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Recap of Autoregressive Models 2/28

▶ Autoregressive models:
▶ Chain rule based factorization is fully general
▶ Compact representation via conditional independence and

/or neural parameterization

▶ Pros:
▶ Easy to evaluate likelihoods
▶ Easy to train

▶ Cons:
▶ Requires an ordering
▶ Generation is sequential
▶ Cannot learn features in an unsupervised way



Latent Variable Models: Motivation 3/28

▶ Lots of variability in images x due to gender, eye color, hair
color, pose, etc. However, unless images are annotated,
these factors of variation are not explicitly available (latent)

▶ Idea: explicitly model these factors using latent variables z



Latent Variable Models: Motivation 4/28

▶ Only shaded variables x are observed in the data (pixel
values)

▶ Latent variables z correspond to high level features
▶ If z chosen properly, p(x|z) could be much simpler than p(x)
▶ If we had trained this model, then we could identify

features via p(z|x), e.g., p(EyeColor = Blue|x)
▶ Challenge: Very difficult to specify these conditionals by

hand



Deep Latent Variable Models 5/28

▶ z ∼ N (0, I)

▶ p(x|z) = N (µθ(z),Σθ(z)) where µθ,Σθ are neural networks

▶ Hope that after training, z will correspond to meaningful
latent factors of variation (features). Unsupervised
representation learning

▶ As before, features can be computed via p(z|x)



Mixture Models 6/28

Combine simple models into a more complex and expressive one

p(x) =
∑
z

p(x, z) =
∑
z

p(z)p(x|z) =
K∑
k=1

p(z = k)N (x;µk,Σk)



Variational Autoencoder: Marginal Likelihood 7/28

A mixture of infinite many Gaussians

▶ z ∼ N (0, I)

▶ p(x|z) = N (µθ(z),Σθ(z)) where µθ,Σθ are neural networks

▶ Even though p(x|z) is simple, the marginal p(x) could be
very complex/flexible

pθ(x) =

∫
z
pθ(x, z)dz =

∫
z
pθ(x|z)p(z)dz



Recap of Latent Variable Models 8/28

▶ Allow us to define complex models p(x) in terms of simple
building blocks p(x|z)

▶ Natural for unsupervised learning tasks (clustering,
unsupervised representation learning, etc)

▶ No free lunch: much more difficult to learn compared to
fully observed autoregressive models



First Attempt: Naive Monte Carlo 9/28

pθ(x) = Ez∼p(z)pθ(x|z), ∇θpθ(x) = Ez∼p(z)∇θpθ(x|z)

We can use Monte Carlo estimate for the marginal likelihood
and its gradient

▶ Sample z(1), · · · , z(k) from the prior p(z)

▶ Approximate expectation with sample average

pθ(x) ≈
1

k

k∑
i=1

pθ(x|z(i)), ∇θpθ(x) ≈
1

k

k∑
i=1

∇θpθ(x|z(i))

Remark: work in theory but not in practice. For most z ∼ p(z),
pθ(x|z) is very low, i.e., mismatch between the prior and
posterior. This leads to large variance for the Monte Carlo
estimates. We need a clever way to select z(i) to reduce the
variance of the estimator.



Second Attempt: Importance Sampling 10/28

We can use importance sampling to reduce the variance

pθ(x) =

∫
z
pθ(x|z)p(z)dz =

∫
z
q(z)

pθ(x, z)

q(z)
dz = Ez∼q(z)

pθ(x, z)

q(z)

Similarly, we can use Monte Carlo estimate

▶ Sample z(1), · · · , z(k) from the important distribution q(z)

▶ Approximate expectation with sample average

pθ(x) ≈
1

k

k∑
i=1

pθ(x, z
(i))

q(z(i))

Remark: What is a good choice for q(z)?



Variational Inference 11/28

▶ Evidence Lower Bound (ELBO)

log pθ(x) ≥ Ez∼q(z) log
pθ(x, z)

q(z)

= Ez∼q(z) log pθ(x, z)− Ez∼q(z) log q(z)

= Ez∼q(z) log pθ(x, z) +H(q)

▶ Equality holds when q(z) = p(z|x; θ)

log pθ(x) = Ez∼p(z|x;θ) log pθ(x, z) +H(p(z|x; θ))

This is the E-step in EM!

▶ In practice, p(z|x, θ) is usually intractable. We can find the
“best” q(z) by maximizing the ELBO in a parameterized
family of {qϕ(z) : ϕ ∈ Φ}



The Evidence Lower Bound 12/28

log pθ(x) ≥
∫
z
qϕ(z|x) log

pθ(x, z)

qϕ(z|x)
= L(x; θ, ϕ)

= L(x; θ, ϕ) + KL(qϕ(z|x)∥p(z|x; θ))

The better qϕ(z|x) can approximate the posterior p(z|x; θ), the
closer ELBO will be to the log pθ(x). We then jointly optimize
over θ and ϕ to maximize the ELBO over a dataset.



