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Introduction 2/38

» The approximation accuracy of VI depends on the
expressive power of the approximating distributions.

» Ideally, we want a rich variational family of distributions
that provide accurate approximation while maintaining the
compuational efficiency and scalability.

» In this lecture, we will discuss some recent techniques for
improving the flexibility of variational approximations.

» We will also talk about methods that combine MCMC and
VI for the best of both worlds.
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Simple Distributions is Not Enough 3/38

» VI requires the approximating distributions to have the
following properties

» Analytic density
» Easy to sample
» Many simple distributions satisfy the above properties,
e.g., Gaussian, general exponential family distributions.
Therefore, they are commonly used in VI.

» Unfortunately, the posterior distribution could be much
more complex (highly skewed, multi-modal, etc).

» How can we improve the complexity of our variational
approximations while maintaining the desired properties?
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Improve flexibility via Transforms 4/38

» Idea: Map simple distributions to complex distributions via
learnable transforms.

Gaussian Double Moon
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Change of Variable Formula 5/38

Change of Variables

Assume that the mapping between z and z, given by
f:R™ — R", is invertible such that x = f(z) and z = f~!(z)

()

» .,z need to be continuous and have the same dimension.
For example, if € R™ then z € R"

» For any invertible matrix A, det(A™!) = det(A)~1

det ( ag(j) >

pa(z) = p=(fH(z))

-1

pz(z) = p2(2)
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Normalizing Flow Models 6/38

» Consider a directed, latent-variable model over observed
variables x and latent variables z.

» In a normalizing flow model, the mapping between z and =z,
given by fy : R® — R"”, is deterministic and invertible such
that x = fp(z) and z = f, ! (z)

fy £,!

» Using change of variables, the probability p(x) is given by

det <af;iz)> ‘_1

pz(z]0) = p2(2)
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Normalizing Flow Models 7/38

» Normalizing Transforms: Change of variables gives a
normalized density after applying an invertible
transformation

» Flow: Invertible transformations can be composed with
each other

zk:fk(zk_l), kZl,...,K

» The log-likelihood of zg

K
log prc (21) = log po(z0) — 3 log ]det <8f<>> ’

Zl—
=1 k—1

Remark: for simplicity, we omit the parameters for each of
these transformations fi, fo,..., fx.
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Normalizing Flows 8/38

Exploit the rule for change of variables
» Start with a simple distribution for zy (e.g., Gaussian).

» Apply a sequence of K invertible transformations.

Sampling and Entropy
zg = fko...0 fao fi(zo)
3 Ofk
log g (zx) = log qo(zo) — Y _ log det Bax

= 0z
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Distribution flows through a sequence of invertible transforms

Adapted from Mohamed and Rezenda, 2017
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Planar Flows 9/38

» Planar flow (Rezende and Mohamed, 2015).
z = fo(2) = 2+ uh(w' 2z 4+ b)

parameterized by § = (w, u,b) where h is a non-linear
function

» Absolute value of the determinant of the Jacobian

afa(

’d o ‘ ‘dt]+h'(w z + b)uw )‘

= ‘1+h’(w z+b)u w’

> Need to restrict parameters and non-linearity for the
mapping to be invertible. For example,

h(-) = tanh(-), K (w'z+b)u"w > -1
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Planar Flows 10/38

» Base distribution: Gaussian

Z, M=1 M=2

» Base distribution: Uniform
. —

» 10 planar transformations can transform simple

Unit Gaussian

Uniform
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VI with Normalizing Flows 11/38

» Learning via maximizing the ELBO

p(@,2K)
qr (zK)
- qu(zo) log p(z, zK) — E!IO(ZO) log go(20)
K
=D Egy(zp) log [det (afk’(zk—1)> '

0z
P k—1

L=E, () log

gk (2K

» Exact likelihood evaluation via inverse transformation and
change of variable formula

» Sampling via forward transformation
20 ~ qo(20), 2K = frk o frk—10---0 fi(z20)
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VI with Normalizing Flows 12/38
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Requirements for Normalizing Flows 13/38

» Simple initial distribution go(zo) that allows for efficient
samping and tractable likelihood evaluation, e.g., Gaussian

» Sampling requires efficient evaluation of

2= filzp—1), k=1,....K

» Likelihood computation also requires the evaluation of
determinants of n x n Jacobian matrices ~ O(n?3),
prohibitively expensive within a learning loop!

