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Recap on Deep Generative Models 2/37
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Model family
» Model families

> Autoregressive Models: pyp(x) = [[i—, po(zilz<;)

> Variational Autoencoders: pg(z) = [, po(x,z)dz

» Normalizing Flow Models:

px(:0) = p(f () [des (Zer2)|
» All the above families are based on maximizing likelihoods
(or approximations, e.g., lower bound)

» Is the likelihood a good indicator of the quality of samples
2 ,
generated by the model? YITET;
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Sample Quality and Likelihood 3/37

» Optimal generative model will give best sample quality and
highest test log-likelihood. However, in practice, high
log-likelihoods # good sample quality (Theis et al., 2016)

> Case 1: great test log-likelihoods, poor samples. Consider a
mixture model pg(z) = 0.01pgata(z) + 0.99pn0ise (), we have

Epdata log pdata(x) 2 ]E'pdata log p9 (x) Z Epdata logpdata(x)_log 100
This means E,_ . logpp(z) ~ Ep,,,. 108 Pdata(z) when the
dimension of x is large.

» Case 2: great samples, poor test log-likelihoods. E.g.,
memorizing training set: samples look exactly like the
training set; test set will have zero probability

» The above cases suggest that it might be useful to
disentangle likelihoods and samples = likelihood-free

learning! >
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Comparing Distributions via Samples 4/37

S ={x~P} S, = {x~Q}

Given samples from two distributions S; = {x ~ P} and
Sy = {x ~ @Q}, how can we tell if these samples are from the
same distribution? (i.e., P = Q7)




Two-sample Tests 5/37

» Given S; = {x ~ P} and Sy = {z ~ Q}, a two-sample test
considers the following hypotheses
» Null hypothesis Hy : P = Q
» Alternative hypothesis Hy : p # @
» Test statistic T' compares S7 and Ss, e.g., difference in
means, variances of the two sets of samples

> If T is less than a threshold «, the accept Hj else reject it

> Key observation: Test statistics is likelihood-free since it
does not involve the densities P or @ (only samples)

oA
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Generative Modeling and Two-sample Tests 6/37

d(Pdata'PG)
~ p
Pdata €

6EM

Model family

» Suppose we have direct access to the data set
S1 =D = {z ~ paata}

» Now assume that the model distribution pg permits efficient
sampling (e.g., directed models). Let Sy = {x ~ pg}

» Use a two-sample test objective to measure the distance
between distributions and train the generative model pg to
minimize this distance between S; and Sa
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Two-Sample Test via a Discriminator 7/37

Two Gaussians with different means Two Gaussians with different variances Gaussian and Laplace densities

Prob. Density

» Finding a two-sample test objective in high dimensions is
non-trivial

» In the generative model setup, we know that S; and So
come from different distributions pgata and py respectively

> Key idea: Learn a statistic that maximizes a suitable
notion of distance between the two sets of samples S and

S ,
2 TPy g
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A Two Player Game 8/37

The generator and discriminator play a minimax game!

Gg

Generator
» Directed, latent variable model with a deterministic
mapping between z and x given by Gy
» Minimizes a two-sample test objective (in support of the
null hypothesis pgata = po

oA

PEKING UNIVERSITY



A Two Player Game 9/37

The generator and discriminator play a minimax game!

Dy

Discriminator

» Any function (e.g., neural network) which tries to
distinguish “real” samples from the dataset and “fake”
sampels generated from the model

» Maximizes the two-sample test objectivee (in support of
the alternative hypothesis pgata 7 o)

oA
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Discriminator Training Objective 10/37

» Training objective for discriminator:
max V(G,D) = Eyzpy,. 10g D(2) + Epp, log(1 — D(z))

> For a fixed generator GG, the discriminator is performing
binary classification with the cross entropy objective

» Assign probability 1 to true data points  ~ pgata
» Assign probability 0 to fake samples = ~ pg

» Optimal discriminator

pdata(x)
Pdata(2) + pc(z)

Dg(z) =

oA
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Generator Training Objective 11/37

» Training Objective for generator:

mé’n V(G, D) = Eypy,,. log D() + Eyp, log(l — D(z))

