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▶ Consider the following least square problem

minimize L(β) =
1

2
∥Y −Xβ∥2

▶ Note that this is a quadratic problem, which can be solved
by setting the gradient to zero

∇βL(β) = −XT (Y −Xβ̂) = 0

β̂ = (XTX)−1XTY

given that the Hessian is positive definite:

∇2L(β) = XTX ≻ 0

which is true iff X has independent columns.
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▶ In practice, we would like to solve the least square
problems with some constraints on the parameters to
control the complexity of the resulting model

▶ One common approach is to use Bridge regression models
(Frank and Friedman, 1993)

minimize L(β) =
1

2
∥Y −Xβ∥2

subject to

p∑
j=1

|βj |γ ≤ s

▶ Two important special cases are ridge regression (Hoerl and
Kennard, 1970) γ = 2 and Lasso (Tibshirani, 1996) γ = 1
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▶ In general, optimization problems take the following form:

minimize f0(x)

subject to fi(x) ≤ 0, i = 1, . . . ,m

hj(x) = 0, j = 1, . . . , p

▶ We are mostly interested in convex optimization
problems, where the objective function f0(x), the
inequality constraints fi(x) and the equality constraints
hj(x) are all convex functions.
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▶ A set C is convex if the line segment between any two
points in C also lies in C, i.e.,

θx1 + (1− θ)x2 ∈ C, ∀x1, x2 ∈ C, 0 ≤ θ ≤ 1

▶ If C is a convex set in Rn and f(x) : Rn → Rn is an affine
function, then f(C), i.e., the image of C is also a convex
set.
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▶ A function f : Rn → R is convex if its domain Df is a
convex set, and ∀x, y ∈ Df and 0 ≤ θ ≤ 1

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y)

▶ For example, many norms are convex functions

∥x∥p = (
∑
i

|xi|p)1/p, p ≥ 1



Convex Functions 7/38

▶ First order conditions. Suppose f is differentiable, then f
is convex iff Df is convex and

f(y) ≥ f(x) +∇f(x)T (y − x), ∀x, y ∈ Df

Corollary: For convex function f ,

f(E(X)) ≤ E(f(X))

▶ Second order conditions. ∇2f(x) ⪰ 0, ∀x ∈ Df
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▶ Optimial value p∗ = inf{f0(x)|fi(x) ≤ 0, hj(x) = 0}

▶ x is feasible if x ∈ D =
m⋂
i=0

Dfi ∩
p⋂

j=1
Dhj

and satisfies the

constraints.

▶ A feasible x∗ is optimal if f(x∗) = p∗

▶ Optimality criterion. Assuming f0 is convex and
differentiable, x is optimal iff

∇f0(x)
T (y − x) ≥ 0, ∀ feasible y

Remark: for unconstrained problems, x is optimial iff

∇f0(x) = 0
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Local Optimality

x is locally optimal if for a given R > 0, it is optimal for

minimize f0(z)

subject to fi(z) ≤ 0, i = 1, . . . ,m

hj(z) = 0, j = 1, . . . , p

∥z − x∥ ≤ R

In convex optimization problems, any locally optimal point is
also globally optimal.



The Lagrangian 10/38

▶ Consider a general optimization problem

minimize f0(x)

subject to fi(x) ≤ 0, i = 1, . . . ,m

hj(x) = 0, j = 1, . . . , p

▶ To take the constraints into account, we augment the
objective function with a weighted sum of the constraints
and define the Lagrangian L : Rn × Rm × Rp → R as

L(x, λ, ν) = f0(x) +

m∑
i=1

λifi(x) +

p∑
j=1

νjhj(x)

where λ and ν are dual variables or Lagrangian multipliers.
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▶ We define the Lagrangian dual function as follows

g(λ, ν) = inf
x∈D

L(x, λ, ν)

▶ The dual function is the pointwise infimum of a family of
affine functions of (λ, ν), it is concave, even when the
original problem is not convex.

