Statistical Models & Computing Methods

Lecture 18: Generative Models – II

Cheng Zhang

School of Mathematical Sciences, Peking University

December 08, 2023

Recap of Autoregressive Models

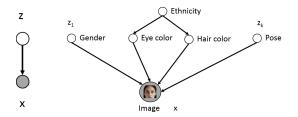
► Autoregressive models:

- ▶ Chain rule based factorization is fully general
- Compact representation via conditional independence and /or neural parameterization
- ► Pros:
 - ► Easy to evaluate likelihoods
 - Easy to train
- ► Cons:
 - Requires an ordering
 - ▶ Generation is sequential
 - ▶ Cannot learn features in an unsupervised way

Latent Variable Models: Motivation

- Lots of variability in images x due to gender, eye color, hair color, pose, etc. However, unless images are annotated, these factors of variation are not explicitly available (latent)
- \blacktriangleright Idea: explicitly model these factors using latent variables z

Latent Variable Models: Motivation



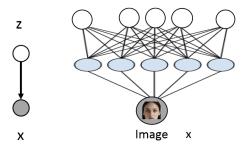
Only shaded variables x are observed in the data (pixel values)

• Latent variables z correspond to high level features

- If z chosen properly, p(x|z) could be much simpler than p(x)
- ▶ If we had trained this model, then we could identify features via p(z|x), e.g., p(EyeColor = Blue|x)

Challenge: Very difficult to specify these conditionals by hand

Deep Latent Variable Models



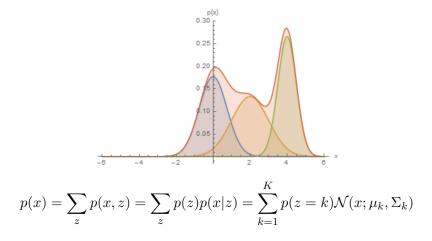
$$\blacktriangleright z \sim \mathcal{N}(0, I)$$

▶ $p(x|z) = \mathcal{N}(\mu_{\theta}(z), \Sigma_{\theta}(z))$ where $\mu_{\theta}, \Sigma_{\theta}$ are neural networks

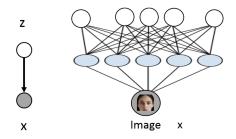
▶ Hope that after training, z will correspond to meaningful latent factors of variation (features). Unsupervised representation learning

• As before, features can be computed via p(z|x)

Combine simple models into a more complex and expressive one



Variational Autoencoder: Marginal Likelihood



A mixture of infinite many Gaussians

$$\blacktriangleright z \sim \mathcal{N}(0, I)$$

► $p(x|z) = \mathcal{N}(\mu_{\theta}(z), \Sigma_{\theta}(z))$ where $\mu_{\theta}, \Sigma_{\theta}$ are neural networks

• Even though p(x|z) is simple, the marginal p(x) could be very complex/flexible

$$\frac{p_{\theta}(x) = \int_{z} p_{\theta}(x, z) dz}{\sum_{z} p_{\theta}(x|z) p(z) dz}$$

Recap of Latent Variable Models

• Allow us to define complex models p(x) in terms of simple building blocks p(x|z)

- Natural for unsupervised learning tasks (clustering, unsupervised representation learning, etc)
- ▶ No free lunch: much more difficult to learn compared to fully observed autoregressive models

First Attempt: Naive Monte Carlo

$$p_{\theta}(x) = \mathbb{E}_{z \sim p(z)} p_{\theta}(x|z), \quad \nabla_{\theta} p_{\theta}(x) = \mathbb{E}_{z \sim p(z)} \nabla_{\theta} p_{\theta}(x|z)$$

9/61

We can use Monte Carlo estimate for the marginal likelihood and its gradient

- Sample $z^{(1)}, \dots, z^{(k)}$ from the prior p(z)
- ▶ Approximate expectation with sample average

$$p_{\theta}(x) \approx \frac{1}{k} \sum_{i=1}^{k} p_{\theta}(x|z^{(i)}), \quad \nabla_{\theta} p_{\theta}(x) \approx \frac{1}{k} \sum_{i=1}^{k} \nabla_{\theta} p_{\theta}(x|z^{(i)})$$

Remark: work in theory but not in practice. For most $z \sim p(z)$, $p_{\theta}(x|z)$ is very low, i.e., mismatch between the prior and posterior. This leads to large variance for the Monte Carlo estimates. We need a clever way to select $z^{(i)}$ to reduce the variance of the estimator.

Second Attempt: Importance Sampling

We can use importance sampling to reduce the variance

$$p_{\theta}(x) = \int_{z} p_{\theta}(x|z)p(z)dz = \int_{z} q(z)\frac{p_{\theta}(x,z)}{q(z)}dz = \mathbb{E}_{z \sim q(z)}\frac{p_{\theta}(x,z)}{q(z)}$$

Similarly, we can use Monte Carlo estimate

- ► Sample $z^{(1)}, \dots, z^{(k)}$ from the important distribution q(z)
- ► Approximate expectation with sample average

$$p_{\theta}(x) \approx \frac{1}{k} \sum_{i=1}^{k} \frac{p_{\theta}(x, z^{(i)})}{q(z^{(i)})}$$

Remark: What is a good choice for q(z)?