» For the optimal discriminator D (-), we have

. Pdata () pc ()
V(G,DE) =Eqynp,.. lo + Eypg lo
(6 D6) = Berpana 08 3 0 ) pe@) T 70 1% pnc@) + p@)
_ Pdata () pc(z)
= Eorpana 108 4 @ ipem T Borre 198 5 Gy maty 1084
2
_ KL (pdata pd;pc) LKL (pG ‘ m;%) log

» The sum of KL in the above equation is known as
Jensen-Shannon divergence (JSD)

oA
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Jensen-Shannon Divergence 12/37

s 0 (£57) e 5)

» Properties

> JSD(p,q) 2 0

> JSD(p,q) =0iff p=g¢

> JSD(p.q) = JSD(q,p)

» /JSD(p, q) satisfies triangle inequality

» Optimal generator for the JSD GAN

PG = Pdata

» For the optimal discriminator D{.(-) and generator G*(-),
we have

V(G*, D¢« () = —log4

NELF TS
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Alternating Optimization in GAN 13/37

mgin max V(Go, Dg) = Ernpyyen 108 Dy (2)+E, ) log(1—=Dy (Go(2)))

» sample m training points z), 23 ... 2™ from D

v

sample m noise vectors 2 2@ M) from D2

» cenerator parameters # update: stochastic gradient descent

1o & .
VoV (Gg, Do) = —V Y log(l — Dy(Gy(z?
oV(Go, Dg) = — 9; og( s(Go(2')))
» discriminator parameters ¢ update: stochastic gradient
ascent

1 il . A

V¢V(G9, D¢) = %V(ﬁ Z log D¢(.x(z))—i-log(l—D(b(Gg(z(l))))
i=1

» Repeat for fixed number of epochs

@ Jeg K
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A Toy Example

Discriminator —— Generator  ....eeeeeeererenenenn

14/37

Data Distribution

Y/ 4 I/

AN

(a) (b) (©)

Current State Update Discriminator Update Generator

Adapted from Goodfellow, 2014

(d)
Convergence

ANELT LY =
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Frontiers in GAN Research 15/37

» GANSs have been successfully applied to several domains
and tasks

» However, working with GANs can be very challenging in
practice: unstable optimization/mode collapse/evaluation

» Many bag of tricks applied to train GANs successfully

Image source: Ian Goodfellow. Samples from Goodfellow et al.,
2014, Radford et al., 2015, Liu et al., 2016, Karras et al., 2017,
Karras et al., 2018 7 ;H:,%.JQ ¥

PEKING UNIVERSITY



Optimization Challenges 16/37

» Theorem: If the generator updates are made in function
space and discriminator is optimal at every step, then the
generator is guaranteed to converge to the data distribution

» Unrealistic assumptions! In practice, the generator and
discriminator loss keeps oscillating during GAN training

Adam optimizer

Real Image Loss
Fake Image Loss
4 Generate Image Loss

» No robust stopping criteria in practice (unlike MLE)




Mode Collapse 17/37

» GANSs are notorious for suffering from mode collapse

» Intuitively, this refers to the phenomena where the
generator of a GAN collapse to one or few samples (i.e.,
“modes”)

Arjovsky et al., 2017

¥ ez HF —
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Mode Collapse 18/37

Target

» True distribution is a mixture of Gaussians

- - ’

Step 0 Step 5k Step 10k Step 15k Step 20k
Source: Metzetal., 2017

» The generator distribution keeps oscillating between
different models

SELT RS
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Mode Collapse 19/37
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Source: Metz et al., 2017

> Fixes to mode collapse are mostly empirically driven:
alternate architectures, adding regularization terms,
injecting small noise perturbations etc.

» Tips and tricks to make GAN work by Soumith Chintala:
https://github.com/soumith/ganhacks

AT P -
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https://github.com/soumith/ganhacks

GAN Generated Artworks 20/37

Source: Robbie Barrat, Obvious

GAN generated art auctioned at Christie’s.
Expected Price: $7,000 — $10,000
True Price: $432,500
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Advanced GAN Variants 21/37

» The GAN Zoo:
https://github.com/hindupuravinash/the-gan-zoo
» Examples

» Rich class of likelihood-free objectives
» Combination with latent representations
» Application: Image-to-image translation, etc.

ez HF
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https://github.com/hindupuravinash/the-gan-zoo

f Divergence 22/37

» Given two densities p and ¢, the f— divergence is given by
p(x)
Dy(pllg) = Ezng f <>
le) = Eay (205
where f is any convex, lower-semicontinuous function with
f1)=0
» Lower-semicontinuous: function value at any pint zg is

close to f(xg) or greater than f(x¢)
A

-, >
Y

» Example: KL divergence with f(u) = ulogu

R >
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f Divergence

23/37

Many more f-divergence!