▶ If λ ≥ 0, for each feasible point x̃

g(λ, ν) = inf
x∈D

L(x, λ, ν) ≤ L(x̃, λ, ν) ≤ f0(x̃)

▶ Therefore, g(λ, ν) is a lower bound for the optimial value

g(λ, ν) ≤ p∗, ∀λ ≥ 0, ν ∈ Rp
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▶ Finding the best lower bound leads to the Lagrangian dual
problem

maximize g(λ, ν), subject to λ ≥ 0

▶ The above problem is a convex optimization problem.

▶ We denote the optimal value as d∗, and call the
corresponding solution (λ∗, ν∗) the dual optimal

▶ In contrast, the original problem is called the primal
problem, whose solution x∗ is called primal optimal
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▶ d∗ is the best lower bound for p∗ that can be obtained from
the Lagrangian dual function.

▶ Weak Duality
d∗ ≤ p∗

▶ The difference p∗ − d∗ is called the optimal dual gap

▶ Strong Duality
d∗ = p∗
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▶ Strong duality doesn’t hold in general, but if the primal is
convex, it usually holds under some conditions called
constraint qualifications

▶ A simple and well-known constraint qualification is Slater’s
condition: there exist an x in the relative interior of D such
that

fi(x) < 0, i = 1, . . . ,m, Ax = b
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▶ Consider primal optmial x∗ and dual optimal (λ∗, ν∗)

▶ If strong duality holds

f0(x
∗) = g(λ∗, ν∗)

= inf
x

(
f0(x) +

m∑
i=1

λ∗
i fi(x) +

p∑
i=1

v∗jhi(x)

)

≤ f0(x
∗) +

m∑
i=1

λ∗
i fi(x

∗) +

p∑
i=1

v∗jhi(x
∗)

≤ f0(x
∗).

▶ Therefore, these are all equalities
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▶ Important conclusions:
▶ x∗ minimize L(x, λ∗, ν∗)
▶ λ∗

i fi(x
∗) = 0, i = 1, . . . ,m

▶ The latter is called complementary slackness, which
indicates

λ∗
i > 0 ⇒ fi(x

∗) = 0

fi(x
∗) < 0 ⇒ λ∗

i = 0

▶ When the dual problem is easier to solve, we can find
(λ∗, ν∗) and then minimize L(x, λ∗, ν∗). If the resulting
solution is primal feasible, then it is primal optimal.
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▶ Consider the entropy maximization problem

minimize f0(x) =
∑n

i=1
xi log xi

subject to − xi ≤ 0, i = 1, . . . , n∑n

i=1
xi = 1

▶ Lagrangian

L(x, λ, ν) =

n∑
i=1

xi log xi −
n∑

i=1

λixi + ν(

n∑
i=1

xi − 1)

▶ We minimize L(x, λ, µ) by setting ∂L
∂x to zero

log x̂i + 1− λi + ν = 0 ⇒ x̂i = exp(λi − ν − 1)
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▶ The dual function is

g(λ, ν) = −
n∑

i=1

exp(λi − ν − 1)− ν

▶ Dual:

maximize g(λ, ν) = − exp(−ν − 1)

n∑
i=1

exp(λi)− ν, λ ≥ 0

▶ We find the dual optimal

λ∗
i = 0, i = 0, . . . , n, ν∗ = −1 + log n
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▶ We now minimize L(x, λ∗, ν∗)

log x∗i + 1− λ∗
i + ν∗ = 0 ⇒ x∗i =

1

n

▶ Therefore, the discrete probability distribution that has
maximum entropy is the uniform distribution

Exercise
Show that X ∼ N (µ, σ2) is the maximum entropy distribution
such that EX = µ and EX2 = µ2 + σ2. How about fixing the
first k moments at EXi = mi, i = 1, . . . , k?
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▶ Suppose the functions f0, f1, . . . , fm, h1, . . . , hp are all
differentiable; x∗ and (λ∗, ν∗) are primal and dual optimal
points with zero duality gap

▶ Since x∗ minimize L(x, λ∗, ν∗), the gradient vanishes at x∗

∇f0(x
∗) +

m∑
i=1

λ∗
i∇fi(x

∗) +

p∑
j=1

ν∗i ∇hj(x
∗) = 0

▶ Additionally

fi(x
∗) ≤ 0, i = 1, . . . ,m

hj(x
∗) = 0, j = 1, . . . , p

λ∗
i ≥ 0, i = 1, . . . ,m

λ∗
i fi(x

∗) = 0, i = 1, . . . ,m

▶ These are called Karush-Kuhn-Tucker (KKT) conditions
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▶ When the primal problem is convex, the KKT conditions
are also sufficient for the points to be primal and dual
optimal with zero duality gap.

