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Introduction 2/35

» So far, we have only used the KL divergence as a distance
measure in VL.

» Other than the KL divergence, there are many alternative
statistical distance measures between distributions that
admit a variety of statistical properties.

» In this lecture, we will introduce several alternative
divergence measures to KL, and discuss their statistical
properties, with applications in VI.
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Potential Problems with The KL Divergence 3/35

» VI does not work well for non-smooth potentials
» This is largely due to the zero-avoiding behaviour

» The area where p(0) is close to zero has very negative log p,
so does the variational distribution ¢ when trained to
minimize the KL.

» In this truncated normal example, VI will fit a delta
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Potential Problems with The KL Divergence 3/35
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so does the variational distribution ¢ when trained to
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Beyond The KL Divergence 4/35

> Recall that the KL divergence from ¢ to p is

Dxr(qllp) = Eq log% = /Q(x) log% dzx

» An alternative: the reverse KL divergence

DY (pllg) = E, log% = /p(fc) logz% da

o)
<k,

Reverse KL KL P
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The f-Divergence 5/35

» The f-divergence from ¢ to p is defined as

Dy(qllp) = / p(@)f (%) »

where f is a convex function such that f(1) = 0.

» The f-divergence defines a family of valid divergences

Dy (qllp) = /p(fL‘)f (qg) dx
q(z)

> 1 (o085 dr) = ) =0

D¢(qllp) = 0= q(x) = p(x) as.

and
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The f-Divergence 6/35

Many common divergences are special cases of f-divergence,
with different choices of f.

» KL divergence. f(t) =tlogt
» reverse KL divergence. f(t) = —logt
> Hellinger distance. f(t) = (vt — 1)

H?(p /F F%x_;/ ()( ax) >dx

> Total variation distance. f(t) = 3|t — 1|

drv(p; q) /Ip —q(2)|dz = 5 /()

p(z) o
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Amari’s a-Divergence 7/35

When f(t) = aiz:tl), we have the Amari’s a-divergence (Amari,

1985; Zhu and Rohwer, 1995)

Da(pllg) = a(ll_a) <1 - /p(G)O‘Q(G)l‘a d9>

& KL(q | p) VBm D1 (qllp) = iinga(qu)
A Dk (pllg) = lim Dq(pllq)
a=1 o = oo a—1

KL(p|lq) EP

Adapted from Herndndez-Lobato et al. .
P e i XS

@

PEKING UNIVERSITY




Rényi’s a-Divergence 8/35

Dalalp) = - log [ a(0)p(6)' ds
> Some special cases of Rényi’s a-divergence

» Di(g|lp) := lima—1 Da(qllp) = Dxr(qllp)

> Do(qllp) = —1log [, 5~ (0)d0 = 0 iff supp(p) C supp(q).

> Dyoo(qllp) = log maxy 43

> D1 (qllp) = —2log (1 — Hel?(q||p))
» Importance properties

» Rényi divergence is non-decreasing in «
Da1 (qu) 2 Doéz (q”p), if aq > oo

» Skew symmetry: Di_o(qllp) = 5% Da(pllq)
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The Rényi Lower Bound 9/35

» Consider approximating the exact posterior p(f|z) by
minimizing Rényi’s a-divergence D, (q(0)||p(0|z)) for some
selected o > 0

» Using p(6|z) = p(8,x)/p(x), we have

Dala(®)p(6l2)) = -+ log [ a(6)p(64e)'~* a8
= logp(z) — 7 !

log / q(0)*p(6,z)' = db
—

l—«a
= log p(x) — ﬁ log E, <p((19(,09)c)>

» The Rényi lower bound (Li and Turner, 2016)
1 p(0,2)\'"*
Lo(q) & ——1logE ’
@)= =g le q< q(0)
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The Rényi Lower Bound 10/35

» Theorem(Li and Turner 2016). The Rényi lower bound is
continuous and non-increasing on « € [0, 1] U {|Lqy| < +00}.
Especially for all 0 < ae < 1

Lvi(q) = lim La(q) < La(q) < Lo(q)
a—1

Lo(q) = log p(z) iff supp(p(f|z)) C supp(q(h)).
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(a) Approximated posterior. (b) Hyper-parameter optimisation.
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Monte Carlo Estimation 11/35

» Monte Carlo estimation of the Rényi lower bound

-«

K .
L@ = g lon e 3o (B) o 0

» Unlike traditional VI, here the Monte Carlo estimate is
biased. Fortunately, the bias can be characterized by the
following theorem

A

» Theorem(Li and Turner, 2016). E{ei}fil(La,K(Q)) as a
function of o and K is -

» non-decreasing in K for fixed o < 1, and converges to L, (q)
as K — +oo if supp(p(0|z)) C supp(q(0)).
» continuous and non-increasing in « on [0, 1] U {|Ly| < 400}
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Multiple Sample ELBO 12/35

» When a = 0, the Monte Carlo estimate reduces to the
multiple sample lower bound (Burda et al., 2015)

L (q) =log ( plz ) 0; ~ q(0)

» This recovers the standard ELBO when K = 1.