10/61

Variational Inference

1

► Evidence Lower Bound (ELBO)

$$\log p_{\theta}(x) \ge \mathbb{E}_{z \sim q(z)} \log \frac{p_{\theta}(x, z)}{q(z)}$$
$$= \mathbb{E}_{z \sim q(z)} \log p_{\theta}(x, z) - \mathbb{E}_{z \sim q(z)} \log q(z)$$
$$= \mathbb{E}_{z \sim q(z)} \log p_{\theta}(x, z) + H(q)$$

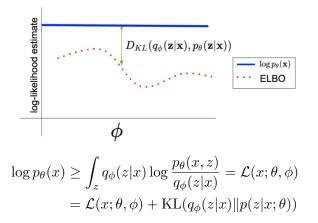
• Equality holds when $q(z) = p(z|x;\theta)$

$$\log p_{\theta}(x) = \mathbb{E}_{z \sim p(z|x;\theta)} \log p_{\theta}(x,z) + H(p(z|x;\theta))$$

This is the E-step in EM!

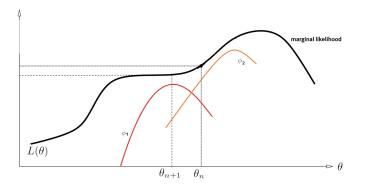
• In practice, $p(z|x, \theta)$ is usually intractable. We can find the "best" q(z) by maximizing the ELBO in a parameterized family of $\{q_{\phi}(z) : \phi \in \Phi\}$

The Evidence Lower Bound



The better $q_{\phi}(z|x)$ can approximate the posterior $p(z|x;\theta)$, the closer ELBO will be to the log $p_{\theta}(x)$. We then jointly optimize over θ and ϕ to maximize the ELBO over a dataset.

Variational Learning



 $\mathcal{L}(x; \theta, \phi_1)$ and $\mathcal{L}(x; \theta, \phi_2)$ are both lower bounds, we want to jointly optimize θ and ϕ .

ELBO for The Entire Dataset

▶ For each data point x, ELBO holds

$$\log p_{\theta}(x) \ge \int_{z} q_{\phi}(z|x) \log p_{\theta}(x,z) + H(q_{\phi}(z|x)) = \mathcal{L}(x;\theta,\phi)$$

▶ Maximum likelihood learning over the entire dataset

$$\ell(\theta; \mathcal{D}) = \sum_{x^i \in \mathcal{D}} \log p_{\theta}(x^i) \ge \sum_{x^i \in \mathcal{D}} \mathcal{L}(x^i; \theta, \phi^i)$$

► Therefore

$$\max_{\theta} \ell(\theta; \mathcal{D}) \ge \max_{\theta, \phi^1, \cdots, \phi^M} \sum_{i=1}^M \mathcal{L}(x^i; \theta, \phi^i)$$

► Note that we use different *variational parameters* ϕ^i for every data point x^i , because the true posterior $p_{\theta}(z|x^i)$ is different across data points x^i

Variational Approximations Across Dataset

15/61

- ► Assume $p_{\theta}(z, x^i)$ is close to $p_{\text{data}}(z, x^i)$. Suppose z captures information such as digit identity (label), style, etc. For simplicity, assume $z \in \{0, 1, \dots, 9\}$
- ► Suppose $q_{\phi^i}(z)$ is a probability distribution over the hidden variable z parameterized by $\phi^i = (p_0, \ldots, p_9)$
- ► If $\phi^i = (0, 0, 0, 1, ..., 0)$, is $q_{\phi^i}(z)$ a good approximation of $p_{\theta}(z|x^1)(x^1)$ is the leftmost datapoint)? Yes
- ► If $\phi^i = (0, 0, 0, 1, ..., 0)$, is $q_{\phi^i}(z)$ a good approximation of $p_{\theta}(z|x^3)(x^3)$ is the rightmost datapoint)? No
- ► For each x^i , need to find a good $\phi^{i,*}$ via optimization, can be expensive

Learning via SVI

• Optimizing $\sum_{x^i \in \mathcal{D}} \mathcal{L}(x^i; \theta, \phi^i)$ as a function of $\theta, \phi^1, \dots, \phi^M$ using stochastic gradient ascent

$$L(\mathcal{D}; \theta, \phi^{1:M}) = \sum_{i=1}^{M} \mathbb{E}_{q_{\phi^i}(z^i)} \left(\log p_{\theta}(x^i, z) - \log q_{\phi^i}(z^i) \right)$$

1. Initialize
$$\theta, \phi^1, \cdots, \phi^M$$

- 2. Randomly sample a data point x^i from \mathcal{D}
- 3. Optimize $\mathcal{L}(x^i; \theta, \phi^i)$ as a function of ϕ^i , e.g., local gradient update
- 4. Compute $\nabla_{\theta} \mathcal{L}(x^i; \theta, \phi^{i,*})$
- 5. Update θ in the gradient direction. Go to step 2
- How to compute the gradients? Often no close form solution for the expectations. Use Monte Carlo estimates!