Variational Learning 13/28

L(x; θ, ϕ1) and L(x; θ, ϕ2) are both lower bounds, we want to
jointly optimize θ and ϕ.



ELBO for The Entire Dataset 14/28

▶ For each data point x, ELBO holds

log pθ(x) ≥
∫
z
qϕ(z|x) log pθ(x, z) +H(qϕ(z|x)) = L(x; θ, ϕ)

▶ Maximum likelihood learning over the entire dataset

ℓ(θ;D) =
∑
xi∈D

log pθ(x
i) ≥

∑
xi∈D

L(xi; θ, ϕi)

▶ Therefore

max
θ

ℓ(θ;D) ≥ max
θ,ϕ1,··· ,ϕM

M∑
i=1

L(xi; θ, ϕi)

▶ Note that we use different variational parameters ϕi for
every data point xi, because the true posterior pθ(z|xi) is
different across data points xi



Variational Approximations Across Dataset 15/28

▶ Assume pθ(z, x
i) is close to pdata(z, x

i). Suppose z captures
information such as digit identity (label), style, etc. For
simplicity, assume z ∈ {0, 1, . . . , 9}

▶ Suppose qϕi(z) is a probability distribution over the hidden
variable z parameterized by ϕi = (p0, . . . , p9)

▶ If ϕi = (0, 0, 0, 1, . . . , 0), is qϕi(z) a good approximation of
pθ(z|x1)(x1 is the leftmost datapoint)? Yes

▶ If ϕi = (0, 0, 0, 1, . . . , 0), is qϕi(z) a good approximation of
pθ(z|x3)(x3 is the rightmost datapoint)? No

▶ For each xi, need to find a good ϕi,∗ via optimization, can
be expensive



Learning via SVI 16/28

▶ Optimizing
∑

xi∈D L(xi; θ, ϕi) as a function of θ, ϕ1, . . . , ϕM

using stochastic gradient ascent

L(D; θ, ϕ1:M ) =

M∑
i=1

Eqϕi (z
i)

(
log pθ(x

i, z)− log qϕi(zi)
)

1. Initialize θ, ϕ1, · · · , ϕM

2. Randomly sample a data point xi from D
3. Optimize L(xi; θ, ϕi) as a function of ϕi, e.g., local gradient

update
4. Compute ∇θL(xi; θ, ϕi,∗)
5. Update θ in the gradient direction. Go to step 2

▶ How to compute the gradients? Often no close form
solution for the expectations. Use Monte Carlo estimates!



Learning Variational Autoencoder 17/28

L(x; θ, ϕ) = Eqϕ(z) (log pθ(x, z)− log qϕ(z))

▶ Similarly as in VI, we assume qϕ(z) is tractable, i.e., easy
to sample from and evaluate

▶ Suppose z1, . . . , zk are samples from qϕ(z)

▶ The gradient with respect to θ is easy

∇θL(x; θ, ϕ) = ∇θEqϕ(z) (log pθ(x, z)− log qϕ(z))

= Eqϕ(z)∇θ log pθ(x, z)

≈ 1

k

k∑
i=1

∇θ log pθ(x, z
i)



Learning Variational Autoencoder 18/28

▶ The gradient with respect to ϕ is more complicated
because the expectation depends on ϕ

▶ We can use score function estimator (or REINFORCE)
with control variates. When qϕ(z) is reparameterizable, we
can also use the reparameterization trick.

▶ If these exists gϕ and qϵ, s.t. z = gϕ(ϵ), ϵ ∼ qϵ ⇒ z ∼ qϕ(z)

∇ϕL(x; θ, ϕ) = ∇ϕEqϵ(ϵ) (log pθ(x, gϕ(ϵ))− log qϕ(gϕ(ϵ)))

= Eqϵ(ϵ) (∇ϕ log pθ(x, gϕ(ϵ))−∇ϕ log qϕ(gϕ(ϵ)))

≈ 1

k

k∑
i=1

(
∇ϕ log pθ(x, gϕ(ϵ

i))−∇ϕ log qϕ(gϕ(ϵ
i))

)
where ϵi ∼ qϵ(ϵ), i = 1, . . . , k

▶ Example: z = µ+ σϵ, ϵ ∼ N (0, 1) ⇔ z ∼ N (µ, σ2) = qϕ(z)



Amortized Inference 19/28

max
θ

ℓ(θ;D) ≥ max
θ,ϕ1:M

M∑
i=1

L(xi; θ, ϕi)

▶ So far we have used a set of variational parameters ϕi for
each data point xi. Unfortunately, this does not scale to
large datasets.

