descent may suffer from oscillations
when the magnitudes of gradient varies a lot across
different directions.

▶ Using the exponential weighted gradient (momentum),
those oscillations are more likely to be damped out,
resulting in faster rate of convergence.

Nesterov’s Acceleration 5/45

▶ Choose any initial x(0) = x(−1), ∀ k = 1, 2, 3, . . .

y = x(k−1) +
k − 2

k + 1
(x(k−1) − x(k−2))

x(k) = y − tk∇f(y)

▶ The first two steps are the usual gradient updates

▶ After that, y = x(k−1) + k−2
k+1(x

(k−1) − x(k−2)) carries some
“momentum” from previous iterations, and
x(k) = y − tk∇f(y) uses lookahead gradient at y.

Example 6/45

Logistic regression

Convergence Rate of Gradient Methods 7/45

Assumptions

▶ f is convex and continuously differentiable on Rn

▶ ∇f(x) is L-Lipschitz continuous w.r.t Euclidean norm: for
any x, y ∈ Rn

∥∇f(x)−∇f(y)∥ ≤ L∥x− y∥

▶ optimal value f∗ = infx f(x) is finite and attained at x∗.

Theorem: Gradient descent with 0 < t ≤ 1/L satisfies

f(x(k))− f∗ ≤ 1

2kt
∥x(0) − x∗∥2

Some Useful Lemma and Strong Convexity 8/45

▶ If f is L-smooth, then for any x, y ∈ Rn

f(y) ≤ f(x) +∇f(x)T (y − x) +
L

2
∥y − x∥2

▶ If f is differentiable and m-strongly convex, then

f(y) ≥ f(x) +∇f(x)T (y − x) +
m

2
∥y − x∥2

If m = 0, we cover the standard(weak) convexity

▶ In other words, f is sandwiched between two quadratic
functions

Proof 9/45

▶ If x+ = x− t∇f(x) and 0 < t ≤ 1/L

f(x+) ≤ f(x)− t∥∇f(x)∥2 + t2L

2
∥∇f(x)∥2

≤ f(x)− t

2
∥∇f(x)∥2

▶ From convexity

f(x) ≤ f∗ +∇f(x)T (x− x∗)− m

2
∥x− x∗∥2

▶ Add the above two inequalities

f(x+)− f∗ ≤ ∇f(x)T (x− x∗)− t

2
∥∇f(x)∥2 − m

2
∥x− x∗∥2

Proof 10/45

▶ Continue ...

≤ 1

2t
(∥x− x∗∥2 − ∥x+ − x∗∥2)− m

2
∥x− x∗∥2

=
1

2t

(
(1−mt)∥x− x∗∥2 − ∥x+ − x∗∥2

)
(1)

≤ 1

2t
(∥x− x∗∥2 − ∥x+ − x∗∥2) (2)

▶ For gradient descent updates

k∑
i=1

(f(x(i))− f∗) ≤ 1

2t

k∑
i=1

(∥x(i−1) − x∗∥2 − ∥x(i) − x∗∥2)

=
1

2t
(∥x(0) − x∗∥2 − ∥x(k) − x∗∥2)

Proof 11/45

▶ Since f(x(i)) is non-increasing

f(x(k))− f∗ ≤ 1

2kt
∥x(0) − x∗∥2

▶ If f is m-strongly convex, and m > 0, from (1)

∥x(i) − x∗∥2 ≤ (1−mt)∥x(i−1) − x∗∥2, ∀i = 1, 2, . . .

▶ Therefore

∥x(k) − x∗∥2 ≤ (1−mt)k∥x(0) − x∗∥2

i.e., linear convergence if f is strongly convex (m > 0)

Oracle Lower Bound of First-order Methods 12/45

▶ First order method: any iterative algorithm that selects
x(k+1) in the set

x(0) + span{∇f(x(0)),∇f(x(1)), . . . ,∇f(x(k))}

▶ Theorem (Nesterov): for every integer k ≤ (n− 1)/2 and
every x(0), there exist functions that satisfy the
assumptions such that for any first-order method

f(x(k))− f∗ ≥ 3

32

L∥x0 − x∗∥2

(k + 1)2

▶ Therefore, 1/k2 is the best convergence rate for all
first-order methods.