» Design transformations so that the resulting Jacobian
matrix has special structure. For example

» lower rank update to identity as in planar flows.
» triangular matrix whose determinant is just the product of
the diagonal entries, i.e., an O(n) operation.
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Designing Invertible Transformations 14/38

» NICE or Nonlinear Independent Components Estimation
(Dinh et al., 2014) composes two kinds of invertible
transformations: additive coupling layers and rescaling
layers

» Real-NVP (Dinh et al., 2017)
» Inverse Autoregressive Flow (Kingma et al., 2016)

» Masked Autoregressive Flow (Papamakarios et al., 2017)
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NICE: Additive Coupling Layers 15/38

» Partition the variable z into two disjoint subsets
z2 =214 U 24+1:n
» Forward mapping z — x:
T1d = 21:ds  Tdilm = Zd+1n + Me(21:4)

where myg : R? — R"~% is a neural network with parameters

0
» Backward mapping x +— 2:

21:d = T1:d, Zd+1:m = Ld+1:n — m@(xlzd)
» Forward/Backward mapping is volume preserving: the

ez x Y
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NICE: Rescaling Layers 16/38

>

>

Additive coupling layers are composed together (with
arbitrary partitions of variables in each layer)

Final layer of NICE uses a rescaling transformation

Forward mapping z +— x:
T, =8z, t=1,...,n

where s; > 0 is the scaling factor for the i-th dimension.

Backward mapping = +— z:

zi:ﬁ, 1i=1,...,n
S;
Jacobian of forward mapping:
J = diag(s), det(.J) =[] s
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RealNVP: Non-volume Preserving NICE 17/38

» Forward mapping z — x:

Tld = Z1:ds Tdt1:n = Zd+1:n © exp(ag(21:4)) + po(21:4)

where ay and ug are both neural networks.

» Backward mapping x +— z:

21:d = T1:d,  Zd+1m = eXP(—ag(21:.4)) © (Tat1m — po(Z1:4))

» The determinant of the Jacobian of forward mapping

det( ) —exp(Zag z1d>

» Non-volume preserving transformation in general since
determinant can be less than or greater than 1.
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Autoregressive Models as Normalizing Flows 18/38

» Consider a Gaussian autoregressive model

n

p(x) = [[p(wile<i)

i=1

where p(zi|z<i) = N (i (21:i-1), exp(;(21:i-1))?). p; and
«; are neural networks for 7 > 1 and constants for ¢ = 1.

> Sequential sampling:
2 ~N(0,1), x = exp(ag(ri:i-1))zitpi(®ri-1), i=1,...,n

» Flow interpretation: transforms samples from the standard
Gaussian to those generated from the model via invertible
transformations (parameterized by u;, «;)
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Masked Autoregressive Flow (MAF) 19/38

z; =2 -exp(o;) +p Vie{l..

' z'luz .

Transformed
distribution 1

z2

Base . P
distribution 1 2

» Forward mapping from z + x:
v = exp(oi(z1i-1))z + pi(r14-1), i=1,...,n

» Like autoregressive models, sampling is sequential and slow

(O(n))
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Masked Autoregressive Flow (MAF) 20/38

Transformed aee e
distribution @ | & =
° Hi

Base
distribution

= (z; — pi) -exp(—a;) Vie{l.. n}

» Inverse mapping from x +— z: shift and scale

Zi = (.CI}z — ui(xl;i_l))/exp(ai(xlzi_l)), 7= 1, N

Note that this can be done in parallel.

» Jacobian is lower diagonal, hence determinant can be
computed efficiently.

» Likelihood evaluation is easy and parallelizable
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Inverse Autoregressive Flow (IAF) 21/38

@ =z -exp(a;) + i Vie{l...n}

Transformed
distribution

Base
distribution

» Forward mapping from z — x (parallel):
x; = exp(a;(z1:4-1))zi + i(z14-1), i=1,...,n
» Backward mapping from x — z (sequential):
zi = (xi — pi(21:-1))/ exp(ai(z1:-1))

» Fast to sample from, slow to evaluate likelihoods of data
points. However, likelihood evaluation for a sampled point

is fast. @ ez X P
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[AF is Inverse of MAF

Transformed
distribution

ONE

dls'rlbu"on .

z = (zi — pi) -exp(—oy) Vie {1..

22/38

z; = 2z -exp(es) + i Vie{l..
Transformed
distribution

-n}

e Hi

Base
distribution

Inverse pass of MAF (left) vs. Forward pass of IAF (right)

» Interchanging z and z in the inverse transformation of
MAF gives the forward transformation of IAF.