▶ Amortization: Learn a single parameteric function fλ
that maps each x to a set of variational parameters. Like
doing regression xi 7→ ϕi,∗

▶ For example, if q(z|xi) are Gaussians with different means
µ1, . . . , µm, we learn a single neural network fλ mapping xi

to µi

▶ We approximate the posteriors q(z|xi) using this
distribution qλ(z|xi)



Amortized Inference 20/28

▶ Assume pθ(z, x
i) is close to pdata(z, x

i). Suppose z captures
information such as digit identity (label), style, etc.

▶ Suppose qϕi(z) is a probability distribution over the hidden
variable z parameterized by ϕi

▶ For each xi, need to find a good ϕi,∗ via optimization,
expensive for large dataset

▶ Amortized Inference: learn how to map xi to a good set of
parameters ϕi via q(z; fλ(x

i)). fλ learns how to solve the
optimization problem for you, jointly across all datapoints.

▶ In the literature, q(z; fλ(x
i)) often denoted as qϕ(z|xi)



Autoencoder Perspective 21/28

L(x; θ, ϕ) = Eqϕ(z|x) (log pθ(x, z)− log qϕ(z|x))
= Eqϕ(z|x) (log pθ(x|z) + log p(z)− log qϕ(z|x))
= Eqϕ(z|x) log p(x|z; θ)−KL (qϕ(z|x)∥p(z))

Take a data point xi → Map it to ẑ by sampling from qϕ(z|xi)
(encoder) → Reconstruct x̂ by sampling from p(x|ẑ; θ) (decoder)
What does the training objective L(x; θ, ϕ) do?
▶ First term encourages x̂ ≈ xi (xi likely under p(x|ẑ; θ))
▶ Second term encourages ẑ to be likely under the prior p(z)



Variational AutoEncoder 22/28

▶ Alice goes on a space mission and needs to send images to
Bob. Given an image xi, she (stochastically) compress it
using ẑ ∼ qϕ(z|xi) obtaining a message ẑ. Alice sends the
message ẑ to Bob

▶ Given ẑ, Bob tries to reconstruct the image using pθ(x|ẑ)
▶ This scheme works well if Eqϕ(z|x) log pθ(x|z) is large
▶ The term KL (qϕ(z|x)∥p(z)) forces the distribution over

messages to have a specific shape p(z). If Bob knows p(z),
he can generate realistic messages ẑ ∼ p(z) and the
corresponding image, as if he had received them from Alice!



Summary on Latent Variable Models 23/28

▶ Combine simple models to get a more flexible one (e.g.,
mixture of Gaussians)

▶ Directed model permits ancestral sampling (efficient
generation): z ∼ p(z), x ∼ pθ(x|z)

▶ However, log-likelihood is generally intractable, hence
learning is difficult (compared to autoregressive models)

▶ Joint learning of a model (θ) and an amortized inference
component ϕ to achieve tractability via ELBO optimization

▶ Latent representations for any x can be inferred via qϕ(z|x)



Research Directions 24/28

Improving variational learning via

▶ Better optimization techniques

▶ More expressive approximating families

▶ Alternate loss functions



Model Families 25/28

Amortization (Gershman & Goodman, 2015; Kingma;
Rezende;..)

▶ Scalability: efficient learning and inference on massive
datasets

▶ Regularization effect: due to joint training, it also
implicitly regularizes the model θ (Shu et al., 2018)

Augmenting variational posteriors

▶ Monte Carlo methods: Importance sampling (Burda et al.,
2015), MCMC (Salimans et al., 2015, Hoffman, 2017, Levy
et al., 2018), Sequential Monte Carlo (Maddison et al.,
2017, Le et al., 2018, Naesseth et al., 2018), Rejection
sampling (Grover et al., 2018)

▶ Normalizing flows (Rezende & Mohammed, 2015, Kingma
et al., 2016)



Variational Objective 26/28

Tighter ELBO does not imply:

▶ Better samples: sample quality and likelihoods are
uncorrelated (Theis et al., 2016)

▶ Informative latent codes: powerful decoders can ignore
latent codes due to tradeoff in minimizing reconstruction
error vs KL prior penalty (Bowman et al., 2015, Chen et
al., 2016, Zhao et al., 2017, Alemi et al., 2018)

Alternatives to the KL divergence:

▶ Renyi’s alpha-divergences (Li & Turner, 2016)

▶ Integral probability metrics such as maximum mean
discrepancy, Wasserstein distance (Dziugaite et al., 2015,
Zhao et al., 2017, Tolstikhin et al., 2018)
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