Convergence Rate of Nesterov’s Acceleration 13/45

▶ Accelerated gradient descent with fixed step size t ≤ 1/L
satisfies

f(x(k))− f∗ ≤ 2∥x(0) − x∗∥2

t(k + 1)2

▶ Nesterov’s accelerated gradient (NAG) descent achieve the
oracle convergence rate of first-order methods!

Reformulation of NAG 14/45

▶ Initialize x(0) = u(0), and for k = 1, 2, . . .

y = (1− θk)x
(k−1) + θku

(k−1)

x(k) = y − tk∇f(y)

u(k) = x(k−1) +
1

θk
(x(k) − x(k−1))

with θk = 2/(k + 1).

▶ This is equivalent to the formulation of NAG presented
earlier (slide 5), and makes convergence analysis easier

Proof 15/45

▶ If y = (1− θ)x+ θu, x+ = y − t∇f(y), and 0 < t ≤ 1/L

f(x+) ≤ f(y) +∇f(y)T (x+ − y) +
1

2t
∥x+ − y∥2

▶ From convexity, ∀z ∈ Rn

f(y) ≤ f(z) +∇f(y)T (y − z)

▶ Add these together

f(x+) ≤ f(z) +
1

t
(x+ − y)(z − x+) +

1

2t
∥x+ − y∥2 (3)

Proof 16/45

▶ Let u+ = x+ 1
θ (x

+ − x), using bound (3) at z = x and
z = x∗

f(x+)− f∗ − (1− θ)(f(x)− f∗)

≤ 1

t
(x+ − y)T (θx∗ + (1− θ)x− x+) +

1

2t
∥x+ − y∥2

=
θ2

2t

(
∥u− x∗∥2 − ∥u+ − x∗∥2

)
▶ i.e., at iteration k

t

θ2k
(f(x(k))− f∗) +

1

2
∥u(k) − x∗∥2

≤ (1− θk)t

θ2k
(f(x(k−1))− f∗) +

1

2
∥u(k−1) − x∗∥2

Proof 17/45

▶ Using (1− θi)/θ
2
i ≤ 1/θ2i−1, and iterating this inequlity

t

θ2k
(f(x(k))− f∗) +

1

2
∥u(k) − x∗∥2

≤ (1− θ1)t

θ21
(f(x(0))− f∗) +

1

2
∥u(0) − x∗∥2

=
1

2
∥x(0) − x∗∥2

▶ Therefore

f(x(k))− f∗ ≤
θ2k
2t

∥x(0) − x∗∥2 = 2

t(k + 1)2
∥x(0) − x∗∥2

Why NAG works? 18/45

▶ Although the algebraic manipulations of the proof is
beautiful, the acceleration effect in NAG has been
mysterious and hard to understand

▶ Recent works reinterpreted the NAG algorithm from
different point of views, including Zhu et al (2017) and Su
et al (2014)

▶ Here we introduce the ODE explanation from Su et al
(2014)

An ODE Explanation 19/45

▶ Su et al (2014) proposed an ODE based explanation where
NAG can be viewed as a discretization of the following
ordinary differential equation

Ẍ +
3

t
Ẋ +∇f(X) = 0, t > 0 (4)

with initial conditions X(0) = x(0), Ẋ(0) = 0.

▶ Theorem (Su et al): For any f ∈ F∞ ≜ ∪L>0FL and any
x(0) ∈ Rn, the ODE (4) with initial conditions
X(0) = x(0), Ẋ(0) = 0 has a unique global solution
X ∈ C2((0,∞);Rn) ∩ C1([0,∞);Rn).

Convergence Rate of The ODE Solution 20/45

▶ Theorem (Su et al): For any f ∈ F∞, let X(t) be the
unique global solution to (4) with initial conditions
X(0) = x(0), Ẋ(0) = 0. For any t > 0,

f(X(t))− f∗ ≤ 2∥x(0) − x∗∥2

t2

▶ Consider the energy functional defined as

E(t) ≜ t2(f(X(t))− f∗) + 2∥X +
t

2
Ẋ − x∗∥2

▶ The derivative of the energy function is

Ė = 2t(f(X)−f∗)+ t2⟨∇f, Ẋ⟩+4⟨X+
t

2
Ẋ−x∗,

3

2
Ẋ+

t

2
Ẍ⟩

Convergence Rate of The ODE Solution 21/45

▶ Substituting 3Ẋ/2 + tẌ/2 with −t∇f(X)/2

Ė = 2t(f(X)− f∗) + 4⟨X − x∗,− t

2
∇f(X)⟩

= 2t(f(X)− f∗)− 2t⟨X − x∗,∇f(X)⟩
≤ 0

where the last inequality follows from the convexity of f .