▶ Let x̃, λ̃, ν̃ be any points that satisfy the KKT conditions, x̃
is primal feasible and minimizes L(x̃, λ̃, ν̃)

g(λ̃, ν̃) = L(x̃, λ̃, ν̃)

= f0(x̃) +

m∑
i=1

λ̃ifi(x̃) +

p∑
j=1

ν̃jhj(x̃)

= f0(x̃)

▶ Therefore, for convex optimization problems with
differentiable functions that satisfy Slater’s condition, the
KKT condtions are necessary and sufficient
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▶ Consider the following problem:

minimize
1

2
xTPx+ qTx+ r, P ⪰ 0

subject to Ax = b

▶ KKT conditions:

Px∗ + q +AT ν∗ = 0

Ax∗ = b

▶ To find x∗, v∗, we can solve the above system of linear
equations



Descent Methods 23/38

▶ We now focus on numerical solutions for unconstrained
optimization problems

minimize f(x)

where f : Rn → R is twice differentiable

▶ Descent method. We can set up a sequence

x(k+1) = x(k) + t(k)∆x(k), t(k) > 0

such that f(x(k+1)) < f(x(k)), k = 0, 1, . . . ,

▶ ∆x(k) is called the search direction; t(k) is called the step
size or learning rate in machine learning.
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A reasonable choice for the search direction is the negative
gradient, which leads to gradient descent methods

x(k+1) = x(k) − t(k)∇f(x(k)), k = 0, 1, . . .

▶ step size t(k) can be constant or
determined by line search

▶ every iteration is cheap, does not
require second derivatives
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▶ First-order Taylor expansion

f(x+ v) ≈ f(x) +∇f(x)T v

▶ v is a descent direction iff ∇f(x)T v < 0

▶ Negative gradient is the steepest descent direction with
respect to the Euclidean norm.

−∇f(x)

∥∇f(x)∥2
= argmin

v
{∇f(x)T v | ∥v∥2 = 1}
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▶ Consider the second-order Taylor expansion of f at x,

f(x+ v) ≈ f(x) +∇f(x)T v +
1

2
vT∇2f(x)v

≜ f̃(x)

▶ We find the optimal direction v by minimizing f̃(x) with
respect to v

v = −[∇2f(x)]−1∇f(x)

▶ If ∇2f(x) ⪰ 0 (e.g., convex functions)

∇f(x)T v = −∇f(x)T [∇2f(x)]−1∇f(x) < 0

when ∇f(x) ̸= 0
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▶ The search direction in Newton’s method can also be
viewed as a steepest descent direction, but with a different
metric

▶ In general, given a positive definite matrix P , we can define
a quadratic norm

∥v∥P = (vTPv)1/2

▶ Similarly, we can show that −P−1∇f(x) is the steepest
descent direction w.r.t. the quadratic norm ∥ · ∥P

minimize ∇f(x)T v, subject to ∥v∥P = 1

▶ When P is the Hessian ∇2f(x), we get Newton’s method
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▶ Computing the Hessian and its inverse could be expensive,
we can approximate it with another positive definite matrix
M ≻ 0 which is easier to use

▶ Update M (k) to learn about the curvature of f in the
search direction and maintain a secant condition

∇f(x(k+1))−∇f(x(k)) = M (k+1)(x(k+1) − x(k))

▶ Rank-one update

∆x(k) = x(k+1) − x(k)

y(k) = ∇f(x(k+1))−∇f(x(k))

v(k) = y(k) −M (k)∆x(k)

M (k+1) = M (k) +
v(k)(v(k))T

(v(k))T∆x(k)
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▶ Easy to compute the inverse of matrices for low rank
updates by Sherman-Morrison-Woodbury formula

