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Recap of Autoregressive Models 2/61

» Autoregressive models:
» Chain rule based factorization is fully general
» Compact representation via conditional independence and
/or neural parameterization
» Pros:

» Easy to evaluate likelihoods
» Easy to train

» Cons:
» Requires an ordering

» Generation is sequential
» Cannot learn features in an unsupervised way

P >
ZS) e 7S
st PEKING UNIVERSITY




Latent Variable Models: Motivation 3/61

» Lots of variability in images x due to gender, eye color, hair
color, pose, etc. However, unless images are annotated,
these factors of variation are not explicitly available (latent)

» Idea: explicitly model these factors using latent variables z
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Latent Variable Models: Motivation 4/61

(O Ethnicity

2

() Hair color () Pose

Image X

» Only shaded variables x are observed in the data (pixel
values)
» Latent variables z correspond to high level features

» If z chosen properly, p(z|z) could be much simpler than p(x)
» If we had trained this model, then we could identify
features via p(z|z), e.g., p(EyeColor = Blue|x)

» Challenge: Very difficult to specify these conditionals by
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Deep Latent Variable Models 5/61

> 2~ N(0,1)
p(x|z) = N(uo(z), Xg(2)) where pg, X are neural networks

v

» Hope that after training, z will correspond to meaningful
latent factors of variation (features). Unsupervised
representation learning

» As before, features can be computed via p(z|z) R
e 7 F
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Mixture Models 6/61

Combine simple models into a more complex and expressive one
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Variational Autoencoder: Marginal Likelihood 7/61

A mixture of infinite many Gaussians
> 2~ N(0,1)
> p(z|z) = N(po(z), Xo(2)) where pg, Xy are neural networks

» Even though p(z|z) is simple, the marginal p(z) could be
very complex/flexible

po(x) = /pg(:c,z)dz = /pg(m|z)p(z)dz

ez x Y
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Recap of Latent Variable Models 8/61

X

» Allow us to define complex models p(z) in terms of simple
building blocks p(z|z)

» Natural for unsupervised learning tasks (clustering,
unsupervised representation learning, etc)

» No free lunch: much more difficult to learn compared to

ez x Y

fully observed autoregressive models

PEKING UNIVERSITY




First Attempt: Naive Monte Carlo 9/61

po(r) =B, pypa(z]2),  Vapa(z) = E.pi) Vape(z]2)

We can use Monte Carlo estimate for the marginal likelihood
and its gradient

» Sample 2z, ... 2(}) from the prior p(z)

> Approximate expectation with sample average

k
1 .
) ~ gE po(x]z"),  Vopp(z) = § Vopo(z|21)
= =1

Remark: work in theory but not in practice. For most z ~ p(z),
po(x|2) is very low, i.e., mismatch between the prior and
posterior. This leads to large variance for the Monte Carlo
estimates. We need a clever way to select z(!) to reduce the

variance of the estimator. : @ N LK F
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Second Attempt: Importance Sampling 10/61

We can use importance sampling to reduce the variance

po(z) = /Zpg(x\z)p(z)dz — /Zq(z)peq((xz,)z)dz :EZNQ(Z)qu(ZZ)Z)

Similarly, we can use Monte Carlo estimate
» Sample 2z, ... 2(®) from the important distribution ¢(z)

» Approximate expectation with sample average
k .
1 Po (1’, Z(l))
po(w) m 7 At
k= q(:")
Remark: What is a good choice for ¢(z)?
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Variational Inference 11/61

» Evidence Lower Bound (ELBO)

po(, 2)
log pg(x E, o log
o(7) 2 Eonte q(z)

= Ezwq(z) log py (%, Z) - Il:?;zwq(z) log Q(Z)
- Ezwq(z) logPO(xa Z) + H(Q)

» Equality holds when ¢(z) = p(z|x; 0)
log po () = E.p(z|z:0) log po(, 2) + H(p(z|;0))

