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Overview 2/45

▶ While gradient descent is simple and intuitive, it has many
problems as well.
▶ Saddle-point problem
▶ Not applicable to non-differentiable objectives
▶ Could be slow
▶ How to scale to big data problems

▶ In this lecture, we will discuss some advanced techniques
that can alleviate these problems



Momentum Method 3/45

▶ Introduced in 1964 by Polyak, momentum method is a
technique that can accelerate gradient descent by taking
accounts of previous gradients in the update rule at each
iteration.

m(k) = µm(k−1) + (1− µ)∇f(x(k))

x(k+1) = x(k) − αm(k)

where 0 ≤ µ < 1

▶ When µ = 0, gradient descent is recovered.



How Does Momentum Work? 4/45

▶ The vanilla gradient descent may suffer from oscillations
when the magnitudes of gradient varies a lot across
different directions.

▶ Using the exponential weighted gradient (momentum),
those oscillations are more likely to be damped out,
resulting in faster rate of convergence.



Nesterov’s Acceleration 5/45

▶ Choose any initial x(0) = x(−1), ∀ k = 1, 2, 3, . . .

y = x(k−1) +
k − 2

k + 1
(x(k−1) − x(k−2))

x(k) = y − tk∇f(y)

▶ The first two steps are the usual gradient updates

▶ After that, y = x(k−1) + k−2
k+1(x

(k−1) − x(k−2)) carries some
“momentum” from previous iterations, and
x(k) = y − tk∇f(y) uses lookahead gradient at y.



Example 6/45

Logistic regression



Convergence Rate of Gradient Methods 7/45

Assumptions

▶ f is convex and continuously differentiable on Rn

▶ ∇f(x) is L-Lipschitz continuous w.r.t Euclidean norm: for
any x, y ∈ Rn

∥∇f(x)−∇f(y)∥ ≤ L∥x− y∥

▶ optimal value f∗ = infx f(x) is finite and attained at x∗.

Theorem: Gradient descent with 0 < t ≤ 1/L satisfies

f(x(k))− f∗ ≤ 1

2kt
∥x(0) − x∗∥2



Some Useful Lemma and Strong Convexity 8/45

▶ If f is L-smooth, then for any x, y ∈ Rn

f(y) ≤ f(x) +∇f(x)T (y − x) +
L

2
∥y − x∥2

▶ If f is differentiable and m-strongly convex, then

f(y) ≥ f(x) +∇f(x)T (y − x) +
m

2
∥y − x∥2

If m = 0, we cover the standard(weak) convexity

▶ In other words, f is sandwiched between two quadratic
functions



Proof 9/45

▶ If x+ = x− t∇f(x) and 0 < t ≤ 1/L

f(x+) ≤ f(x)− t∥∇f(x)∥2 + t2L

2
∥∇f(x)∥2

≤ f(x)− t

2
∥∇f(x)∥2

▶ From convexity

f(x) ≤ f∗ +∇f(x)T (x− x∗)− m

2
∥x− x∗∥2

▶ Add the above two inequalities

f(x+)− f∗ ≤ ∇f(x)T (x− x∗)− t

2
∥∇f(x)∥2 − m

2
∥x− x∗∥2



Proof 10/45

▶ Continue ...

≤ 1

2t
(∥x− x∗∥2 − ∥x+ − x∗∥2)− m

2
∥x− x∗∥2

=
1

2t

(
(1−mt)∥x− x∗∥2 − ∥x+ − x∗∥2

)
(1)

≤ 1

2t
(∥x− x∗∥2 − ∥x+ − x∗∥2) (2)

▶ For gradient descent updates

k∑
i=1

(f(x(i))− f∗) ≤ 1

2t

k∑
i=1

(∥x(i−1) − x∗∥2 − ∥x(i) − x∗∥2)

=
1

2t
(∥x(0) − x∗∥2 − ∥x(k) − x∗∥2)



Proof 11/45

▶ Since f(x(i)) is non-increasing

f(x(k))− f∗ ≤ 1

2kt
∥x(0) − x∗∥2

▶ If f is m-strongly convex, and m > 0, from (1)

∥x(i) − x∗∥2 ≤ (1−mt)∥x(i−1) − x∗∥2, ∀i = 1, 2, . . .

