
Statistical Models & Computing Methods

Lecture 19: Generative Adversarial Nets

Cheng Zhang

School of Mathematical Sciences, Peking University

November 29, 2022

Recap on Deep Generative Models 2/37

▶ Model families
▶ Autoregressive Models: pθ(x) =

∏n
i=1 pθ(xi|x<i)

▶ Variational Autoencoders: pθ(x) =
∫
z
pθ(x, z)dz

▶ Normalizing Flow Models:

pX(x; θ) = pZ(f
−1
θ (x))

∣∣∣det(∂f−1
θ (x)

∂x

)∣∣∣
▶ All the above families are based on maximizing likelihoods

(or approximations, e.g., lower bound)

▶ Is the likelihood a good indicator of the quality of samples
generated by the model?

Sample Quality and Likelihood 3/37

▶ Optimal generative model will give best sample quality and
highest test log-likelihood. However, in practice, high
log-likelihoods ̸= good sample quality (Theis et al., 2016)

▶ Case 1: great test log-likelihoods, poor samples. Consider a
mixture model pθ(x) = 0.01pdata(x) + 0.99pnoise(x), we have

Epdata log pdata(x) ≥ Epdata log pθ(x) ≥ Epdata log pdata(x)−log 100

This means Epdata log pθ(x) ≈ Epdata log pdata(x) when the
dimension of x is large.

▶ Case 2: great samples, poor test log-likelihoods. E.g.,
memorizing training set: samples look exactly like the
training set; test set will have zero probability

▶ The above cases suggest that it might be useful to
disentangle likelihoods and samples ⇒ likelihood-free
learning!

Comparing Distributions via Samples 4/37

Given samples from two distributions S1 = {x ∼ P} and
S2 = {x ∼ Q}, how can we tell if these samples are from the
same distribution? (i.e., P = Q?)

Two-sample Tests 5/37

▶ Given S1 = {x ∼ P} and S2 = {x ∼ Q}, a two-sample test
considers the following hypotheses
▶ Null hypothesis H0 : P = Q
▶ Alternative hypothesis H1 : p ̸= Q

▶ Test statistic T compares S1 and S2, e.g., difference in
means, variances of the two sets of samples

▶ If T is less than a threshold α, the accept H0 else reject it

▶ Key observation: Test statistics is likelihood-free since it
does not involve the densities P or Q (only samples)

Generative Modeling and Two-sample Tests 6/37

▶ Suppose we have direct access to the data set
S1 = D = {x ∼ pdata}

▶ Now assume that the model distribution pθ permits efficient
sampling (e.g., directed models). Let S2 = {x ∼ pθ}

▶ Use a two-sample test objective to measure the distance
between distributions and train the generative model pθ to
minimize this distance between S1 and S2

Two-Sample Test via a Discriminator 7/37

▶ Finding a two-sample test objective in high dimensions is
non-trivial

▶ In the generative model setup, we know that S1 and S2

come from different distributions pdata and pθ respectively

▶ Key idea: Learn a statistic that maximizes a suitable
notion of distance between the two sets of samples S1 and
S2

A Two Player Game 8/37

The generator and discriminator play a minimax game!

Generator

▶ Directed, latent variable model with a deterministic
mapping between z and x given by Gθ

▶ Minimizes a two-sample test objective (in support of the
null hypothesis pdata = pθ

A Two Player Game 9/37

The generator and discriminator play a minimax game!

Discriminator

▶ Any function (e.g., neural network) which tries to
distinguish “real” samples from the dataset and “fake”
sampels generated from the model

▶ Maximizes the two-sample test objectivee (in support of
the alternative hypothesis pdata ̸= pθ)

Discriminator Training Objective 10/37

▶ Training objective for discriminator:

max
D

V (G,D) = Ex∼pdata logD(x) + Ex∼pG log(1−D(x))

▶ For a fixed generator G, the discriminator is performing
binary classification with the cross entropy objective
▶ Assign probability 1 to true data points x ∼ pdata
▶ Assign probability 0 to fake samples x ∼ pG

▶ Optimal discriminator

D∗
G(x) =

pdata(x)

pdata(x) + pG(x)

Generator Training Objective 11/37

▶ Training Objective for generator:

min
G

V (G,D) = Ex∼pdata logD(x) + Ex∼pG log(1−D(x))

▶ For the optimal discriminator D∗
G(·), we have

V (G,D∗
G) = Ex∼pdata

log
pdata(x)

pdata(x) + pG(x)
+ Ex∼pG

log
pG(x)

pdata(x) + pG(x)

= Ex∼pdata
log

pdata(x)
pdata(x)+pG(x)

2

+ Ex∼pG
log

pG(x)
pdata(x)+pG(x)

2

− log 4

= KL

(
pdata

∥∥∥∥pdata + pG
2

)
+KL

(
pG

∥∥∥∥pdata + pG
2

)
− log 4

▶ The sum of KL in the above equation is known as
Jensen-Shannon divergence (JSD)