This is the E-step in EM!
» In practice, p(z|z, ) is usually intractable. We can find the
“best” ¢(z) by maximizing the ELBO in a parameterized

family of {gs(2) : ¢ € O}
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The Evidence Lower Bound 12/61

.. | Dkr(gs(2/x), ps(z]x))

log pg(x)
setTT : *++ ELBO

log-likelihood estimate

¢
ogr(e) > [ ao(elo)log 2455 — £(wi6.0

z

= L(x;0, ¢) + KL(gy(z]2)|Ip(z|z; 0))

The better g,(z|z) can approximate the posterior p(z|z;#), the
closer ELBO will be to the log pgp(x). We then jointly optimize
over 6 and ¢ to maximize the ELBO over a dataset. , »
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Variational Learning 13/61

marginal likelihood

L(#)

Hu+] 6n

L(x;0,¢1) and L(x; 0, ¢2) are both lower bounds, we want to
jointly optimize # and ¢.
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ELBO for The Entire Dataset 14/61

» For each data point x, ELBO holds

logp(e) > | aalzle) log (s, ) + Hlao(xle)) = £(a:6,0)
» Maximum likelihood learning over the entire dataset
Z log pg(x Z L(z%0,¢")
€D zteD
» Therefore

meaxf(G;D ) > 0¢r1na>,<¢MZ£ z'0,¢")

» Note that we use different variational parameters ¢* for
every data point x', because the true posterior pg(z\ml) is

different across data points 2
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Variational Approximations Across Dataset 15/61

3 7 P

» Assume py(z,z’) is close to pgata(2z, 2'). Suppose z captures
information such as digit identity (label), style, etc. For
simplicity, assume z € {0,1,...,9}

> Suppose q,4i(z) is a probability distribution over the hidden
variable z parameterized by ¢’ = (po,...,p9)

> If gzﬁl =(0,0,0,1,...,0), is g4 (2) a good approximation of

o(z|x!)(x! is the leftmost datapoint)? Yes

> If ¢Z = (0, O ,0,1,...,0), is g4 (2) a good approximation of

po(z]2®) (23 is the rightmost datapoint)? No

» For each 2%, need to find a good ¢»* via optimization, can

be expensive @ ez K Z
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Learning via SVI 16/61

» Optimizing Y icp L(x%;0,¢") as a function of 0, ¢!, ..., oM
using stochastic gradient ascent

M
L(D;6,0"M) =) B, (=) (logpe(a’, 2) —log g4 (2"))
=1

1. Initialize 8, ¢, --- , o™
2. Randomly sample a data point 2 from D
3. Optimize L(z%;0, ¢%) as a function of ¢¢, e.g., local gradient
update
4. Compute VoL(x%; 0, d"*)
5. Update 6 in the gradient direction. Go to step 2
» How to compute the gradients? Often no close form
solution for the expectations. Use Monte Carlo estimates!
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Learning Variational Autoencoder 17/61

L(x;0,¢) = )(logpg(x z) —logqs(2))

» Similarly as in VI, we assume g¢(z) is tractable, i.e., easy
to sample from and evaluate
» Suppose z', ..., zF are samples from 46(2)

» The gradient with respect to 6 is easy

VoL(x;0,¢) = VoEy,(») (logpo(z, 2) —log g4(2))
Eq,(z)Vologpy(z,2)

k
1 )
~ 13" Vylogp(z. =)

i=1
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Learning Variational Autoencoder 18/61

» The gradient with respect to ¢ is more complicated
because the expectation depends on ¢

» We can use score function estimator (or REINFORCE)
with control variates. When g4(2) is reparameterizable, we
can also use the reparameterization trick.