▶ Therefore

∥x(k) − x∗∥2 ≤ (1−mt)k∥x(0) − x∗∥2

i.e., linear convergence if f is strongly convex (m > 0)



Oracle Lower Bound of First-order Methods 12/45

▶ First order method: any iterative algorithm that selects
x(k+1) in the set

x(0) + span{∇f(x(0)),∇f(x(1)), . . . ,∇f(x(k))}

▶ Theorem (Nesterov): for every integer k ≤ (n− 1)/2 and
every x(0), there exist functions that satisfy the
assumptions such that for any first-order method

f(x(k))− f∗ ≥ 3

32

L∥x0 − x∗∥2

(k + 1)2

▶ Therefore, 1/k2 is the best convergence rate for all
first-order methods.



Convergence Rate of Nesterov’s Acceleration 13/45

▶ Accelerated gradient descent with fixed step size t ≤ 1/L
satisfies

f(x(k))− f∗ ≤ 2∥x(0) − x∗∥2

t(k + 1)2

▶ Nesterov’s accelerated gradient (NAG) descent achieve the
oracle convergence rate of first-order methods!



Reformulation of NAG 14/45

▶ Initialize x(0) = u(0), and for k = 1, 2, . . .

y = (1− θk)x
(k−1) + θku

(k−1)

x(k) = y − tk∇f(y)

u(k) = x(k−1) +
1

θk
(x(k) − x(k−1))

with θk = 2/(k + 1).

▶ This is equivalent to the formulation of NAG presented
earlier (slide 5), and makes convergence analysis easier



Proof 15/45

▶ If y = (1− θ)x+ θu, x+ = y − t∇f(y), and 0 < t ≤ 1/L

f(x+) ≤ f(y) +∇f(y)T (x+ − y) +
1

2t
∥x+ − y∥2

▶ From convexity, ∀z ∈ Rn

f(y) ≤ f(z) +∇f(y)T (y − z)

▶ Add these together

f(x+) ≤ f(z) +
1

t
(x+ − y)(z − x+) +

1

2t
∥x+ − y∥2 (3)



Proof 16/45

▶ Let u+ = x+ 1
θ (x

+ − x), using bound (3) at z = x and
z = x∗

f(x+)− f∗ − (1− θ)(f(x)− f∗)

≤ 1

t
(x+ − y)T (θx∗ + (1− θ)x− x+) +

1

2t
∥x+ − y∥2

=
θ2

2t

(
∥u− x∗∥2 − ∥u+ − x∗∥2

)
▶ i.e., at iteration k

t

θ2k
(f(x(k))− f∗) +

1

2
∥u(k) − x∗∥2

≤ (1− θk)t

θ2k
(f(x(k−1))− f∗) +

1

2
∥u(k−1) − x∗∥2



Proof 17/45

▶ Using (1− θi)/θ
2
i ≤ 1/θ2i−1, and iterating this inequlity

t

θ2k
(f(x(k))− f∗) +

1

2
∥u(k) − x∗∥2

≤ (1− θ1)t

θ21
(f(x(0))− f∗) +

1

2
∥u(0) − x∗∥2

=
1

2
∥x(0) − x∗∥2

▶ Therefore

f(x(k))− f∗ ≤
θ2k
2t

∥x(0) − x∗∥2 = 2

t(k + 1)2
∥x(0) − x∗∥2



Why NAG works? 18/45

▶ Although the algebraic manipulations of the proof is
beautiful, the acceleration effect in NAG has been
mysterious and hard to understand

▶ Recent works reinterpreted the NAG algorithm from
different point of views, including Zhu et al (2017) and Su
et al (2014)

▶ Here we introduce the ODE explanation from Su et al
(2014)



An ODE Explanation 19/45

▶ Su et al (2014) proposed an ODE based explanation where
NAG can be viewed as a discretization of the following
ordinary differential equation

Ẍ +
3

t
Ẋ +∇f(X) = 0, t > 0 (4)

with initial conditions X(0) = x(0), Ẋ(0) = 0.