▶ Therefore,

f(X(t))− f∗ ≤ E(t)/t2 ≤ E(0)/t2 = 2∥x(0) − x∗∥2

t2

Example 22/45

f(x) = 0.02x21 + 0.005x22, x(0) = (1, 1)

Proximal Gradient Descent: Motivation 23/45

The objective in many unconstrained optimization problems
can be split in two components

minimize f(x) = g(x) + h(x)

▶ g is convex and differentiable on Rn

▶ h is convex and simple, but may be non-differentiable

Examples

▶ Indicator function of closed convex set C

h(x) = 1C(x) =

{
0, x ∈ C
+∞, x /∈ C

▶ L1 regularization (LASSO): h(x) = ∥x∥1

Proximal Mapping 24/45

The proximal mapping (or proximal-operator) of a convex
function h is defined as

proxh(x) = argmin
u

(
h(u) +

1

2
∥u− x∥22

)
Examples

▶ h(x) = 0: proxh(x) = x

▶ h(x) = 1C(x): proxh is projection on C

proxh(x) = argmin
u∈C

∥u− x∥22 = PC(x)

▶ h(x) = ∥x∥1: proxh is the “soft-threshold” (shrinkage)
operation

proxh(x)i =

xi − 1 xi ≥ 1
0 |xi| ≤ 1
xi + 1 xi ≤ −1

Proximal Gradient Descent 25/45

▶ Proximal gradient algorithm

x(k+1) = proxtkh(x
(k) − tk∇g(x(k))), k = 0, 1, . . .

▶ Interpretation. If x+ = proxth(x− t∇g(x)), from the
definition of proximal mapping

x+ = argmin
u

(
h(u) +

1

2t
∥u− x+ t∇g(x)∥22

)
= argmin

u

(
h(u) + g(x) +∇g(x)T (u− x) +

1

2t
∥u− x∥22

)
▶ x+ minimizes h(u) plus a simple quadratic local

approximation of g(u) around x

Examples 26/45

▶ Gradient Descent: special case with h(x) = 0

x+ = x− t∇g(x)

▶ Projected Gradient Descent: special case with
h(x) = 1C(x)

x+ = PC(x− t∇g(x))

▶ ISTA (Iterative Shrinkage-Thresholding Algorithm):
special case with h(x) = ∥x∥1

x+ = St(x− t∇g(x))

where
St(u) = (|u| − t)+sign(u)

Convergence Rate of Proximal Gradient Descent 27/45

▶ If h is convex and closed,

proxh(x) = argmin
u

(
h(u) +

1

2
∥u− x∥22

)
exists and is unique for all x. Moreover, it has the following
useful properties

u = proxh(x) ⇐⇒ x− u ∈ ∂h(u)

⇐⇒ h(z) ≥ h(u) + (x− u)T (z − u), ∀z

▶ Proximal gradient descent has the same convergence rate
as gradient descent when 0 < t ≤ 1/L

f(x(k))− f∗ ≤ 1

2kt
∥x(0) − x∗∥22

Accelerated Proximal Gradient Descent 28/45

▶ Similarly, we can apply Nesterov’s acceleration for proximal
gradient descent. Choose any initial x(0) = x(−1),
∀ k = 1, . . .

y = x(k−1) +
k − 2

k + 1
(x(k−1) − x(k−2))

x(k) = proxtkh(y − tk∇g(y))

▶ Convergence rate is the same with NAG if 0 < t ≤ 1/L

f(x(k))− f∗ ≤ 2∥x(0) − x∗∥2

t(k + 1)2

▶ When applied to LASSO, this is called FISTA (Fast
Iterative Shrinkage-Thresholding Algorithm)

