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Least Square Regression Models 2/38

» Consider the following least square problem
o 1 2
minimize L(B) = §||Y—XB||

» Note that this is a quadratic problem, which can be solved
by setting the gradient to zero

VaL(B) = =X"(Y = XB) =0
f=xXTX)"'xTy

given that the Hessian is positive definite:
V2L(B) = XTX =0

which is true iff X has independent columns.
e 7 X Z
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Regularized Regression Models 3/38

» In practice, we would like to solve the least square
problems with some constraints on the parameters to
control the complexity of the resulting model

» One common approach is to use Bridge regression models
(Frank and Friedman, 1993)

1
minimize L(B) = §||Y — X

P
subject to Z 167 <s
j=1

» Two important special cases are ridge regression (Hoerl and
Kennard, 1970) v = 2 and Lasso (Tibshirani, 1996) v =1
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General Optimization Problems 4/38

» In general, optimization problems take the following form:

minimize fo(x)
subject to  fi(z) <0, i=1,...,m
h](x) 0? ]:17,]7

» We are mostly interested in convex optimization
problems, where the objective function fy(x), the
inequality constraints f;(z) and the equality constraints
hj(x) are all convex functions.
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Convex Sets 5/38

» A set C is convex if the line segment between any two
points in C also lies in C, i.e.,

Ox1+ (1 =0z € C, Vri,20€C,0<0<1

Convex Set Non-convex Set

» If C is a convex set in R™ and f(z) : R” — R™ is an affine
function, then f(C), i.e., the image of C' is also a convex

set. _ R
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Convex Functions 6/38

» A function f:R"™ — R is conver if its domain Dy is a
convex set, and Vz,y € Dy and 0 <0 <1

fOx+(1—-0)y) <0f(z)+(1-0)f(y)

» For example, many norms are convex functions

lzll, = Q_ lzal?)/?, p21
7
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Convex Functions 7/38

JW)
@)+ V@) ()

» First order conditions. Suppose f is differentiable, then f
is convex iff Dy is convex and

fy) = f(@) + V(@) (y = =), VeyeD;
Corollary: For convex function f,
FEX)) <E(f(X))
» Second order conditions. V2f(z) = 0, Vo € Dy

ez x Y
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Basic Terminology and Notations 8/38

» Optimial value p* = inf{ fo(z)|fi(x )<0 hj(x) = 0}

» z is feasible if x € D = ﬂ Dy N ﬂ Dy, and satisfies the
=0 j=
constraints.

» A feasible z* is optimal if f(z*) = p*
» Optimality criterion. Assuming fp is convex and
differentiable, x is optimal iff

Vio(x) (y —x) >0, Vfeasibley
Remark: for unconstrained problems, z is optimial iff

Vio(z) =
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Basic Terminology and Notations 9/38

Local Optimality
x is locally optimal if for a given R > 0, it is optimal for

minimize fy(z)

In convex optimization problems, any locally optimal point is
also globally optimal.

ez x ¥
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The Lagrangian 10/38

» Consider a general optimization problem

minimize fy(x)
subject to  fi(x) <0, i=1,...,m

» To take the constraints into account, we augment the
objective function with a weighted sum of the constraints
and define the Lagrangian L : R” x R™ x RP — R as

P
L(z,\,v) +Z)\ filx +Zyjh](x)
j=1

where A and v are dual variables or Lagrangian multipliers.
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The Lagrangian Dual Function 11/38

» We define the Lagrangian dual function as follows

g(Av) = inf L(z,A,v)

» The dual function is the pointwise infimum of a family of
affine functions of (\,v), it is concave, even when the
original problem is not convex.

> If A > 0, for each feasible point &

g\ v) = inf L(z,\,v) < L(F\,v) < fol#)

» Therefore, g(\,v) is a lower bound for the optimial value
g\ v)<p*, VA>0,veR?

ez x Y
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The Lagrangian Dual Problem 12/38

» Finding the best lower bound leads to the Lagrangian dual
problem

maximize g(\,v), subjectto A >0

» The above problem is a convex optimization problem.

> We denote the optimal value as d*, and call the
corresponding solution (A*,*) the dual optimal

» In contrast, the original problem is called the primal
problem, whose solution z* is called primal optimal

ez x Y
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Weak vs. Strong Duality 13/38

» d* is the best lower bound for p* that can be obtained from
the Lagrangian dual function.

» Weak Duality
d* <p*
» The difference p* — d* is called the optimal dual gap

> Strong Duality
d* — p*

ez x Y
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Slater’s Condition 14/38

» Strong duality doesn’t hold in general, but if the primal is
convex, it usually holds under some conditions called
constraint qualifications

» A simple and well-known constraint qualification is Slater’s
condition: there exist an x in the relative interior of D such
that

filzx) <0, i=1,...,m, Ax=0»

ez x Y
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Complementary Slackness 15/38

» Consider primal optmial z* and dual optimal (\*, ")
» If strong duality holds

fola®) = g(\*, ")

P
mf ( +Z)\*fz +Zv;hi(x)>
i=1
< fo(z +Z)\*fz —i—Zv;hi(x
i=1

< fo(z").