▶ Theorem (Su et al): For any f ∈ F∞ ≜ ∪L>0FL and any
x(0) ∈ Rn, the ODE (4) with initial conditions
X(0) = x(0), Ẋ(0) = 0 has a unique global solution
X ∈ C2((0,∞);Rn) ∩ C1([0,∞);Rn).



Convergence Rate of The ODE Solution 20/45

▶ Theorem (Su et al): For any f ∈ F∞, let X(t) be the
unique global solution to (4) with initial conditions
X(0) = x(0), Ẋ(0) = 0. For any t > 0,

f(X(t))− f∗ ≤ 2∥x(0) − x∗∥2

t2

▶ Consider the energy functional defined as

E(t) ≜ t2(f(X(t))− f∗) + 2∥X +
t

2
Ẋ − x∗∥2

▶ The derivative of the energy function is

Ė = 2t(f(X)−f∗)+ t2⟨∇f, Ẋ⟩+4⟨X+
t

2
Ẋ−x∗,

3

2
Ẋ+

t

2
Ẍ⟩



Convergence Rate of The ODE Solution 21/45

▶ Substituting 3Ẋ/2 + tẌ/2 with −t∇f(X)/2

Ė = 2t(f(X)− f∗) + 4⟨X − x∗,− t

2
∇f(X)⟩

= 2t(f(X)− f∗)− 2t⟨X − x∗,∇f(X)⟩
≤ 0

where the last inequality follows from the convexity of f .

▶ Therefore,

f(X(t))− f∗ ≤ E(t)/t2 ≤ E(0)/t2 = 2∥x(0) − x∗∥2

t2



Example 22/45

f(x) = 0.02x21 + 0.005x22, x(0) = (1, 1)



Proximal Gradient Descent: Motivation 23/45

The objective in many unconstrained optimization problems
can be split in two components

minimize f(x) = g(x) + h(x)

▶ g is convex and differentiable on Rn

▶ h is convex and simple, but may be non-differentiable

Examples

▶ Indicator function of closed convex set C

h(x) = 1C(x) =

{
0, x ∈ C
+∞, x /∈ C

▶ L1 regularization (LASSO): h(x) = ∥x∥1



Proximal Mapping 24/45

The proximal mapping (or proximal-operator) of a convex
function h is defined as

proxh(x) = argmin
u

(
h(u) +

1

2
∥u− x∥22

)
Examples

▶ h(x) = 0: proxh(x) = x

▶ h(x) = 1C(x): proxh is projection on C

proxh(x) = argmin
u∈C

∥u− x∥22 = PC(x)

▶ h(x) = ∥x∥1: proxh is the “soft-threshold” (shrinkage)
operation

proxh(x)i =


xi − 1 xi ≥ 1
0 |xi| ≤ 1
xi + 1 xi ≤ −1



Proximal Gradient Descent 25/45

▶ Proximal gradient algorithm

x(k+1) = proxtkh(x
(k) − tk∇g(x(k))), k = 0, 1, . . .