Jensen-Shannon Divergence 12/37

JSD(p, q) = KL

(
p

∥∥∥∥p+ q

2

)
+KL

(
q

∥∥∥∥p+ q

2

)
▶ Properties

▶ JSD(p, q) ≥ 0
▶ JSD(p, q) = 0 iff p = q
▶ JSD(p, q) = JSD(q, p)
▶

√
JSD(p, q) satisfies triangle inequality

▶ Optimal generator for the JSD GAN

pG = pdata

▶ For the optimal discriminator D∗
G∗(·) and generator G∗(·),

we have
V (G∗, D∗

G∗(x)) = − log 4

Alternating Optimization in GAN 13/37

min
θ

max
ϕ

V (Gθ, Dϕ) = Ex∼pdata logDϕ(x)+Ez∼p(z) log(1−Dϕ(Gθ(z)))

▶ sample m training points x(1), x(2), . . . , x(m) from D
▶ sample m noise vectors z(1), z(2), . . . , z(m) from pz

▶ generator parameters θ update: stochastic gradient descent

∇θV (Gθ, Dϕ) =
1

m
∇θ

m∑
i=1

log(1−Dϕ(Gθ(z
(i))))

▶ discriminator parameters ϕ update: stochastic gradient
ascent

∇ϕV (Gθ, Dϕ) =
1

m
∇ϕ

m∑
i=1

logDϕ(x
(i))+log(1−Dϕ(Gθ(z

(i))))

▶ Repeat for fixed number of epochs

A Toy Example 14/37

Adapted from Goodfellow, 2014

Frontiers in GAN Research 15/37

▶ GANs have been successfully applied to several domains
and tasks

▶ However, working with GANs can be very challenging in
practice: unstable optimization/mode collapse/evaluation

▶ Many bag of tricks applied to train GANs successfully

Image source: Ian Goodfellow. Samples from Goodfellow et al.,
2014, Radford et al., 2015, Liu et al., 2016, Karras et al., 2017,
Karras et al., 2018

Optimization Challenges 16/37

▶ Theorem: If the generator updates are made in function
space and discriminator is optimal at every step, then the
generator is guaranteed to converge to the data distribution

▶ Unrealistic assumptions! In practice, the generator and
discriminator loss keeps oscillating during GAN training

▶ No robust stopping criteria in practice (unlike MLE)

Mode Collapse 17/37

▶ GANs are notorious for suffering from mode collapse

▶ Intuitively, this refers to the phenomena where the
generator of a GAN collapse to one or few samples (i.e.,
“modes”)

Mode Collapse 18/37

▶ True distribution is a mixture of Gaussians

▶ The generator distribution keeps oscillating between
different models

Mode Collapse 19/37

▶ Fixes to mode collapse are mostly empirically driven:
alternate architectures, adding regularization terms,
injecting small noise perturbations etc.

▶ Tips and tricks to make GAN work by Soumith Chintala:
https://github.com/soumith/ganhacks

https://github.com/soumith/ganhacks

GAN Generated Artworks 20/37

GAN generated art auctioned at Christie’s.
Expected Price: $7,000 – $10,000
True Price: $432,500

Advanced GAN Variants 21/37

▶ The GAN Zoo:
https://github.com/hindupuravinash/the-gan-zoo

▶ Examples
▶ Rich class of likelihood-free objectives
▶ Combination with latent representations
▶ Application: Image-to-image translation, etc.

https://github.com/hindupuravinash/the-gan-zoo

f Divergence 22/37

▶ Given two densities p and q, the f− divergence is given by

Df (p∥q) = Ex∼q f

(
p(x)

q(x)

)
where f is any convex, lower-semicontinuous function with
f(1) = 0

▶ Lower-semicontinuous: function value at any pint x0 is
close to f(x0) or greater than f(x0)

▶ Example: KL divergence with f(u) = u log u

f Divergence 23/37

Many more f -divergence!

Variational Divergence Minimization 24/37

▶ To use f -divergences as a two-sample test objective for
likelihood-free learning, we need to be able to estimate it
only via samples

▶ Fenchel conjugate: For any function f(·), its convex
conjugate is defined as

f∗(t) = sup
u∈domf

ut− f(u)

▶ Duallity: f∗∗ = f . When f(·) is convex, lower
semicontinuous, so is f∗(·)

f(u) = sup
t∈domf∗

tu− f∗(t)

Variational Divergence Minimization 25/37

▶ We can obtain a lower bound to any f -divergence via its
Fenchel conjugate

Df (p∥q) = Ex∼q f

(
p(x)

q(x)

)
= Ex∼q sup

t∈domf∗

(
t
p(x)

q(x)
− f∗(t)

)
≥ Ex∼q t(x)

p(x)

q(x)
− f∗(t(x))

=

∫
X
t(x)p(x)− f∗(t(x))q(x)dx

= Ex∼p t(x)− Ex∼q f
∗(t(x))

for any function t : X 7→ domf∗

f -GAN 26/37

▶ Variational lower bound

Df (p∥q) ≥ sup
t∈T

(Ex∼p t(x)− Ex∼q f
∗(t(x)))

▶ Choose any f -divergence

▶ Let p = pdata and q = pG
▶ Parameterize t by ϕ and G by θ

▶ Consider the following f -GAN objective

min
θ

max
ϕ

F (θ, ϕ) = Ex∼pdata tϕ(x)− Ex∼pGθ
f∗(tϕ(x))

▶ Generator Gθ tries to minimize the divergence estimate
and discriminator tϕ tries to tighten the lower bound

Inferring Latent Representation in GANs 27/37

▶ The generator of a GAN is typically a directed, latent
variable model with latent variable z and observed
variables x. How can we infer the latent feature
representations in a GAN?