» If these exists gy and g, s.t. 2 = ggp(€), € ~ g = 2 ~ qp(2)

Vo L(2;0,0) = VyEqy (o) (logpa(r, gs(€)) —log q(gs(e)))
=Ey. () (Vglogpo(z, gs(€)) — Vi log gs(gs(€)))

k
%Z (Vs log po(x, gs(€))) — Vg log gs(gs(¢")))

where € ~ q.(e),i=1,...,k
» Example: z = p+oe,e ~ N(0,1) & 2z ~ N(p, 2):q¢( )
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Amortized Inference 19/61

L(z%0,¢")

M:

max ¢(0; D) > Jmax
0 0,p1:M

Il
—

7

» So far we have used a set of variational parameters ¢' for
each data point 2°. Unfortunately, this does not scale to
large datasets.

» Amortization: Learn a single parameteric function fy
that maps each = to a set of variational parameters. Like
doing regression x' — ¢"*

» For example, if g(z|z*) are Gaussians with different means
ph, ..., ™, we learn a single neural network f) mapping x’
to u'

» We approximate the posteriors ¢(z|z?) using this

distribution gy (z|x?)
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Amortized Inference 20/61

5 F &

» Assume py(z,z?) is close to pgata(2, ?). Suppose z captures
information such as digit identity (label), style, etc.

> Suppose q,4i(z) is a probability distribution over the hidden
variable z parameterized by ¢

» For each z’, need to find a good ¢** via optimization,
expensive for large dataset

» Amortized Inference: learn how to map z* to a good set of
parameters ¢ via q(z; fa(x")). fx learns how to solve the
optimization problem for you, jointly across all datapoints.

» In the literature, q(z; fy(z")) often denoted as q¢( \x )
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Autoencoder Perspective 21/61

encod
Inference

\3%8 v
9 _’(C%/«O D

input

a6(le) o
T

Latent distribution

L(x;0,9) = Ey, (o) (logpg(x, 2) —log qs(z|z))
= Eq¢(z|z) (log pg(x|z) + log p(z) — log gy (z|x))
= Ey, (zle) log p(2]2;0) — KL (g4 (2[2)[|p(2))

Take a data point ' — Map it to 2 by sampling from g4 (z|z")
(encoder) — Reconstruct & by sampling from p(z|Z;6) (decoder)

What does the training objective L(x;0, ¢) do?
» First term encourages 2 ~ z* (2 likely under p(z|2;6))

> Second term encourages Z to be likely under the prior p( )
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Variational AutoEncoder 22/61

Running

Alice Frisbee Bob

Grass

» Alice goes on a space mission and needs to send images to
Bob. Given an image z‘, she (stochastically) compress it
using 2 ~ g4(z|2") obtaining a message 2. Alice sends the
message Z to Bob

» Given z, Bob tries to reconstruct the image using pg(x|2)

» This scheme works well if E, (.|, log ps(x|2) is large

» The term KL (g4 (2|x)||p(z)) forces the distribution over
messages to have a specific shape p(z). If Bob knows p(z),
he can generate realistic messages Z ~ p(z) and the
corresponding image, as if he had received them from Alice!

ANEIE T

et PEKING UNIVERSITY




Summary on Latent Variable Models 23/61

» Combine simple models to get a more flexible one (e.g.,
mixture of Gaussians)

» Directed model permits ancestral sampling (efficient
generation): z ~ p(z), =~ py(x|z)

» However, log-likelihood is generally intractable, hence
learning is difficult (compared to autoregressive models)

» Joint learning of a model () and an amortized inference
component ¢ to achieve tractability via ELBO optimization

> Latent representations for any = can be inferred via gy (z|x)

ez x Y
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Recap on Deep Generative Models 24/61

d(Pdata'PH)
-

P
Pdata €

X;~Pgata oem

i=12,..,n

Model family
» Model families

> Autoregressive Models: pyp(x) = [[i—, po(zilz<;)

> Variational Autoencoders: pg(z) = [, po(x,z)dz

» Normalizing Flow Models:

px(:0) = p(f () [des (Zer2)|
» All the above families are based on maximizing likelihoods
(or approximations, e.g., lower bound)

» Is the likelihood a good indicator of the quality of samples

generated by the model? @ eF XY
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Sample Quality and Likelihood 25/61

» Optimal generative model will give best sample quality and
highest test log-likelihood. However, in practice, high
log-likelihoods # good sample quality (Theis et al., 2016)

> Case 1: great test log-likelihoods, poor samples. Consider a
mixture model pg(z) = 0.01pgata(z) + 0.99pn0ise (), we have

Epie 108 Ddata(z) > Ep,... logpe(z) > Ep,... 108 Ddata(z)—1og 100

This means E,_ . logpp(z) ~ Ep,,,. 108 Pdata(z) when the
dimension of x is large.