▶ Interpretation. If x+ = proxth(x− t∇g(x)), from the
definition of proximal mapping

x+ = argmin
u

(
h(u) +

1

2t
∥u− x+ t∇g(x)∥22

)
= argmin

u

(
h(u) + g(x) +∇g(x)T (u− x) +

1

2t
∥u− x∥22

)
▶ x+ minimizes h(u) plus a simple quadratic local

approximation of g(u) around x



Examples 26/45

▶ Gradient Descent: special case with h(x) = 0

x+ = x− t∇g(x)

▶ Projected Gradient Descent: special case with
h(x) = 1C(x)

x+ = PC(x− t∇g(x))

▶ ISTA (Iterative Shrinkage-Thresholding Algorithm):
special case with h(x) = ∥x∥1

x+ = St(x− t∇g(x))

where
St(u) = (|u| − t)+sign(u)



Convergence Rate of Proximal Gradient Descent 27/45

▶ If h is convex and closed,

proxh(x) = argmin
u

(
h(u) +

1

2
∥u− x∥22

)
exists and is unique for all x. Moreover, it has the following
useful properties

u = proxh(x) ⇐⇒ x− u ∈ ∂h(u)

⇐⇒ h(z) ≥ h(u) + (x− u)T (z − u), ∀z

▶ Proximal gradient descent has the same convergence rate
as gradient descent when 0 < t ≤ 1/L

f(x(k))− f∗ ≤ 1

2kt
∥x(0) − x∗∥22



Accelerated Proximal Gradient Descent 28/45

▶ Similarly, we can apply Nesterov’s acceleration for proximal
gradient descent. Choose any initial x(0) = x(−1),
∀ k = 1, . . .

y = x(k−1) +
k − 2

k + 1
(x(k−1) − x(k−2))

x(k) = proxtkh(y − tk∇g(y))

▶ Convergence rate is the same with NAG if 0 < t ≤ 1/L

f(x(k))− f∗ ≤ 2∥x(0) − x∗∥2

t(k + 1)2

▶ When applied to LASSO, this is called FISTA (Fast
Iterative Shrinkage-Thresholding Algorithm)



Example: ISTA vs FISTA 29/45

LASSO Logistic regression: 100 instances



Stochastic Optimization 30/45

Consider the following stochastic optimization problem

min
x

f(x) = Eξ(F (x, ξ)) =

∫
F (x, ξ)p(ξ)dξ

▶ ξ is a random variable

▶ The challenge: evaluation of the expectation/integration

Example

▶ Supervised Learning

min
w

f(w) = E(x,y)∼D(x,y)(ℓ(hw(x), y))

where D(x, y) is the data distribution, ℓ(·, ·) is certain loss,
w is the model parameter



Stochastic Gradient Descent 31/45

▶ Gradient descent with stochastic approximation (SA)

x(k+1) = x(k) − tkg(x
(k))

where E(g(x)) = ∇f(x), ∀x
▶ Example. Consider supervised learning with observations

D = {xi, yi}Ni=1

min
w

f(w) =
1

N

N∑
i=1

ℓ(hw(x
(i), y(i)))

SGD
w(k+1) = w(k) − tk∇ℓ(hw(x

(ik), y(ik)))

where ik ∈ {1, . . . ,m} is some chosen index at iteration k.



Example 32/45

Stochastic logistic regression



Convergence Rate of SGD 33/45

▶ Assume that E(∥g(x)∥2) ≤ M2 and f(x) is convex

Ef(x̃[0:k])− f∗ ≤
∥x(0) − x∗∥22 +M2

∑k
j=0 t

2
j

2
∑k

j=0 tk

where x̃[0:k] =
∑k

j=1 tjx
(j)/

∑k
j=1 tj

▶ Fix the number of iterations K and constant step sizes

tj =
∥x(0)−x∗∥
M

√
K

, j = 0, 1, . . . ,K, we have

E(f(x̄K))− f∗ ≤ ∥x(0) − x∗∥M√
K

where x̄K = 1
K+1

∑K
j=0 x

(j)



Proof 34/45

By convexity, we have f(x(k))− f∗ ≤ ∇f(x(k))T (x(k) − x∗)

tkE(f(x(k)))− tkf
∗ ≤ tkE(g(x(k))T (x(k) − x∗))