Example: ISTA vs FISTA 29/45

LASSO Logistic regression: 100 instances

Stochastic Optimization 30/45

Consider the following stochastic optimization problem

min
x

f(x) = Eξ(F (x, ξ)) =

∫
F (x, ξ)p(ξ)dξ

▶ ξ is a random variable

▶ The challenge: evaluation of the expectation/integration

Example

▶ Supervised Learning

min
w

f(w) = E(x,y)∼D(x,y)(ℓ(hw(x), y))

where D(x, y) is the data distribution, ℓ(·, ·) is certain loss,
w is the model parameter

Stochastic Gradient Descent 31/45

▶ Gradient descent with stochastic approximation (SA)

x(k+1) = x(k) − tkg(x
(k))

where E(g(x)) = ∇f(x), ∀x
▶ Example. Consider supervised learning with observations

D = {xi, yi}Ni=1

min
w

f(w) =
1

N

N∑
i=1

ℓ(hw(x
(i), y(i)))

SGD
w(k+1) = w(k) − tk∇ℓ(hw(x

(ik), y(ik)))

where ik ∈ {1, . . . ,m} is some chosen index at iteration k.

Example 32/45

Stochastic logistic regression

Convergence Rate of SGD 33/45

▶ Assume that E(∥g(x)∥2) ≤ M2 and f(x) is convex

Ef(x̃[0:k])− f∗ ≤
∥x(0) − x∗∥22 +M2

∑k
j=0 t

2
j

2
∑k

j=0 tk

where x̃[0:k] =
∑k

j=1 tjx
(j)/

∑k
j=1 tj

▶ Fix the number of iterations K and constant step sizes

tj =
∥x(0)−x∗∥
M

√
K

, j = 0, 1, . . . ,K, we have

E(f(x̄K))− f∗ ≤ ∥x(0) − x∗∥M√
K

where x̄K = 1
K+1

∑K
j=0 x

(j)

Proof 34/45

By convexity, we have f(x(k))− f∗ ≤ ∇f(x(k))T (x(k) − x∗)

tkE(f(x(k)))− tkf
∗ ≤ tkE(g(x(k))T (x(k) − x∗))

=
1

2
(E∥x(k) − x∗∥22 − E∥x(k+1) − x∗∥22) +

1

2
t2kE∥g(x(k))∥22

≤ 1

2
(E∥x(k) − x∗∥22 − E∥x(k+1) − x∗∥22) +

1

2
t2kM

2

∀k ≥ 0. Therefore

k∑
j=0

tjE(f(x(j)))−
k∑

j=0

tjf
∗ ≤ 1

2
∥x(0) − x∗∥22 +

M2

2

k∑
j=0

t2j

Dividing both size with
∑k

j=0 tj together with convexity
complete the proof

Pros and Cons of Vanilla SGD 35/45

What We Love About SGD

▶ Efficient in computation and memory usage, naturally
scalable for big data problems

▶ Less likely to be trapped at local modes

What Needs to Be Improved

▶ In general, vanilla SGD is slow to converge (only 1/k even
with strong convexity). Variance reduction seems to be a
good remedy, see algorithms like SVRG, SAGA, etc.

▶ Choosing a proper learning rate can be difficult, require
much effort in hyperparameter tuning to get good results

▶ The same learning rate applies to all parameter updates

Inspiration From Fisher Scoring 36/45

▶ Assume that f can be related to a probabilistic model, i.e.

f(θ) = −Ey∼Pdata
L(y|θ) = −Ey∼Pdata

log p(y|θ)

▶ Recall that Fisher information is defined as

I(θ) = Ey∼p(y|θ)(∇L(y|θ)(∇L(y|θ))T) (5)

▶ We can use Fisher information to adapt the learning rate
according to the local curvature. (5) inspire us to use some
average of g(θ(t))(g(θ(t)))T

Adaptive Stochastic Gradient Descent 37/45

▶ Previously, we performed an update for all parameters
using the same learning rate

▶ Duchi et al (2011) proposed an improved version of SGD,
AdaGrad, that adapts the learning rate to the parameters,
according to the frequencies of their associated features

▶ Denote the vector of parameters as θ and the gradient at
iteration t as gt. Let η be the usual learning rate for SGD.
AdaGrad’s update rule:

θt+1 = θt −
η√

Gt + ϵ
⊙ gt

where Gt is a diagonal matrix where each diagonal element
is the sum of the squares of the corresponding gradients up
to time step t

RMSprop 38/45

▶ A potential weakness about AdaGrad is its accumulation of
the squared gradients in Gt, which in turn cause the
learning rate to shrink and eventually become very small

▶ RMSprop (Geoff Hinton): resolve AdaGrad’s diminishing
learning rate via the exponentially decaying average

E(g2)t = 0.9E(g2)t−1 + 0.1g2t

θt+1 = θt −
η√

E(g2)t + ϵ
gt

Adam 39/45

▶ Presumably the most popular stochastic gradient methods
in machine learning, proposed by D.P. Kingma et al (2014).