Name Ds(P|Q) Generator f(u)
Total variation 3 [lp(z) — q(z)|dz Slu—1]
Kullback-Leibler J'p(z)log b = dz ulogu
Reverse Kullback-Leibler [ ¢(z) log :(j) dz —logu
Pearson x° I Mf)’T:)@Z dz (u—1)2
Neyman x? I Mﬁ%ﬂt dz L%ﬁ
Squared Hellinger I (\/p(z) - 1/(1(1:))2 dz (Va—1)
Jeffrey J (0(a) - (@) log () da (u=1)logu

Jensen-Shannon
Jensen-Shannon-weighted
GAN

a-divergence (a ¢ {0,1})

i [ p(z)log ,ﬁ% +q(z)log ﬂ%’%b dz
I Pl log ity + (1 = M)a(z) 108 ey da
J p(z)log 5335y + a(z) log oo o log(4)

o (@ |(88)" - 1] - ale@) - p(a))) ¢

—(u+1)log 4% + ulogu
wulogu — (1 — w + mu)log(l — 7 + mu)
ulogu — (u+1)log(u+1)

oy (W —1-a(u-1)

Source: Nowozin et al., 2016

¥
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Variational Divergence Minimization 24/37

» To use f-divergences as a two-sample test objective for
likelihood-free learning, we need to be able to estimate it
only via samples

» Fenchel conjugate: For any function f(-), its convex
conjugate is defined as

fr(t) = sup ut— f(u)

uEdomf

» Duallity: f** = f. When f(-) is convex, lower
semicontinuous, so is f*(-)

flu) = sup tu—f*(t)

tEdomf*

Yo A
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Variational Divergence Minimization 25/37

» We can obtain a lower bound to any f-divergence via its
Fenchel conjugate

Di(pllg) = Egmg f (P(fv)>

q(x)
= su P@) g
=Eavg S0 (%(a:) f <t>>

PO s
> By ) 505 = £1(1(2)

= Eonp t() — Egng f*(t(x))

for any function ¢ : X > dom -
N ez H T
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f-GAN 26,37

» Variational lower bound
Dy(pllg) = §1€17P@_(Ex~p t(x) — Egng f*(t(2)))

Choose any f-divergence

Let p = pgata and ¢ = pg

Parameterize t by ¢ and G by 6
Consider the following f-GAN objective

mein mdz}x F(0,9) = Eonpyon to(2) — Eanpg, [ (to(2))

> Generator Gy tries to minimize the divergence estimate
and discriminator ¢4 tries to tighten the lower bound

A LTS A
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Inferring Latent Representation in GANs 27/37

» The generator of a GAN is typically a directed, latent
variable model with latent variable z and observed
variables . How can we infer the latent feature
representations in a GAN?

» Unlike a normalizing flow model, the mapping G : z — =
need not to be invertible

» Unlike a variational autoencoder, there is no inference
network ¢(-) which can learn a variational posterior over
latent variables

» Solution 1: For any point z, use the activations of the
prefinal layer of a discriminator as a feature representation

» Intuition: similar to supervised deep neural networks, the
discriminator would have learned useful representations for
x while distinguishing real and fake x

Yo A
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Inferring Latent Representation in GANs 28/37

» If we want to directly learn the latent representation of x,
we need a different learning algorithm

> A regular GAN optimizes a two-sample test objective that
compares samples of x from the generator and the data
distribution

» Solution 2: To infer latent representations, we will compare
samples of z, z from joint distributions of observed and
latent variables as per the model and the data distribution

» For any x generated via the model, we have access to z
(sampled from a simple prior p(z))

» For any x from the data distribution, the z is however
unobserved (latent)

Yo A
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Bidirectional GAN 29/37

features data

> &
G(2),z
x, E(X)
5 < 8

» In a BiGAN, we have an encoder network E in addtion to
the generator network GG