» Case 2: great samples, poor test log-likelihoods. E.g.,
memorizing training set: samples look exactly like the
training set; test set will have zero probability

» The above cases suggest that it might be useful to
disentangle likelihoods and samples = likelihood-free

. 3 |
learning! @ ez X P
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Comparing Distributions via Samples 26,61

S ={x~P} S, = {x~Q}

Given samples from two distributions S; = {x ~ P} and
Sy = {x ~ @Q}, how can we tell if these samples are from the
same distribution? (i.e., P = Q7)

NFIFER
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Two-sample Tests 27/61

» Given S; = {x ~ P} and Sy = {z ~ Q}, a two-sample test
considers the following hypotheses
» Null hypothesis Hy : P = Q
» Alternative hypothesis Hy : p # @
» Test statistic T' compares S7 and Ss, e.g., difference in
means, variances of the two sets of samples
» If T is less than a threshold «, the accept Hj else reject it

> Key observation: Test statistics is likelihood-free since it
does not involve the densities P or @ (only samples)

ez x Y
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Generative Modeling and Two-sample Tests

d(Pdata'PG)
~ p
Pdata €

6EM

Model family

» Suppose we have direct access to the data set
S1=D= {m ~ pdata}

28,61

» Now assume that the model distribution pg permits efficient

sampling (e.g., directed models). Let Sy = {x ~ pg}

» Use a two-sample test objective to measure the distance

between distributions and train the generative model pg to

minimize this distance between S; and Sa

NFIFER
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Two-Sample Test via a Discriminator 29/61

Two Gaussians with different means Two Gaussians with different variances Gaussian and Laplace densities

Prob. Density

» Finding a two-sample test objective in high dimensions is
non-trivial

» In the generative model setup, we know that S; and So
come from different distributions pgata and py respectively

> Key idea: Learn a statistic that maximizes a suitable
notion of distance between the two sets of samples S and

S .
- G5 de i)t
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A Two Player Game 30/61

The generator and discriminator play a minimax game!

Gg

Generator

» Directed, latent variable model with a deterministic
mapping between z and x given by Gy

» Minimizes a two-sample test objective (in support of the
null hypothesis pgata = po

ez x Y
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A Two Player Game 31/61

The generator and discriminator play a minimax game!

Dy

Discriminator

» Any function (e.g., neural network) which tries to
distinguish “real” samples from the dataset and “fake”
sampels generated from the model

» Maximizes the two-sample test objectivee (in support of
the alternative hypothesis pgata 7 o)

ez x Y
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Discriminator Training Objective 32/61

» Training objective for discriminator:
max V(G,D) = Eyppy,,. 10g D(2) + Epp, log(1 — D(z))

> For a fixed generator GG, the discriminator is performing
binary classification with the cross entropy objective

» Assign probability 1 to true data points  ~ pgata
» Assign probability 0 to fake samples = ~ pg

» Optimal discriminator

* o pdata(x)
Dalr) = Pdata(®) + pa ()

ez x Y
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Generator Training Objective 33/61

» Training Objective for generator:

mé’n V(G, D) = Eypy,,. log D(z) + Epp, log(l — D(z))