▶ In addition to the squared gradients, Adam also keeps an
exponentially decaying average of the past gradients

mt = β1mt−1 + (1− β1)gt, vt = β2vt−1 + (1− β2)g
2
t

▶ Bias correction for zero initialization

m̂t =
mt

1− βt
1

, v̂t =
vt

1− βt
2

▶ Adam uses the same update rule

θt+1 = θt −
η√

v̂t + ϵ
m̂t

Test on MNIST Images 40/45

Pros and Cons for Adaptive Methods 41/45

Pros

▶ Faster training speed and smoother learning curve

▶ Easier to choose hyperparameters

▶ Better when data are very sparse

Cons

▶ Worse performance on unseen data (Wilson et al., 2017)

▶ Convergence issue: non-decreasing learning rates, extreme
learning rates

Some recent proposals for improvement: AMSGrad (Reddi et
al., 2018), AdaBound (Luo et al., 2019), AdaBelief (Zhuang et
al., 2020), etc.

References 42/45

▶ Polyak, B.T. Some methods of speeding up the convergence
of iteration methods. USSR Computational Mathematics
and Mathematical Physics, 4(5):1–17, 1964.

▶ Yurii Nesterov. A method of solving a convex
programming problem with convergence rate o (1/k2).
Soviet Mathematics Doklady, 27:372–376, 1983.

▶ Yurii Nesterov. Introductory Lectures on Convex
Optimization, volume 87. Springer Science & Business
Media, 2004.

▶ Weijie Su, Stephen Boyd, and Emmanuel J Candes. A
differential equation for modeling Nesterov’s accelerated
gradient method: theory and insights. Journal of Machine
Learning Research, 17 (153):1–43, 2016.

References 43/45

▶ A. Beck and M. Teboulle, “A fast iterative
shrinkage-thresholding algorithm for linear inverse
problems,” SIAM Journal on Imaging Sciences, vol. 2, no.
1, pp. 183–202, 2009.

▶ A. Nemirovski and A. Juditsky and G. Lan and A. Shapiro
(2009), “Robust stochastic optimization approach to
stochastic programming”

▶ R. Johnson and T. Zhang (2013), “Accelerating stochastic
gradient descent using predictive variance reduction”

▶ Kingma, D. P., & Ba, J. L. (2015). Adam: a Method for
Stochastic Optimization. International Conference on
Learning Representations, 1–13

References 44/45

▶ Zeyuan Allen-Zhu and Lorenzo Orecchia. Linear Coupling:
An Ultimate Unification of Gra- dient and Mirror Descent.
In Proceedings of the 8th Innovations in Theoretical
Computer Science, ITCS ’17, 2017.

▶ Ashia C Wilson, Rebecca Roelofs, Mitchell Stern, Nati
Srebro, and Benjamin Recht. The marginal value of
adaptive gradient methods in machine learning. In
Advances in Neural Information Processing Systems 30
(NIPS), pp. 4148–4158, 2017.

▶ Sashank J Reddi, Satyen Kale, and Sanjiv Kumar. On the
convergence of adam and beyond. In International
Conference on Learning Representations (ICLR), 2018.

References 45/45

▶ Liangchen Luo, Yuanhao Xiong, Yan Liu, and Xu Sun.
2019. Adaptive gradient methods with dynamic bound of
learning rate. arXiv preprint arXiv:1902.09843 (2019).

▶ Zhuang, J., Tang, T., Ding, Y., Tatikonda, S. C., Dvornek,
N., Papademetris, X., and Duncan, J. Adabelief optimizer:
Adapting stepsizes by the belief in observed gradients.
Advances in Neural Information Processing Systems, 33,
2020.