» Therefore, these are all equalities
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Complementary Slackness 16/38

» Important conclusions:
> z* minimize L(z, \*,v*)
> \ifi(x*)=0, i=1,...,m
» The latter is called complementary slackness, which
indicates

Ar >0 = fi(z")=0
filz®)y <0 = X =0
» When the dual problem is easier to solve, we can find

(A\*,v*) and then minimize L(z, A\*,v*). If the resulting
solution is primal feasible, then it is primal optimal.

ez x Y
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Entropy Maximization 17/38

» Consider the entropy maximization problem

minimize fo(z) = Zn i log z;
1=
subject to —x; <0, i=1,...,n

> e

» Lagrangian

L(xz,\,v) Zmllogazz Z)\m—kuzdfcl—l

» We minimize L(z, A, 1) by setting % to zero

logfci—kl—/\i—l—uz()jiﬁi:exp()\i—y—l)
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Entropy Maximization 18/38

» The dual function is
g\ v) = —Zexp()\i —v—1)—v
i=1
» Dual:

maximize g(A\,v) = —exp(—v —1) Zexp()\i) —v, A>0
i=1

» We find the dual optimal

A=0, 1=0,...,n, v '=-1+1logn

()
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Entropy Maximization 19/38

» We now minimize L(z, \*,v*)
logz; +1—-X +v"=0 = 2= —

» Therefore, the discrete probability distribution that has
maximum entropy is the uniform distribution

Exercise

Show that X ~ N(u,0?) is the maximum entropy distribution
such that EX = p and EX? = p? + 0. How about fixing the
first kK moments at EX' =m,;, i =1,...,k?

ez x Y
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Karush-Kun-Tucker (KKT) conditions 20/38

» Suppose the functions fo, fi1,..., fm,h1,...,hy are all
differentiable; z* and (\*,v*) are primal and dual optimal
points with zero duality gap

» Since z* minimize L(x, \*, v*), the gradient vanishes at z*

V fo(w +Z/\*sz +Zu Vh(

=1
» Additionally
fl(x*) ~ O) /L_]-u )
hj(z*) = 0, j=1,...,p
Al >0, i=1,....,m
Afi(z®) = 0, i=1,....,m

» These are called Karush-Kuhn-Tucker (KKT) conditions
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KKT conditions for convex problems 21/38

» When the primal problem is convex, the KKT conditions
are also sufficient for the points to be primal and dual
optimal with zero duality gap.

» Let #, A, 7 be any points that satisfy the KKT conditions, &
is primal feasible and minimizes L(Z, A, D)

g\, 0) = L(&, )\, D)

= fo(%)

» Therefore, for convex optimization problems with
differentiable functions that satisfy Slater’s condition, the

ez X P

KKT condtions are necessary and sufficient
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Example 22/38

» Consider the following problem:
o 1 7 T
minimize 5.%' Pr+qgax+r, P>0
subject to Ax =b
» KKT conditions:

Pr* +qg+ AT =0
Az* =b

» To find z*,v*, we can solve the above system of linear
equations

ez x Y
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Descent Methods 23/38

» We now focus on numerical solutions for unconstrained
optimization problems

minimize f(z)

where f: R"™ — R is twice differentiable
» Descent method. We can set up a sequence
a* ) = (k) 4 4R ALE) (k) 5
such that f(zF+tD)) < f(z®), k=0,1,..

*

» Az is called the search direction; t®) is called the step
size or learning rate in machine learning.

ez x Y
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Gradient Descent 24/38

A reasonable choice for the search direction is the negative
gradient, which leads to gradient descent methods

g+l — pk) _ t(k)Vf(a;(k)), k=0,1,...

» step size t() can be constant or
determined by line search

» every iteration is cheap, does not
require second derivatives

ez x Y
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Steepest Descent Direction 25/38

» First-order Taylor expansion

flx+v) =~ f(z) +Vf(ac)Tv

» v is a descent direction iff Vf(z)Tv <0

> Negative gradient is the steepest descent direction with
respect to the Euclidean norm.

Vi)

@, ~ emin{Vi@" | vl =1}
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Newton’s Method 26/38

» Consider the second-order Taylor expansion of f at z,

Fla+v) ~ f(@) + Vi) o+ 50" V()
2 f(x)

» We find the optimal direction v by minimizing f(x) with
respect to v

v=—[V?f(2)] 'V f(z)

» If V2f(x) = 0 (e.g., convex functions)
Vf(@)'v = =VI(@) [V (@) V@) <0
when Vf(z) #0

ez x Y
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Newton’s Method 27/38

» The search direction in Newton’s method can also be
viewed as a steepest descent direction, but with a different
metric

» In general, given a positive definite matrix P, we can define
a quadratic norm

lollp = (" Pv)'/?