» For the optimal discriminator D (-), we have

. Pdata () pa(z)
V(G,D5) = Eqypy. lo +Epop lo
(62 D6) = Bepana 08 1 0 G pot@) T 1% pi@) + po(@)
B Pdata(T) pc ()
= Bonpaana 108 o ipe@ T Bere 198 e 1084
2
— KL (pdata pdata2+ y4el ) + KL (pG ‘ pdata2+ ba ) . 10g4
» The sum of KL in the above equation is known as
Jensen-Shannon divergence (JSD)
APITEES
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Jensen-Shannon Divergence 34/61

s 0 (£57) e 5)

» Properties

> JSD(p,q) 2 0

> JSD(p,q) =0iff p=g¢

> JSD(p.q) = JSD(q,p)

» /JSD(p, q) satisfies triangle inequality

» Optimal generator for the JSD GAN

PG = Pdata

» For the optimal discriminator D{.(-) and generator G*(-),
we have

V(G*, D¢« () = —log4

=~/ PEKING UNIVF RSITY




Alternating Optimization in GAN 35/61

mgin mdz)ix V(Go, Dg) = Ernpyyen 108 Dy (2)+E, ) log(1—=Dy (Go(2)))

v

sample m training points (), 2 .. z(™) from D
sample m noise vectors 2 2@ M) from D2
generator parameters 6 update: stochastic gradient descent

1o & .
VoV (Gg, Do) = —V Y log(l — Dy(Gy(z?
oV(Go, Dg) = — 9; og( s(Go(2')))
discriminator parameters ¢ update: stochastic gradient
ascent

1o« , A
VeV (G, Dy) = %V(bZlogD¢(g;(l))+1og(1_p¢(ge(z(1))))
=1

Repeat for fixed number of epochs R
At 7% ¥

@
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A Toy Example

Discriminator —— Generator  ....eeeeeeererenenenn

36/61

Data Distribution

Y/ 4 I/

AN

(a) (b) (©)

Current State Update Discriminator Update Generator

Adapted from Goodfellow, 2014

(d)
Convergence

ANEII SR

et PEKING UNIVERSITY




Frontiers in GAN Research 37/61

» GANSs have been successfully applied to several domains
and tasks

» However, working with GANs can be very challenging in
practice: unstable optimization/mode collapse/evaluation

» Many bag of tricks applied to train GANs successfully

Image source: Ian Goodfellow. Samples from Goodfellow et al.,
2014, Radford et al., 2015, Liu et al., 2016, Karras et al., 2017,

Karras et al., 2018 >
: ANELE RS

PEKING UNIVERSITY




Optimization Challenges 38/61

» Theorem: If the generator updates are made in function
space and discriminator is optimal at every step, then the
generator is guaranteed to converge to the data distribution

» Unrealistic assumptions! In practice, the generator and
discriminator loss keeps oscillating during GAN training

Adam optimizer

Real Image Loss
Fake Image Loss
4 Generate Image Loss

» No robust stopping criteria in practice (unlike MLE)

NFIFER
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Mode Collapse 39/61

» GANSs are notorious for suffering from mode collapse

» Intuitively, this refers to the phenomena where the
generator of a GAN collapse to one or few samples (i.e.,
“modes”)

Arjovsky et al., 2017

ANEIE T
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Mode Collapse 40/61

Target

» True distribution is a mixture of Gaussians

- - ’

Step 0 Step 5k Step 10k Step 15k Step 20k
Source: Metzetal., 2017

» The generator distribution keeps oscillating between

ez x Y

different models
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Mode Collapse 41/61

AR AR AR AR AN SRR
LA ARARARARRR AR SRR
LA ARARARARRR AN SRR
LA ARARAR AR AR AR SRR
LA ARARANARRR AR RRA bbbbbbb
LA ARARAR AR RN AR SRR Lbbbbbbb
AR AR AR AR RN AR RRA Lbbbbbbb
(AARARAR AR AR AR b bbb bbb b
20k steps 50K steps 100k steps

R T T O T M Y
B T T O T M Y
T T T T T Y
R Y
TPTERRRERRERE®
R Y
BT T T I Y MY

10k steps

Source: Metz et al., 2017

> Fixes to mode collapse are mostly empirically driven:
alternate architectures, adding regularization terms,
injecting small noise perturbations etc.