Learning Variational Autoencoder

$$\mathcal{L}(x;\theta,\phi) = \mathbb{E}_{q_{\phi}(z)} \left(\log p_{\theta}(x,z) - \log q_{\phi}(z) \right)$$

- ▶ Similarly as in VI, we assume $q_{\phi}(z)$ is tractable, i.e., easy to sample from and evaluate
- Suppose z^1, \ldots, z^k are samples from $q_{\phi}(z)$
- The gradient with respect to θ is easy

$$\nabla_{\theta} \mathcal{L}(x; \theta, \phi) = \nabla_{\theta} \mathbb{E}_{q_{\phi}(z)} \left(\log p_{\theta}(x, z) - \log q_{\phi}(z) \right)$$
$$= \mathbb{E}_{q_{\phi}(z)} \nabla_{\theta} \log p_{\theta}(x, z)$$
$$\approx \frac{1}{k} \sum_{i=1}^{k} \nabla_{\theta} \log p_{\theta}(x, z^{i})$$

17/61

Learning Variational Autoencoder

- The gradient with respect to ϕ is more complicated because the expectation depends on ϕ
- We can use score function estimator (or REINFORCE) with *control variates*. When $q_{\phi}(z)$ is reparameterizable, we can also use the reparameterization trick.
- ▶ If these exists g_{ϕ} and q_{ϵ} , s.t. $z = g_{\phi}(\epsilon), \epsilon \sim q_{\epsilon} \Rightarrow z \sim q_{\phi}(z)$

$$\nabla_{\phi} \mathcal{L}(x; \theta, \phi) = \nabla_{\phi} \mathbb{E}_{q_{\epsilon}(\epsilon)} \left(\log p_{\theta}(x, g_{\phi}(\epsilon)) - \log q_{\phi}(g_{\phi}(\epsilon)) \right)$$

$$= \mathbb{E}_{q_{\epsilon}(\epsilon)} \left(\nabla_{\phi} \log p_{\theta}(x, g_{\phi}(\epsilon)) - \nabla_{\phi} \log q_{\phi}(g_{\phi}(\epsilon)) \right)$$

$$\approx \frac{1}{k} \sum_{i=1}^{k} \left(\nabla_{\phi} \log p_{\theta}(x, g_{\phi}(\epsilon^{i})) - \nabla_{\phi} \log q_{\phi}(g_{\phi}(\epsilon^{i})) \right)$$
where $\epsilon^{i} \sim q_{\epsilon}(\epsilon), i = 1, \dots, k$

$$\blacktriangleright \text{ Example: } z = \mu + \sigma\epsilon, \epsilon \sim \mathcal{N}(0, 1) \Leftrightarrow z \sim \mathcal{N}(\mu, \sigma^{2}) = q_{\phi}(z)$$

Amortized Inference

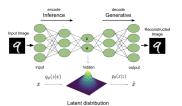
$$\max_{\theta} \ell(\theta; \mathcal{D}) \geq \max_{\theta, \phi^{1:M}} \sum_{i=1}^{M} \mathcal{L}(x^{i}; \theta, \phi^{i})$$

- So far we have used a set of variational parameters ϕ^i for each data point x^i . Unfortunately, this does not scale to large datasets.
- Amortization: Learn a single parameteric function f_{λ} that maps each x to a set of variational parameters. Like doing regression $x^i \mapsto \phi^{i,*}$
 - For example, if $q(z|x^i)$ are Gaussians with different means μ^1, \ldots, μ^m , we learn a single neural network f_{λ} mapping x^i to μ^i
- ► We approximate the posteriors q(z|xⁱ) using this distribution q_λ(z|xⁱ)

Amortized Inference

- ► Assume $p_{\theta}(z, x^i)$ is close to $p_{\text{data}}(z, x^i)$. Suppose z captures information such as digit identity (label), style, etc.
- ▶ Suppose $q_{\phi^i}(z)$ is a probability distribution over the hidden variable z parameterized by ϕ^i
- ► For each x^i , need to find a good $\phi^{i,*}$ via optimization, expensive for large dataset
- Amortized Inference: learn how to map x^i to a good set of parameters ϕ^i via $q(z; f_{\lambda}(x^i))$. f_{λ} learns how to solve the optimization problem for you, jointly across all datapoints.
- ▶ In the literature, $q(z; f_{\lambda}(x^i))$ often denoted as $q_{\phi}(z|x^i)$

Autoencoder Perspective



$$\begin{aligned} \mathcal{L}(x;\theta,\phi) &= \mathbb{E}_{q_{\phi}(z|x)} \left(\log p_{\theta}(x,z) - \log q_{\phi}(z|x) \right) \\ &= \mathbb{E}_{q_{\phi}(z|x)} \left(\log p_{\theta}(x|z) + \log p(z) - \log q_{\phi}(z|x) \right) \\ &= \mathbb{E}_{q_{\phi}(z|x)} \log p(x|z;\theta) - \mathrm{KL} \left(q_{\phi}(z|x) \| p(z) \right) \end{aligned}$$

Take a data point $x^i \to \text{Map}$ it to \hat{z} by sampling from $q_{\phi}(z|x^i)$ (encoder) \to Reconstruct \hat{x} by sampling from $p(x|\hat{z};\theta)$ (decoder) What does the training objective $\mathcal{L}(x;\theta,\phi)$ do?