» Similarly, we can show that — P~V f(z) is the steepest
descent direction w.r.t. the quadratic norm || - ||p

minimize Vf(z)Tv, subject to ||v]p =1
» When P is the Hessian V2f(x), we get Newton’s method

ez x Y
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Quasi-Newton Method 28/38

» Computing the Hessian and its inverse could be expensive,
we can approximate it with another positive definite matrix
M > 0 which is easier to use

» Update M®*) to learn about the curvature of f in the
search direction and maintain a secant condition

Vf($(k+1)) - Vf(a;(k)) _ M(k+1) (:L,(kJrl) - x(k))

» Rank-one update
AgzF) — pk+1) _ (k)
y® =V fa®) = Vi)
) = &) _ I A5 (F)
k) (kD)

pks _ g o)
W T AL ®)
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Quasi-Newton Method 29/38

» Easy to compute the inverse of matrices for low rank
updates by Sherman-Morrison-Woodbury formula

(A+UCV) t=A"'— A\t +vAlu)~tva?

where A € R™" U € R"¥4 C € R¥*4 |V ¢ R

» Another popular rank-two update method: the BFGS
(Broyden-Fletcher-Goldfarb-Shanno) method

L) _ g 4 SPGET  MOAI (MO AgO)T
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=/ PEKING UNIVERSITY




Maximum Likelihood Estimation 30/38

» In the frequentist framework, we typically perform
statistical inference by maximizing the log-likelihood L(6),
or equivalently minimizing negative log-likelihood, which is
also known as the energy function

» Some notations we introduced before
» Score function: s(0) = VoL(6)

» Observed Fisher information: J(0) = —VZL(0)
» Fisher information: Z() = E(—V2L(0))

» Newton’s method for MLE:

O+ = o) 1 (J(e®)))~Ls(0™*))

ez X P
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Fisher Scoring Algorithm 31/38

» If we use the Fisher information instead of the observed
information, the resulting method is called the Fisher
scoring algorithm

o+ = 9) 1 (2(9®)))~s(9*R))

» [t seems that the Fisher scoring algorithm is less sensitive
to the initial guess. On the other hand, the Newton’s
method tends to converge faster

» For exponential family models with natural parameters and
generalized linear models (GLMs) with canonical links, the
two methods are identical
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Generalized Linear Model 32/38

» A generalized linear model (GLM) assumes a set of
independent random variables Y7, ...,Y,, that follow
exponential family distributions of the same form

p(yil0;) = exp (yib(0;) + c(0;) + d(y:))

» The parameters 0; are typically not of direct interest.
Instead, we usually assume that the expectation of Y; can
be related to a vector of parameters § via a transformation
(link function)

E(Y;) =i, g(p)=z!8

where x; is the observed covariates for y;.

ez x Y
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Generalized Linear Model 33/38

» Using the link function, we can now write the score
function in terms of 3

» Let g(pi) = n;, we can show that for jth parameter

n

NN (W — )i O
) =2 atvy on

where du;/0n; depends on the link function we choose

» It is also easy to show that the Fisher information matrix is

Z(Bj» Br) = E(s(8;)5(Br))
_ . zszk Opi 2
a ; <87h>
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Iterative Reweighted Least Squares 34/38

» Note that the Fisher information matrix can be written as
Z(B) = XWX

where W is the n x n diagonal matrix with elements

1 (om)”
Wi = ar(Y;) \ On;

» Rewriting Fisher scoring algorithm for updating 5 as

Z(8M)BE = ()8 + 5(8™)

ez x Y
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Iterative Reweighted Least Squares 35/38

» After few simple steps, we have

XTw(/f)Xﬁ(k-H) = XTIy k) 7(k)

where

» Therefore, we can find the next estimate as follows
l3(k:+1) — (XTw(k)X>—1XTw(k)Z(k)

» The above estimate is similar to the weighted least square
estimate, except that the weights W and the response
variable Z change from one iteration to another

» We iteratively estimate § until the algorithm converges

ANEIE T
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Example: Logistic Regression 36/38

» Recall that the Log-likelihood for logistic regression is

Y’p Zyz IOg +log(1 _pz)

» The natural parameters are 6; = log 12
g(z) = log 1= as the link function, 0; = g(pl-) =]
» We now write the log-likelihood as follows

L(B) =Y"XB - log(1 + exp(z] B))
=1
» The score function is
1

W%zxﬂY—w’pZII&Riﬁﬁ
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Example: Logistic Regression 37/38

» The observed Fisher information matrix is
J(B) = XTwx
where W is a diagonal matrix with elements
wii = pi(1 — ps)

» Note that J(3) does not depend on Y, meaning that it is
also the Fisher information matrix Z(8) = J(5)

> Newton’s update

g+ — gk (XTW(k)X) -1 (XT(Y B p(k))>
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