▶ Unlike a normalizing flow model, the mapping G : z 7→ x
need not to be invertible

▶ Unlike a variational autoencoder, there is no inference
network q(·) which can learn a variational posterior over
latent variables

▶ Solution 1: For any point x, use the activations of the
prefinal layer of a discriminator as a feature representation

▶ Intuition: similar to supervised deep neural networks, the
discriminator would have learned useful representations for
x while distinguishing real and fake x

Inferring Latent Representation in GANs 28/37

▶ If we want to directly learn the latent representation of x,
we need a different learning algorithm

▶ A regular GAN optimizes a two-sample test objective that
compares samples of x from the generator and the data
distribution

▶ Solution 2: To infer latent representations, we will compare
samples of x, z from joint distributions of observed and
latent variables as per the model and the data distribution

▶ For any x generated via the model, we have access to z
(sampled from a simple prior p(z))

▶ For any x from the data distribution, the z is however
unobserved (latent)

Bidirectional GAN 29/37

▶ In a BiGAN, we have an encoder network E in addtion to
the generator network G

▶ The encoder network only observes x ∼ pdata(x) during
training to learn a mapping E : x 7→ z

▶ As before, the generator network only observes the samples
from the prior z ∼ p(z) during training to learn a mapping
G : z 7→ x

Bidirectional GAN 30/37

▶ The discriminator D observes samples from the generative
model z,G(z) and encoding distribution E(x), x

▶ The goal of the discriminator is the maximize the
two-sample test objective between z,G(z) and E(x), x

▶ After training is complete, new samples are generated via
G and latent representations are inferred via E

Translating Across Domains 31/37

▶ Image-to-image translation: we are given image from two
domains, X and Y

▶ Paired vs. unpaired examples

▶ Paired examples can be expensive to obtain. Can we
translate from X ⇔ Y in an unsupervised manner?

CycleGAN 32/37

▶ To match the two distributions, we learn two parameterized
conditional generative models G : X 7→ Y and F : Y 7→ X

▶ G maps an element of X to an element of Y. A
discriminator DY compares the observed dataset Y and the
generated samples Ŷ = G(X)

▶ Similarly, F maps an element of Y to an element of X . A
discriminator DX compares the observed dataset X and
the generated samples X̂ = F (Y)

CycleGAN 33/37

▶ Cycle consistency: If we can go from X to Ŷ via G, then it
should also be possible to go from Ŷ back to X via F
▶ F (G(X)) ≈ X
▶ Similarly, vice versa: G(F (Y)) ≈ Y

▶ Overall loss function

LGAN(G,DY , X, Y) + LGAN(F,DX , X, Y)

+λ(EX∥F (G(X))−X∥1 + EY ∥G(F (Y))− Y ∥1)

CycleGAN in Practice 34/37

Summary of Generative Adversarial Networks 35/37

▶ Key observation: Samples and likelihoods are not
correlated in practice

▶ Two-sample test objectives allow for learning generative
mdoels only via samples (likelihood-free)

▶ Wide range of two-sample test objectives covering
f -divergences (and more)

▶ Latent representations can be inferred via BiGAN (and
other GANs with similar autoencoder structures)

▶ Cycle-consistent domain translations via CycleGAN and
other variants

References 36/37

▶ L. Theis, A. van den Oord, and M. Bethge. A note on the
evaluation of generative models. In ICLR, 2016

▶ Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville,
and Yoshua Bengio. Generative adversarial nets. In
Advances in neural information processing systems, pages
2672–2680, 2014.

▶ Alec Radford, Luke Metz, and Soumith Chintala.
Unsupervised representation learning with deep
convolutional generative adversarial networks. arXiv
preprint arXiv:1511.06434, 2015.

▶ Martin Arjovsky, Soumith Chintala, and Léon Bottou.
Wasserstein gan. arXiv preprint arXiv:1701.07875, 2017.

References 37/37

▶ L. Metz, B. Poole, D. Pfau, and J. Sohl-Dickstein.
Unrolled generative adversarial networks. arXiv preprint
arXiv:1611.02163, 2016.

▶ S. Nowozin, B. Cseke, and R. Tomioka. f-gan: Training
generative neural samplers using variational divergence
minimization. In Advances in neural information
processing systems, pages 271–279, 2016.

▶ Jeff Donahue, Philipp Krähenbühl, and Trevor Darrell.
Adversarial feature learning. arXiv preprint
arXiv:1605.09782, 2016.

▶ Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A
Efros. Unpaired image-to-image translation using
cycle-consistent adversarial networks. In ICCV, 2017.