=
1

2
(E∥x(k) − x∗∥22 − E∥x(k+1) − x∗∥22) +

1

2
t2kE∥g(x(k))∥22

≤ 1

2
(E∥x(k) − x∗∥22 − E∥x(k+1) − x∗∥22) +

1

2
t2kM

2

∀k ≥ 0. Therefore

k∑
j=0

tjE(f(x(j)))−
k∑

j=0

tjf
∗ ≤ 1

2
∥x(0) − x∗∥22 +

M2

2

k∑
j=0

t2j

Dividing both size with
∑k

j=0 tj together with convexity
complete the proof



Pros and Cons of Vanilla SGD 35/45

What We Love About SGD

▶ Efficient in computation and memory usage, naturally
scalable for big data problems

▶ Less likely to be trapped at local modes

What Needs to Be Improved

▶ In general, vanilla SGD is slow to converge (only 1/k even
with strong convexity). Variance reduction seems to be a
good remedy, see algorithms like SVRG, SAGA, etc.

▶ Choosing a proper learning rate can be difficult, require
much effort in hyperparameter tuning to get good results

▶ The same learning rate applies to all parameter updates



Inspiration From Fisher Scoring 36/45

▶ Assume that f can be related to a probabilistic model, i.e.

f(θ) = −Ey∼Pdata
L(y|θ) = −Ey∼Pdata

log p(y|θ)

▶ Recall that Fisher information is defined as

I(θ) = Ey∼p(y|θ)(∇L(y|θ)(∇L(y|θ))T ) (5)

▶ We can use Fisher information to adapt the learning rate
according to the local curvature. (5) inspire us to use some
average of g(θ(t))(g(θ(t)))T



Adaptive Stochastic Gradient Descent 37/45

▶ Previously, we performed an update for all parameters
using the same learning rate

▶ Duchi et al (2011) proposed an improved version of SGD,
AdaGrad, that adapts the learning rate to the parameters,
according to the frequencies of their associated features

▶ Denote the vector of parameters as θ and the gradient at
iteration t as gt. Let η be the usual learning rate for SGD.
AdaGrad’s update rule:

θt+1 = θt −
η√

Gt + ϵ
⊙ gt

where Gt is a diagonal matrix where each diagonal element
is the sum of the squares of the corresponding gradients up
to time step t



RMSprop 38/45

▶ A potential weakness about AdaGrad is its accumulation of
the squared gradients in Gt, which in turn cause the
learning rate to shrink and eventually become very small

▶ RMSprop (Geoff Hinton): resolve AdaGrad’s diminishing
learning rate via the exponentially decaying average

E(g2)t = 0.9E(g2)t−1 + 0.1g2t

θt+1 = θt −
η√

E(g2)t + ϵ
gt



Adam 39/45

▶ Presumably the most popular stochastic gradient methods
in machine learning, proposed by D.P. Kingma et al (2014).

▶ In addition to the squared gradients, Adam also keeps an
exponentially decaying average of the past gradients

mt = β1mt−1 + (1− β1)gt, vt = β2vt−1 + (1− β2)g
2
t

▶ Bias correction for zero initialization

m̂t =
mt

1− βt
1

, v̂t =
vt

1− βt
2

▶ Adam uses the same update rule

θt+1 = θt −
η√

v̂t + ϵ
m̂t



Test on MNIST Images 40/45



Pros and Cons for Adaptive Methods 41/45

Pros

▶ Faster training speed and smoother learning curve

▶ Easier to choose hyperparameters

▶ Better when data are very sparse

Cons

▶ Worse performance on unseen data (Wilson et al., 2017)

▶ Convergence issue: non-decreasing learning rates, extreme
learning rates

Some recent proposals for improvement: AMSGrad (Reddi et
al., 2018), AdaBound (Luo et al., 2019), AdaBelief (Zhuang et
al., 2020), etc.
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