- First term encourages $\hat{x} \approx x^i$ $(x^i$ likely under $p(x|\hat{z};\theta))$
- Second term encourages \hat{z} to be likely under the prior p(z)

► Alice goes on a space mission and needs to send images to Bob. Given an image xⁱ, she (stochastically) compress it using \$\hit{z} ~ q_{\phi}(z|x^i)\$ obtaining a message \$\hit{z}\$. Alice sends the message \$\hit{z}\$ to Bob

• Given \hat{z} , Bob tries to reconstruct the image using $p_{\theta}(x|\hat{z})$

- This scheme works well if $\mathbb{E}_{q_{\phi}(z|x)} \log p_{\theta}(x|z)$ is large
- ▶ The term KL $(q_{\phi}(z|x)||p(z))$ forces the distribution over messages to have a specific shape p(z). If Bob knows p(z), he can generate realistic messages $\hat{z} \sim p(z)$ and the corresponding image, as if he had received them from Alice!

Summary on Latent Variable Models

- Combine simple models to get a more flexible one (e.g., mixture of Gaussians)
- ► Directed model permits ancestral sampling (efficient generation): $z \sim p(z)$, $x \sim p_{\theta}(x|z)$
- ► However, log-likelihood is generally intractable, hence learning is difficult (compared to autoregressive models)
- Joint learning of a model (θ) and an amortized inference component ϕ to achieve tractability via ELBO optimization
- ► Latent representations for any x can be inferred via $q_{\phi}(z|x)$

Recap on Deep Generative Models

- Autoregressive Models: $p_{\theta}(x) = \prod_{i=1}^{n} p_{\theta}(x_i | x_{<i})$
- ► Variational Autoencoders: $p_{\theta}(x) = \int_{z}^{z} p_{\theta}(x, z) dz$
- Normalizing Flow Models: $p_X(x;\theta) = p_Z(f_{\theta}^{-1}(x)) \left| \det \left(\frac{\partial f_{\theta}^{-1}(x)}{\partial x} \right) \right|$
- All the above families are based on maximizing likelihoods (or approximations, e.g., lower bound)
- Is the likelihood a good indicator of the quality of samples generated by the model?

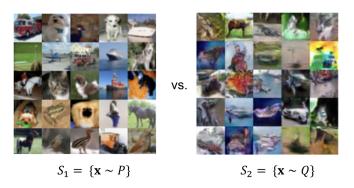
Sample Quality and Likelihood

- ► Optimal generative model will give best sample quality and highest test log-likelihood. However, in practice, high log-likelihoods ≠ good sample quality (Theis et al., 2016)
- ► Case 1: great test log-likelihoods, poor samples. Consider a mixture model $p_{\theta}(x) = 0.01 p_{\text{data}}(x) + 0.99 p_{\text{noise}}(x)$, we have

 $\mathbb{E}_{p_{\text{data}}} \log p_{\text{data}}(x) \geq \mathbb{E}_{p_{\text{data}}} \log p_{\theta}(x) \geq \mathbb{E}_{p_{\text{data}}} \log p_{\text{data}}(x) - \log 100$ This means $\mathbb{E}_{p_{\text{data}}} \log p_{\theta}(x) \approx \mathbb{E}_{p_{\text{data}}} \log p_{\text{data}}(x)$ when the dimension of x is large.

- Case 2: great samples, poor test log-likelihoods. E.g., memorizing training set: samples look exactly like the training set; test set will have zero probability
- ► The above cases suggest that it might be useful to disentangle likelihoods and samples ⇒ likelihood-free learning!

Comparing Distributions via Samples



Given samples from two distributions $S_1 = \{x \sim P\}$ and $S_2 = \{x \sim Q\}$, how can we tell if these samples are from the same distribution? (i.e., P = Q?)

Two-sample Tests

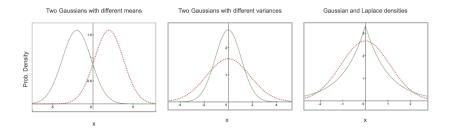
- Given $S_1 = \{x \sim P\}$ and $S_2 = \{x \sim Q\}$, a two-sample test considers the following hypotheses
 - Null hypothesis $H_0: P = Q$
 - Alternative hypothesis $H_1: p \neq Q$
- Test statistic T compares S_1 and S_2 , e.g., difference in means, variances of the two sets of samples
- ▶ If T is less than a threshold α , the accept H_0 else reject it
- Key observation: Test statistics is likelihood-free since it does not involve the densities P or Q (only samples)

Generative Modeling and Two-sample Tests

- Suppose we have direct access to the data set $S_1 = \mathcal{D} = \{x \sim p_{\text{data}}\}$
- ► Now assume that the model distribution p_{θ} permits efficient sampling (e.g., directed models). Let $S_2 = \{x \sim p_{\theta}\}$
- Use a two-sample test objective to measure the distance between distributions and train the generative model p_{θ} to minimize this distance between S_1 and S_2

28/61

Two-Sample Test via a Discriminator



- Finding a two-sample test objective in high dimensions is non-trivial
- ► In the generative model setup, we know that S_1 and S_2 come from different distributions p_{data} and p_{θ} respectively
- Key idea: Learn a statistic that maximizes a suitable notion of distance between the two sets of samples S₁ and S₂

The **generator** and **discriminator** play a minimax game!