» Similarly, forward transformation of MAF is inverse

transformation of IAF.
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Summary of Nomalizing Flows 23/38

» Transform simple distributions into more complex
distributions via change of variables

» Jacobian of transformations should have tractable
determinant for efficient learning and density estimation

» Computational tradeoff in evaluating forward and inverse
transformations

» MAF': Fast likelihood evaluation, slow sampling, more
suited for MLE based training, density estimation.

» TAF': Fast sampling, slow likelihood evaluation, more suited
for variational inference, real time generation.

» NICE and RealNVP: Fast on both side, but generally less
flexible than the others.
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MCMC Recap 24/38

» MCMC approximates the posterior through a sequence of
transitions

20 ~q(20), 2zt~ q(z]z—1,2), t=1,2,...

where the transition kernel satisfies the detailed balance
condition

p(x, 2-1)q(2e|2e—1, ) = p(, 2)q(20—1 |2, )

» Pros
» automatically adapts to true posterior
» asymptotically unbiased

> Cons
» slow convergence, hard to assess quality

» tuning headaches
e g K S
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MCMC as Flows 25/38

» Each iteration in MCMC can be viewed as a mapping
zt—1 — 2t, and the marginal likelihood of zp is

T

q(zr|z) = /q(zolx) Hq(zt|zt_1,x) dzo,...,dzr—1

t=1
» Variational lower bound

(x, z7)

p\x,
L=E log ————= < log p(x
Cerle) =157

q(z7|x)

» The stochastic Markov chain, therefore, can be viewed as a
nonparametric variational approximation.

» Can we combine MCMC and VI to get the best of both
worlds?
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Auxiliary Variational Lower Bound 26/38

» Use auxiliary random variables y = (2q,...,27-1) to
construct a tractable lower bound

p(x, z7)r(ylzr, ®)

L =K
e q(y, zr|x)

) log

< logp(x)

y,ZT|-'E

» r(y|zr,x) is an arbitrary auxiliary distribution, e.g.
T
r(yler, ) = [ [ re(zi-ala, @)
t=1
» This is a looser lower bound

Lawx = Eq(y,2r12) log p(x, 27) + logr(y|2r, z) — log q(y, 2r|z))
=L = Eqopla) (Drr(q(yler, @)|Ir(yl2r, 7))
< L <logp(z)
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Monte Carlo Estimate of MCMC Lower Bound 27/38

> Suppose zg, 21, ..., 27 is a sampled trajectory
20 ~ q(zolz)

2zt ~ q(z)ze-1,2), t=1,...,T

» Unbiased stochastic estimate of L,ux

T
R Tt (Zt—1|%t, T
Laux = logp(x, 21) —log q(z0lz) + ) <1°g M)
] qi\Zt|2t—1,

T
= logp(, 20) — log q(z0lz) + > logay
t=1

where
P(fﬁ, Zt)Tt(th |Zt, x)

p(% thl)Qt(Zt|Zt717 iU)

ap =
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MCMC Always Improves The ELBO 28/38

» Using the detailed balance condition

p(x,zt)?“t(zt—l\zt,ff) _ Tt(Zt—ﬂZt,ﬁU)
p(r, z—1)q(ze|ze-1,2)  @z-1]z, )

oy =

» Therefore,

(Zt 1|Zt7 )
Lo =E log Eq( —_ 7
au q(zolz) 1O zo\x Z g(y,zr|o) | at(z—1|2t, @)
» For optimal 7 (z;—1|2, x) = q(zt,1|zt,x)
E, log re(2e-1|2t, ) = E, q(zi-1]2t, ) >0

Qt(zt—l|zt7$) B Qt(zt—l‘ztvx)

» MCMC iterations always improve approximation unless
already perfect! In practice, we need

Tt(2t71|zta$) ~ Q(Zt71|ztal')
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Optimizing The Markov Chain 29/38

» Specify a parameterized Markov chain

QO( Z0|11’3 Zt|Zt 1,

IIEH

» Specify a parameterized auxiliary distribution r¢(y|zr, x)

» Sample MCMC trajectories for the variational lower bound

L(0) = log p(z, 1) — log q(zo|z) + Z < wm)

—1 zt’Zt 1, )

» Run SGD using VyL(6) (reparameterization trick)
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Example: Bivariate Gaussian 30/38

» A bivariate Gaussian target distribution

1 1
p(:, 22)  exp (—2712<z1 - - g z2>2)

» Gibbs sampling
a(zi|ze-1) = p(='z7") = N(i, 07)
» Over-relaxation (Adler, 1981)
a(zilze-1) = N (i + alzi_y — pi), 07 (1 - a?))