» Tips and tricks to make GAN work by Soumith Chintala:
https://github.com/soumith/ganhacks

ez x Y
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https://github.com/soumith/ganhacks

GAN Generated Artworks 42/61

Source: Robbie Barrat, Obvious

GAN generated art auctioned at Christie’s.
Expected Price: $7,000 — $10,000
True Price: $432,500

ANEIE T
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Advanced GAN Variants 43/61

» The GAN Zoo:
https://github.com/hindupuravinash/the-gan-zoo
» Examples

» Rich class of likelihood-free objectives
» Combination with latent representations
» Application: Image-to-image translation, etc.

ez x Y
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https://github.com/hindupuravinash/the-gan-zoo

f Divergence 44/61

» Given two densities p and ¢, the f— divergence is given by
p(x)
Dy(pllg) = Ezng f <>
le) = Eay (205
where f is any convex, lower-semicontinuous function with
f1)=0
» Lower-semicontinuous: function value at any pint zg is

close to f(xg) or greater than f(x¢)
A

-, >
Y

» Example: KL divergence with f(u) = ulogu

ez x Y
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f Divergence

45/61

Many more f-divergence!

Name D;(P||Q) Generator f(u)
Total variation 3 [lp(z) — q(z)|dz Slu—1]
Kullback-Leibler I p(z) log = dz ulogu
Reverse Kullback-Leibler [ g(z) log iz dz —logu
Pearson x2 I Li{f)_PlilL dz (u—1)2
Neyman x? I LﬂiJu_L'l(iD_ dz Lp_uu)i
Squared Hellinger I (\/p(z - a(z) )2 dz (Va—1)
Jeffrey J (0(a) - (@) log () da (u=1)logu

Jensen-Shannon
Jensen-Shannon-weighted
GAN

a-divergence (a ¢ {0,1})

i [ p(z)log 17?% +q(z)log ﬂ%’%b dz
[p(z)wlog Txf(%_m + (1 — m)q(z) log o 1’7“)“(” dz
p(z)log »TzJ‘J_> o+ 4(z) 10g 55y do — log(4)

i/ (p@) [(43)" - 1] - ale(@) - p(a))) do

—(u+1)log 4% + ulogu
wulogu — (1 — w + mu)log(l — 7 + mu)
ulogu — (u+1)log(u+1)

oy (W —1-a(u-1)

Source: Nowozin et al., 2016

egH P
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Variational Divergence Minimization 46/61

» To use f-divergences as a two-sample test objective for
likelihood-free learning, we need to be able to estimate it
only via samples

» Fenchel conjugate: For any function f(-), its convex
conjugate is defined as

fr(t) = sup ut— f(u)

uEdomf

» Duallity: f** = f. When f(-) is convex, lower
semicontinuous, so is f*(-)

flu) = sup tu—f*(t)

tEdomf*

ez x Y
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Variational Divergence Minimization 47/61

» We can obtain a lower bound to any f-divergence via its
Fenchel conjugate

Di(pllg) = Egmg f (P(fv)>

q(x)
= su P@) g
=Eavg S0 (%(a:) f <t>>

PO s
> By ) 505 = £1(1(2)

= Eonp t() — Egng f*(t(x))

for any function ¢ : X > dom -

ANEIE T
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f-GAN 48/61

» Variational lower bound
Dy(pllg) = §1€17P@_(Ex~p t(x) — Egng f*(t(2)))

Choose any f-divergence

Let p = pdata and ¢ = pg
Parameterize t by ¢ and G by 6
Consider the following f-GAN objective

mein mdz}x F(0,9) = Eonpyon to(2) — Eanpg, [ (to(2))

> Generator Gy tries to minimize the divergence estimate
and discriminator ¢4 tries to tighten the lower bound

ez x Y
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Inferring Latent Representation in GANs 49/61

» The generator of a GAN is typically a directed, latent
variable model with latent variable z and observed
variables . How can we infer the latent feature
representations in a GAN?