Generator

- ► Directed, latent variable model with a deterministic mapping between z and x given by G_{θ}
- ► Minimizes a two-sample test objective (in support of the null hypothesis $p_{\text{data}} = p_{\theta}$

The **generator** and **discriminator** play a minimax game!

Discriminator

- ► Any function (e.g., neural network) which tries to distinguish "real" samples from the dataset and "fake" sampels generated from the model
- ► Maximizes the two-sample test objective (in support of the alternative hypothesis $p_{data} \neq p_{\theta}$)

Discriminator Training Objective

► Training objective for discriminator:

$$\max_{D} V(G, D) = \mathbb{E}_{x \sim p_{\text{data}}} \log D(x) + \mathbb{E}_{x \sim p_{G}} \log(1 - D(x))$$

• For a fixed generator G, the discriminator is performing binary classification with the cross entropy objective

- Assign probability 1 to true data points $x \sim p_{\text{data}}$
- Assign probability 0 to fake samples $x \sim p_G$
- ▶ Optimal discriminator

$$D_G^*(x) = \frac{p_{\text{data}}(x)}{p_{\text{data}}(x) + p_G(x)}$$

Generator Training Objective

► Training Objective for generator:

$$\min_{G} V(G, D) = \mathbb{E}_{x \sim p_{\text{data}}} \log D(x) + \mathbb{E}_{x \sim p_{G}} \log(1 - D(x))$$

• For the optimal discriminator $D_G^*(\cdot)$, we have

$$V(G, D_G^*) = \mathbb{E}_{x \sim p_{\text{data}}} \log \frac{p_{\text{data}}(x)}{p_{\text{data}}(x) + p_G(x)} + \mathbb{E}_{x \sim p_G} \log \frac{p_G(x)}{p_{\text{data}}(x) + p_G(x)}$$
$$= \mathbb{E}_{x \sim p_{\text{data}}} \log \frac{p_{\text{data}}(x)}{\frac{p_{\text{data}}(x) + p_G(x)}{2}} + \mathbb{E}_{x \sim p_G} \log \frac{p_G(x)}{\frac{p_{\text{data}}(x) + p_G(x)}{2}} - \log 4$$
$$= \text{KL} \left(p_{\text{data}} \left\| \frac{p_{\text{data}} + p_G}{2} \right) + \text{KL} \left(p_G \left\| \frac{p_{\text{data}} + p_G}{2} \right) - \log 4 \right) \right)$$

► The sum of KL in the above equation is known as Jensen-Shannon divergence (JSD)

Jensen-Shannon Divergence

$$JSD(p,q) = KL\left(p \left\|\frac{p+q}{2}\right) + KL\left(q \left\|\frac{p+q}{2}\right)\right)$$

Properties

- ▶ $JSD(p,q) \ge 0$
- JSD(p,q) = 0 iff p = q

$$\blacktriangleright JSD(p,q) = JSD(q,p)$$

• $\sqrt{\text{JSD}(p,q)}$ satisfies triangle inequality

▶ Optimal generator for the JSD GAN

$$p_G = p_{\text{data}}$$

▶ For the optimal discriminator $D^*_{G^*}(\cdot)$ and generator $G^*(\cdot)$, we have

$$V(G^*, D^*_{G^*}(x)) = -\log 4$$

Alternating Optimization in GAN

35/61

 $\min_{\theta} \max_{\phi} V(G_{\theta}, D_{\phi}) = \mathbb{E}_{x \sim p_{\text{data}}} \log D_{\phi}(x) + \mathbb{E}_{z \sim p(z)} \log(1 - D_{\phi}(G_{\theta}(z)))$

- ▶ sample *m* training points $x^{(1)}, x^{(2)}, \ldots, x^{(m)}$ from \mathcal{D}
- ► sample *m* noise vectors $z^{(1)}, z^{(2)}, \ldots, z^{(m)}$ from p_z
- ▶ generator parameters θ update: stochastic gradient descent

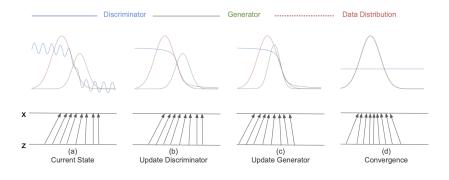
$$\nabla_{\theta} V(G_{\theta}, D_{\phi}) = \frac{1}{m} \nabla_{\theta} \sum_{i=1}^{m} \log(1 - D_{\phi}(G_{\theta}(z^{(i)})))$$