» Gaussian reverse model 7(z;—1|z), linear dependence on z;.
Find the best « via variational lower bound maximization.
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Example: Bivariate Gaussian 31/38

Gibbs sampling versus over-relaxation for a bivariate Gaussian

Variational lower bound for 2 MCMC methods

w
w o

INd
o

variational lower bound
P

overrelaxation

4
n

= = = Gibbs sampling

0 L L L L L L L L
1 2 3 4 5 6 7 8 9 10

nr of MCMC steps

The improved mixing of over-relaxation results in an improved

variational lower bound. S L >
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Hamiltonian Variational Inference 32/38

» We can use Hamiltonian dynamics for more efficient
transition distributions

1)1/6 ~ Q(Ullf‘zt—la ‘T)7 (Utv Zt) = @(1}27 Zt—l)
where ® : R?" — R?” is the Hamiltonian flow.
> & is deterministic, invertible and volume preserving
q(ve, 2t|z¢-1,7) = Q(Ué‘zt—hx)v T(Uéa 21|z, ) = r(ve] 2, v)

> Note that we would use leapfrog integrator to discretize the
Hamiltonian flow. However, the resulting map d is also
invertible and volume preserving, and the above equations
still hold.
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Hamiltonian Variational Inference 33/38

» HMC trajectory

2o ~ q(zo|x)

vy ~ q(vp|ze—1,2), v,z = P(vg, 221), t=1,...,T
» Lower bound estimate

A

T
p(% Zt)rt(vtfzt, 90)
L(6) = logp(z, z0)—log q(zo|x)+ ) log
; p(@, 2e-1)qe (vi|w, 2¢-1)

> Stochastic optimization using VgL (6)
» No rejection step, to keep everything differentiable.
» @ includes all parameters in ¢ and r, and may include some
HMC hyperparameters (stepsize and mass matrix) as well.

ez x Y
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Examples: Overdispersed Counts 34/38

A simple 2-dimensional beta-binomial model for overdispersion.

One step of Hamiltonian dynamics with varying number of
leapfrog steps.
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Examples: Generative Model for MNIST 35/38

Variational autoencoder for binarized MNIST, Gaussian prior
p(z) = N(0,1), MLP conditional likelihood py(z|2)

Model —L —log p(x)
Results with q(zo|x) = N (u, o?1):

5 leapfrog steps 90.86 87.16
10 leapfrog steps  87.60 85.56
With q(zp|x) = inference network:

No leapfrog steps  94.18 88.95

1 leapfrog step 91.70 88.08

4 leapfrog steps 89.82 86.40

8 leapfrog steps 88.30 85.51

» MCMC makes bound tighter, give better marginal
likelihood.

» MCMC also works with simple initialization. R
At 7% ¥
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Examples: Generative Model for MNIST

35/38

Variational autoencoder for binarized MNIST, Gaussian prior

p(z) = N(0,1), MLP conditional likelihood py(z|2)
Model —L — log p(x)

Results with q(zo|x) = N (i, o°1):
5 leapfrog steps 90.86 87.16
10 leapfrog steps  87.60 85.56

With q(zo|x) = inference network:

No leapfrog steps ‘ 94.18 ‘ ‘88.95 ‘
1 leapfrog step 91.70 88.08
4 leapfrog steps 89.82 86.40
8 leapfrog steps 88.30 85.51

» MCMC makes bound tighter, give better marginal

likelihood.
» MCMC also works with simple initialization.
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Examples: Generative Model for MNIST 35/38

Variational autoencoder for binarized MNIST, Gaussian prior
p(z) = N(0,1), MLP conditional likelihood py(z|2)

Model —L — log p(x)
Results with q(zo|x) = N'(p, o1):

5 leapfrog steps 90.86 87.16
10 leapfrog steps  87.60 85.56
With q(zo|x) = inference network:

No leapfrog steps  94.18 88.95

1 leapfrog step 91.70 88.08

4 leapfrog steps 89.82 86.40

8 leapfrog steps 88.30 85.51

» MCMC makes bound tighter, give better marginal
likelihood.

» MCMC also works with simple initialization. R
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Combining MCMC and VI 36/38

» MCMC improves variational approximation
» MCMC kernels automatically adapt to target p(z|z).
» More flexible approximations in addition to standard
exponential family distributions.
» More MCMC steps = slower iterations, but few iterations
needed for convergence.

» Optimizing variational bound improves MCMC

» Automatic tuning, convergence assessment, independent
sampling, no rejections.

» Learning MCMC transitions q;(z¢|z¢—1, ).

» Optimize initialization g(zo|z).

» Many possibilities left to explore.
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