» Unlike a normalizing flow model, the mapping G : z — =
need not to be invertible

» Unlike a variational autoencoder, there is no inference
network ¢(-) which can learn a variational posterior over
latent variables

» Solution 1: For any point z, use the activations of the
prefinal layer of a discriminator as a feature representation

» Intuition: similar to supervised deep neural networks, the
discriminator would have learned useful representations for

ez x Y

x while distinguishing real and fake x
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Inferring Latent Representation in GANs 50/61

» If we want to directly learn the latent representation of x,
we need a different learning algorithm

> A regular GAN optimizes a two-sample test objective that
compares samples of x from the generator and the data
distribution

» Solution 2: To infer latent representations, we will compare
samples of z, z from joint distributions of observed and
latent variables as per the model and the data distribution

» For any x generated via the model, we have access to z
(sampled from a simple prior p(z))

» For any x from the data distribution, the z is however
unobserved (latent)

ez x Y
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Bidirectional GAN 51/61

features data

> &
G(2),z
x, E(X)
5 < 8

» In a BiGAN, we have an encoder network E in addtion to
the generator network GG

B>

» The encoder network only observes & ~ pqata(z) during
training to learn a mapping F : x +— 2

» As before, the generator network only observes the samples
from the prior z ~ p(z) during training to learn a mapping

ez x Y

G:z—=x
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Bidirectional GAN 52/61

features data

G(z), z
X, E(x) P @
o} @

» The discriminator D observes samples from the generative
model z, G(z) and encoding distribution E(x),x

» The goal of the discriminator is the maximize the
two-sample test objective between z, G(z) and E(x),x

» After training is complete, new samples are generated via
G and latent representations are inferred via E

ez x Y
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Translating Across Domains 53/61

» Image-to-image translation: we are given image from two
domains, X and Y

» Paired vs. unpaired examples
Paired Unpaired

IR

Source: Zhu et al., 2016

» Paired examples can be expensive to obtain. Can we
translate from X < ) in an unsupervised manner?
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CycleGAN 54/61

» To match the two distributions, we learn two parameterized
conditional generative models G : X — Y and F' : Y — X

» G maps an element of X to an element of ). A
discriminator Dy compares the observed dataset Y and the
generated samples Y = G(X)

» Similarly, /' maps an element of ) to an element of X'. A
discriminator Dy compares the observed dataset X and
the generated samples X = F(Y))

Dy Dy
S e
x| Ty
\/
F

Sodrce: Zhu etal., 2016 N
Je g X F
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CycleGAN 55/61

» Cycle consistency: If we can go from X to Y via G, then it
should also be possible to go from Y back to X via F
> F(G(X))~ X
» Similarly, vice versa: G(F(Y)) =Y

¢ & Rale
cycle-consistency _| X\i->y X <—3\.Y <y Cle-C?(;ISSSiSLEncy
loss . |

Source: Zhu et al., 2016

» Overall loss function

EGAN(Ga Dana Y) + CGAN(Fa DXaXa Y)
FAEx[|F(G(X)) = X1 + Ey [|[G(F(Y)) = Y1)
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CycleGAN in Practice

Monet < Photos

nel —> photo

Zebras T Horses

photo —>Monet

horse — zebra

56,61

Summer Z_ Winter

winter —) summer

Photograph Monet

Source: Zhu et al., 2016
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Summary of Generative Adversarial Networks 57/61

> Key observation: Samples and likelihoods are not
correlated in practice

» Two-sample test objectives allow for learning generative
mdoels only via samples (likelihood-free)

» Wide range of two-sample test objectives covering
f-divergences (and more)

» Latent representations can be inferred via BiIGAN (and
other GANs with similar autoencoder structures)

» Cycle-consistent domain translations via CycleGAN and
other variants
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