B>

» The encoder network only observes & ~ pqata(z) during
training to learn a mapping F : x +— 2

» As before, the generator network only observes the samples
from the prior z ~ p(z) during training to learn a mapping
G:z—zx

oA
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Bidirectional GAN 30/37

features data

G(z), z
X, E(x) P @
o} @

» The discriminator D observes samples from the generative
model z, G(z) and encoding distribution E(x),x

» The goal of the discriminator is the maximize the
two-sample test objective between z, G(z) and E(x),x

» After training is complete, new samples are generated via
G and latent representations are inferred via E

oA
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Translating Across Domains 31/37

» Image-to-image translation: we are given image from two
domains, X and Y

» Paired vs. unpaired examples
Paired Unpaired

IR

Source: Zhu et al., 2016

» Paired examples can be expensive to obtain. Can we
translate from X < ) in an unsupervised manner?

[P ¢ pa—
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CycleGAN 32/37

» To match the two distributions, we learn two parameterized
conditional generative models G : X — Y and F' : Y — X

» G maps an element of X to an element of ). A
discriminator Dy compares the observed dataset Y and the
generated samples Y = G(X)

» Similarly, /' maps an element of ) to an element of X'. A
discriminator Dy compares the observed dataset X and
the generated samples X = F(Y))

Dy Dy
S e
x| Ty
\/
F

Sodrce: Zhu etal., 2016

G5 e i i
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CycleGAN 33/37

» Cycle consistency: If we can go from X to Y via G, then it
should also be possible to go from Y back to X via F
> F(G(X))~ X
» Similarly, vice versa: G(F(Y)) =Y

¢ & Rale
cycle-consistency _| X\i->y X <—3\'Y <y Cle-C?(;ISSSiSLEncy
loss . |

Source: Zhu et al., 2016

» Overall loss function

EGAN(Ga Dana Y) + CGAN(Fa DXaXa Y)
FAEX | F(G(X)) = Xl + By [|G(F(Y)) — Yl)

D e HF —
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CycleGAN in Practice

Monet < Photos

Zebras T Horses

nel —> photo

horse — zebra

photo —>Monet

34/37

Summer Z_ Winter

Photograph

Source: Zhu et al., 2016

[P ¢ pa—
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Summary of Generative Adversarial Networks 35/37

> Key observation: Samples and likelihoods are not
correlated in practice

» Two-sample test objectives allow for learning generative
mdoels only via samples (likelihood-free)

» Wide range of two-sample test objectives covering
f-divergences (and more)

» Latent representations can be inferred via BiIGAN (and
other GANs with similar autoencoder structures)

» Cycle-consistent domain translations via CycleGAN and
other variants

Yo A

PEKING UNIVERSITY




References 36/37

» L. Theis, A. van den Oord, and M. Bethge. A note on the
evaluation of generative models. In ICLR, 2016

» Tan Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville,
and Yoshua Bengio. Generative adversarial nets. In

Advances in neural information processing systems, pages
2672-2680, 2014.

» Alec Radford, Luke Metz, and Soumith Chintala.
Unsupervised representation learning with deep
convolutional generative adversarial networks. arXiv
preprint arXiv:1511.06434, 2015.

» Martin Arjovsky, Soumith Chintala, and Léon Bottou.
Wasserstein gan. arXiv preprint arXiv:1701.07875, 2017.

oy At 7K ¥ —

PEKING UNIVERSITY



References 37/37

> L. Metz, B. Poole, D. Pfau, and J. Sohl-Dickstein.
Unrolled generative adversarial networks. arXiv preprint
arXiv:1611.02163, 2016.

» S. Nowozin, B. Cseke, and R. Tomioka. f-gan: Training
generative neural samplers using variational divergence
minimization. In Advances in neural information
processing systems, pages 271-279, 2016.

» Jeff Donahue, Philipp Krahenbiihl, and Trevor Darrell.
Adversarial feature learning. arXiv preprint
arXiv:1605.09782, 2016.

» Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A
Efros. Unpaired image-to-image translation using
cycle-consistent adversarial networks. In ICCV, 2017.

oy At 7K ¥ —

PEKING UNIVERSITY