 \blacktriangleright discriminator parameters ϕ update: stochastic gradient ascent

$$\nabla_{\phi} V(G_{\theta}, D_{\phi}) = \frac{1}{m} \nabla_{\phi} \sum_{i=1}^{m} \log D_{\phi}(x^{(i)}) + \log(1 - D_{\phi}(G_{\theta}(z^{(i)})))$$

▶ Repeat for fixed number of epochs

A Toy Example



Adapted from Goodfellow, 2014

Frontiers in GAN Research

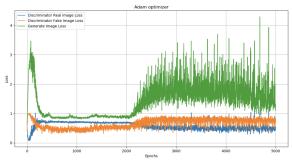
2018

- GANs have been successfully applied to several domains and tasks
- ► However, working with GANs can be very challenging in practice: unstable optimization/mode collapse/evaluation

► Many bag of tricks applied to train GANs successfully Image source: Ian Goodfellow. Samples from Goodfellow et al., 2014, Radford et al., 2015, Liu et al., 2016, Karras et al., 2017, Karras et al., 2018

Optimization Challenges

- ► Theorem: If the generator updates are made in function space and discriminator is optimal at every step, then the generator is guaranteed to converge to the data distribution
- ▶ Unrealistic assumptions! In practice, the generator and discriminator loss keeps oscillating during GAN training



▶ No robust stopping criteria in practice (unlike MLE)

Mode Collapse

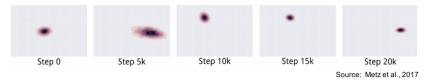
- ▶ GANs are notorious for suffering from mode collapse
- ► Intuitively, this refers to the phenomena where the generator of a GAN collapse to one or few samples (i.e., "modes")

Arjovsky et al., 2017

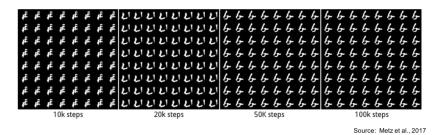
Mode Collapse

PERING UNIT

▶ True distribution is a mixture of Gaussians



 The generator distribution keeps oscillating between different models



- ► Fixes to mode collapse are mostly empirically driven: alternate architectures, adding regularization terms, injecting small noise perturbations etc.
- Tips and tricks to make GAN work by Soumith Chintala: https://github.com/soumith/ganhacks

GAN Generated Artworks

Source: Robbie Barrat, Obvious

GAN generated art auctioned at Christie's. **Expected Price:** \$7,000 - \$10,000 **True Price:** \$432,500

The GAN Zoo: https://github.com/hindupuravinash/the-gan-zoo

► Examples

- ▶ Rich class of likelihood-free objectives
- Combination with latent representations
- ▶ Application: Image-to-image translation, etc.

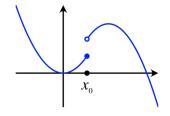
f Divergence

• Given two densities p and q, the f- divergence is given by

$$D_f(p||q) = \mathbb{E}_{x \sim q} f\left(\frac{p(x)}{q(x)}\right)$$

where f is any convex, lower-semicontinuous function with f(1)=0

• Lower-semicontinuous: function value at any pint x_0 is close to $f(x_0)$ or greater than $f(x_0)$



• Example: KL divergence with $f(u) = u \log u$

f Divergence

45/61

Many more f-divergence!

Name	$D_f(P\ Q)$	Generator $f(u)$
Total variation	$\frac{1}{2}\int p(x)-q(x) \mathrm{d}x$	$\frac{1}{2} u-1 $
Kullback-Leibler	$\int p(x) \log \frac{p(x)}{q(x)} \mathrm{d}x$	$u \log u$
Reverse Kullback-Leibler	$\int q(x) \log \frac{q(x)}{p(x)} dx$	$-\log u$
Pearson χ^2	$\int \frac{(q(x)-p(x))^2}{p(x)} dx$	$(u-1)^2$
Neyman χ^2	$\int \frac{(p(x)-q(x))^2}{q(x)} \mathrm{d}x$	$\frac{(1-u)^2}{u}$
Squared Hellinger	$\int \left(\sqrt{p(x)} - \sqrt{q(x)}\right)^2 \mathrm{d}x$	$\left(\sqrt{u}-1\right)^2$
Jeffrey	$\int (p(x) - q(x)) \log \left(\frac{p(x)}{q(x)} \right) dx$	$(u-1)\log u$
Jensen-Shannon	$\frac{1}{2} \int p(x) \log \frac{2p(x)}{p(x)+q(x)} + q(x) \log \frac{2q(x)}{p(x)+q(x)} dx$	$-(u+1)\log \frac{1+u}{2} + u\log u$
Jensen-Shannon-weighted	$\int p(x)\pi \log \frac{p(x)}{\pi p(x) + (1-\pi)q(x)} + (1-\pi)q(x) \log \frac{q(x)}{\pi p(x) + (1-\pi)q(x)} dx$	$\pi u \log u - (1-\pi+\pi u) \log(1-\pi+\pi u)$
GAN	$ \begin{array}{l} \frac{1}{2}\int p(x)\log \frac{2g(x)}{p(x)+q(x)} + q(x)\log \frac{2q(x)}{p(x)+q(x)} dx \\ \int p(x)\pi \log \frac{-g(x)}{\pi p(x)+(1-\pi)q(x)} + (1-\pi)q(x)\log \frac{q(x)}{\pi p(x)+(1-\pi)q(x)} dx \\ \int p(x)\log \frac{2p(x)}{p(x)+q(x)} + q(x)\log \frac{2q(x)}{p(x)+q(x)} dx - \log(4) \end{array} $	$u\log u - (u+1)\log(u+1)$
$\alpha\text{-divergence}\ (\alpha\notin\{0,1\})$	$rac{1}{lpha(lpha-1)}\int \left(p(x)\left[\left(rac{q(x)}{p(x)} ight)^lpha-1 ight]-lpha(q(x)-p(x)) ight)\mathrm{d}x$	$rac{1}{lpha(lpha-1)}\left(u^lpha-1-lpha(u-1) ight)$