(A+ UCV )−1 = A−1 −A−1U(C−1 + V A−1U)−1V A−1

where A ∈ Rn×n, U ∈ Rn×d, C ∈ Rd×d, V ∈ Rd×n

▶ Another popular rank-two update method: the BFGS
(Broyden-Fletcher-Goldfarb-Shanno) method

M (k+1) = M (k) +
y(k)(y(k))T

(y(k))T∆x(k)
− M (k)∆x(k)(M (k)∆x(k))T

(∆x(k))TM (k)∆x(k)



Maximum Likelihood Estimation 30/38

▶ In the frequentist framework, we typically perform
statistical inference by maximizing the log-likelihood L(θ),
or equivalently minimizing negative log-likelihood, which is
also known as the energy function

▶ Some notations we introduced before
▶ Score function: s(θ) = ∇θL(θ)

▶ Observed Fisher information: J(θ) = −∇2
θL(θ)

▶ Fisher information: I(θ) = E(−∇2
θL(θ))

▶ Newton’s method for MLE:

θ(k+1) = θ(k) + (J(θ(k)))−1s(θ(k))
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▶ If we use the Fisher information instead of the observed
information, the resulting method is called the Fisher
scoring algorithm

θ(k+1) = θ(k) + (I(θ(k)))−1s(θ(k))

▶ It seems that the Fisher scoring algorithm is less sensitive
to the initial guess. On the other hand, the Newton’s
method tends to converge faster

▶ For exponential family models with natural parameters and
generalized linear models (GLMs) with canonical links, the
two methods are identical
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▶ A generalized linear model (GLM) assumes a set of
independent random variables Y1, . . . , Yn that follow
exponential family distributions of the same form

p(yi|θi) = exp (yib(θi) + c(θi) + d(yi))

▶ The parameters θi are typically not of direct interest.
Instead, we usually assume that the expectation of Yi can
be related to a vector of parameters β via a transformation
(link function)

E(Yi) = µi, g(µi) = xTi β

where xi is the observed covariates for yi.
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▶ Using the link function, we can now write the score
function in terms of β

▶ Let g(µi) = ηi, we can show that for jth parameter

s(βj) =

n∑
i=1

(yi − µi)xij
Var(Yi)

∂µi

∂ηi

where ∂µi/∂ηi depends on the link function we choose

▶ It is also easy to show that the Fisher information matrix is

I(βj , βk) = E(s(βj)s(βk))

=

n∑
i=1

xijxik
Var(Yi)

(
∂µi

∂ηi

)2
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▶ Note that the Fisher information matrix can be written as

I(β) = XTWX

where W is the n× n diagonal matrix with elements

wii =
1

Var(Yi)

(
∂µi

∂ηi

)2

▶ Rewriting Fisher scoring algorithm for updating β as

I(β(k))β(k+1) = I(β(k))β(k) + s(β(k))
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▶ After few simple steps, we have

XTW (k)Xβ(k+1) = XTW (k)Z(k)

where

z
(k)
i = η

(k)
i + (yi − µ

(k)
i )

∂η
(k)
i

∂µ
(k)
i

▶ Therefore, we can find the next estimate as follows

β(k+1) = (XTW (k)X)−1XTW (k)Z(k)

▶ The above estimate is similar to the weighted least square
estimate, except that the weights W and the response
variable Z change from one iteration to another

▶ We iteratively estimate β until the algorithm converges
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▶ Recall that the Log-likelihood for logistic regression is

L(Y |p) =
n∑

i=1

yi log
pi

1− pi
+ log(1− pi)

▶ The natural parameters are θi = log pi
1−pi

. We use

g(x) = log x
1−x as the link function, θi = g(pi) = xTi β

▶ We now write the log-likelihood as follows

L(β) = Y TXβ −
n∑

i=1

log(1 + exp(xTi β))

▶ The score function is

s(β) = XT (Y − p), p =
1

1 + exp(−Xβ)
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▶ The observed Fisher information matrix is

J(β) = XTWX

where W is a diagonal matrix with elements

wii = pi(1− pi)

▶ Note that J(β) does not depend on Y , meaning that it is
also the Fisher information matrix I(β) = J(β)

▶ Newton’s update

β(k+1) = β(k) +
(
XTW (k)X

)−1 (
XT (Y − p(k))

)
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