Source: Nowozin et al., 2016

Variational Divergence Minimization

- ► To use *f*-divergences as a two-sample test objective for likelihood-free learning, we need to be able to estimate it only via samples
- ▶ Fenchel conjugate: For any function $f(\cdot)$, its convex conjugate is defined as

$$f^*(t) = \sup_{u \in \text{dom}_f} ut - f(u)$$

▶ Duallity: f^{**} = f. When f(·) is convex, lower semicontinuous, so is f^{*}(·)

$$f(u) = \sup_{t \in \operatorname{dom}_{f^*}} tu - f^*(t)$$

Variational Divergence Minimization

▶ We can obtain a lower bound to any *f*-divergence via its Fenchel conjugate

$$D_f(p||q) = \mathbb{E}_{x \sim q} f\left(\frac{p(x)}{q(x)}\right)$$
$$= \mathbb{E}_{x \sim q} \sup_{t \in \text{dom}_{f^*}} \left(t\frac{p(x)}{q(x)} - f^*(t)\right)$$
$$\geq \mathbb{E}_{x \sim q} t(x)\frac{p(x)}{q(x)} - f^*(t(x))$$
$$= \int_{\mathcal{X}} t(x)p(x) - f^*(t(x))q(x)dx$$
$$= \mathbb{E}_{x \sim p} t(x) - \mathbb{E}_{x \sim q} f^*(t(x))$$

for any function $t: \mathcal{X} \mapsto \operatorname{dom}_{f^*}$

f-GAN

► Variational lower bound

$$D_f(p||q) \ge \sup_{t \in \mathcal{T}} (\mathbb{E}_{x \sim p} \ t(x) - \mathbb{E}_{x \sim q} \ f^*(t(x)))$$

- Choose any f-divergence
- Let $p = p_{\text{data}}$ and $q = p_G$
- Parameterize t by ϕ and G by θ
- Consider the following f-GAN objective

$$\min_{\theta} \max_{\phi} F(\theta, \phi) = \mathbb{E}_{x \sim p_{\text{data}}} t_{\phi}(x) - \mathbb{E}_{x \sim p_{G_{\theta}}} f^{*}(t_{\phi}(x))$$

• Generator G_{θ} tries to minimize the divergence estimate and discriminator t_{ϕ} tries to tighten the lower bound

Inferring Latent Representation in GANs

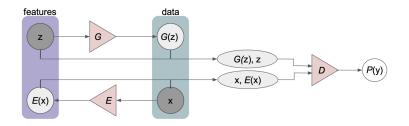
- ▶ The generator of a GAN is typically a directed, latent variable model with latent variable *z* and observed variables *x*. How can we infer the latent feature representations in a GAN?
- ▶ Unlike a normalizing flow model, the mapping $G: z \mapsto x$ need not to be invertible
- Unlike a variational autoencoder, there is no inference network $q(\cdot)$ which can learn a variational posterior over latent variables
- Solution 1: For any point x, use the activations of the prefinal layer of a discriminator as a feature representation
- ▶ Intuition: similar to supervised deep neural networks, the discriminator would have learned useful representations for *x* while distinguishing real and fake *x*

Inferring Latent Representation in GANs

50/61

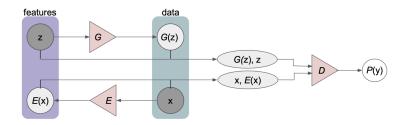
- If we want to directly learn the latent representation of x, we need a different learning algorithm
- ► A regular GAN optimizes a two-sample test objective that compares samples of *x* from the generator and the data distribution
- ▶ Solution 2: To infer latent representations, we will compare samples of x, z from joint distributions of observed and latent variables as per the model and the data distribution
- ► For any x generated via the model, we have access to z (sampled from a simple prior p(z))
- ► For any *x* from the data distribution, the *z* is however unobserved (latent)

Bidirectional GAN



- ▶ In a BiGAN, we have an encoder network E in addition to the generator network G
- ▶ The encoder network only observes $x \sim p_{\text{data}}(x)$ during training to learn a mapping $E: x \mapsto z$
- ► As before, the generator network only observes the samples from the prior z ~ p(z) during training to learn a mapping G : z → x

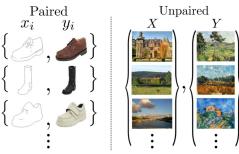
Bidirectional GAN



- ▶ The discriminator *D* observes samples from the generative model z, G(z) and encoding distribution E(x), x
- ▶ The goal of the discriminator is the maximize the two-sample test objective between z, G(z) and E(x), x
- ► After training is complete, new samples are generated via G and latent representations are inferred via E

Translating Across Domains

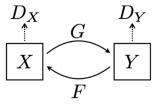
- ► Image-to-image translation: we are given image from two domains, X and Y
- ▶ Paired vs. unpaired examples



▶ Paired examples can be expensive to obtain. Can we translate from $\mathcal{X} \Leftrightarrow \mathcal{Y}$ in an unsupervised manner?

CycleGAN

- ▶ To match the two distributions, we learn two parameterized conditional generative models $G : \mathcal{X} \mapsto \mathcal{Y}$ and $F : \mathcal{Y} \mapsto \mathcal{X}$
- G maps an element of \mathcal{X} to an element of \mathcal{Y} . A discriminator $D_{\mathcal{Y}}$ compares the observed dataset Y and the generated samples $\hat{Y} = G(X)$
- ► Similarly, F maps an element of \mathcal{Y} to an element of \mathcal{X} . A discriminator $D_{\mathcal{X}}$ compares the observed dataset X and the generated samples $\hat{X} = F(Y)$



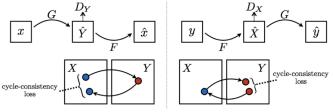
Source: Zhu et al., 2016

CycleGAN

• Cycle consistency: If we can go from X to \hat{Y} via G, then it should also be possible to go from \hat{Y} back to X via F

 $\blacktriangleright \ F(G(X)) \approx X$

► Similarly, vice versa: $G(F(Y)) \approx Y$



Source: Zhu et al., 2016

Overall loss function

 $\mathcal{L}_{\text{GAN}}(G, D_{\mathcal{Y}}, X, Y) + \mathcal{L}_{\text{GAN}}(F, D_{\mathcal{X}}, X, Y)$ $+ \lambda(\mathbb{E}_X \| F(G(X)) - X \|_1 + \mathbb{E}_Y \| G(F(Y)) - Y \|_1)$

CycleGAN in Practice



Source: Zhu et al., 2016

Summary of Generative Adversarial Networks

- Key observation: Samples and likelihoods are not correlated in practice
- Two-sample test objectives allow for learning generative mdoels only via samples (likelihood-free)
- Wide range of two-sample test objectives covering f-divergences (and more)
- ▶ Latent representations can be inferred via BiGAN (and other GANs with similar autoencoder structures)
- Cycle-consistent domain translations via CycleGAN and other variants

57/61

- Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114, 2013.
- Samuel Gershman and Noah Goodman. Amortized inference in probabilistic reasoning. In Proceedings of the Cognitive Science Society, volume 36, 2014.
- R. Shu, H. H. Bui, S. Zhao, M. J. Kochenderfer, and S. Ermon. Amortized inference regularization. In Advances in Neural Information Processing Systems, pages 4393–4402, 2018.
- Naesseth, C. A., Linderman, S. W., Ranganath, R., and Blei, D. M. Variational sequential Monte Carlo. In International Conference on Artificial Intelligence and Statistics, 2018.

- C.J. Maddison, D. Lawson, G. Tucker, N. Heess, M. Norouzi, A. Mnih, A. Doucet, and Y. Whye Teh. Filtering variational objectives. In Advances in Neural Information Processing Systems, 2017.
- Le, T. A., Igl, M., Rainforth, T., Jin, T., and Wood, F. (2018). Auto-Encoding Sequential Monte Carlo. International Conference on Learning Representations.
- ▶ L. Theis, A. v. d. Oord, and M. Bethge. A note on the evaluation of generative models. International Conference on Learning Representations, 2016.
- Zhao, S., Song, J., and Ermon, S. Infovae: Information maximizing variational autoencoders. arXiv preprint arXiv:1706.02262, 2017.

- ▶ L. Theis, A. van den Oord, and M. Bethge. A note on the evaluation of generative models. In ICLR, 2016
- Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in neural information processing systems, pages 2672–2680, 2014.
- Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434, 2015.
- Martin Arjovsky, Soumith Chintala, and Léon Bottou.
 Wasserstein gan. arXiv preprint arXiv:1701.07875, 2017.

- ▶ L. Metz, B. Poole, D. Pfau, and J. Sohl-Dickstein. Unrolled generative adversarial networks. arXiv preprint arXiv:1611.02163, 2016.
- S. Nowozin, B. Cseke, and R. Tomioka. f-gan: Training generative neural samplers using variational divergence minimization. In Advances in neural information processing systems, pages 271–279, 2016.
- Jeff Donahue, Philipp Krähenbühl, and Trevor Darrell. Adversarial feature learning. arXiv preprint arXiv:1605.09782, 2016.
- Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. Unpaired image-to-image translation using cycle-consistent adversarial networks. In ICCV, 2017.