» Using more samples improves the tightness of the bound
(Burda et al., 2015)

log p(z) > E(Lk+1(q)) > E(Lk(q))

Moreover, if p(x,6)/q(#) is bounded, then

E(Lk(q)) — logp(x), as K — +o0
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Lower Bound Maximization 13/35

Using the reparameterization trick

0~ qy(0) < 0 = gp(e), €~ ge(e)

bV log POs(G )
Veleastae) = Zxaﬂwg%mw»» o

l—a
), @
s o (P2ELEL2Y'
q5(9s(€:))
the normalized importance weight with finite samples. This is a
biased estimate of V4L, (qg) (except av = 1).

where

» o = 1: Standard VI with the reparamterization trick
» o = 0: Importance weighted VI (Burda et al., 2015)
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Minibatch Training 14/35

» Full batch training for maximizing the Rényi lower bound
could be very inefficient for large datasets

» Stochastic optimization is non-trivial since the Rényi lower
bound can not be represented as an expectation on a
datapoint-wise loss, except for a = 1.

» Two possible methods:

» derive the fixed point iteration on the whole dataset, then
use the minibatch data to approximately compute it (Li et
al., 2015)

» approximate the bound using the minibatch data, then
derive the gradient on this approximate objective
(Hernandez-Lobato et al., 2016)

Remark: the two methods are equivalent when o = 1
(standard VI).
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Minibatch Training: Energy Approximation 15/35

» Suppose the true likelihood is

N
p(al6) = T] p(al0)
n=1

» Approximate the likelihood as

[S]
(Hp%w> 2 fs(o)

nes

» Use this approximation for the energy function

La(q,8) = ;—logE, (w)
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Example: Bayesian Neural Network 16/35
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Adapted from Li and Turner, 2016

» The optimal o may vary for different data sets.

» Large « improves the predictive error, while small «
provides better test log-likelihood.

» o = 0.5 seems to produce overall good results for both test

LL MSE. N
and RMS @ e




Expectation Propagation 17/35

» In standard VI, we often minimize Dk, (¢||p). Sometimes,
we can also minimize Dk, (pl|¢) (can be viewed as MLE).

¢" = argmin Dy,(p||q) = arg maxE, log ¢(6)
q q

» Assume ¢ is from the exponential family

a(6l) = 1(8) exp (0 T(0) — A(n))
» The optimal n* satisfies
n* = argmax E, log ¢(6|n)
n

= arg max <77TIEp (T(9)) — A(n)> + Const
U
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Moment Matching 18/35

» Differentiate with respect to n
E, (T(0)) = VyA(n7)

» Note that ¢(f|n) is a valid distribution Vn

0=V / exp TT(9) — A(n)) df

= [ atéln) (x(®) - v,4w) a0
=E, (T(0)) — V,A(n)

» The KL divergence is minimized if the expected sufficient
statistics are the same
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Expectation Propagation 19/35

» An approximate inference method proposed by Minka 2001.

» Suitable for approximating product forms. For example,
with iid observations, the posterior takes the following form

p(0)x) o< p(6) H (x4]0) = Hfl

=1

» We use an approximation

One common choice for fz is the exponential family

7:(6) = h(6) exp (0] T(0) - A(m))

> Tteratively refinement of the terms f;(6)
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[terative Updating 20/35

» Take out term approximation ¢
V() o [T 50
J#i
» Put back in term 4

Osz Hf]

J#
» Match moments. Find ¢ such that

Ey(T(0)) = Ex(T(0))

» Update the new term approximation

']EineW(e) o
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How Does EP Work? 21/35

f" substitute E W o
=
<

project e

» Minimize the KL divergence from p to ¢

D1 (pllg) = Eplog (%)

» Equivalent to moment matching when ¢ is in the
exponential family.
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Particle Based Variational Inference 22/35

» The approximating distributions that we discussed so far
are assumed to have a parametric form, that is gg(x) with
parameter 6.

» This parametric form often limits the power of the
approximating distributions.

» In what follows, we will introduce a particle based VI
introduced by Liu et al. that uses non-parameteric
approximating distributions.
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Stein’s Method 23/35

>

>

A general theoretical tool for bounding differences between
distributions, introduced by Charles Stein.

The key idea is to characterize a distribution p with a Stein
operator A, such that

p=q <= Eupy[Af(@)]=0, VficF
For continuous distributions with smooth density p(z),
Apf () = sp(@)! f(z) + Vo - f(2)
where s,(z) = V; log p(x) is the score function.

Note that s,(x) does not dependent on the normalizing
constant of p(x), so p(z) can be unnormalized.
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Stein’s Method 24/35

» When p = g, we have Stein’s Identity
By [5p(2)T f(2) + Vi - f(z)] =0

» Stein’s identity defines an infinite number of identities
indexed by test function f, widely applied in learning
probabilistic models, variance reduction, optimization and
many more.

» When p # ¢, we have (also by Stein’s Identity)
Eing[Apf ()] = Eung(sp(x) — 5q(2))" f ()] (1)

Easy to find test function f(x) such that (1) is non-zero.
For example:

f(z) = sp(x) — sq¢(x)
Je g X ¥
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Stein Discrepancy 25/35

» We therefore, define Stein Discrepancy between p and ¢ as
follows

D(qllp) := r}lea;qu[Apf(fv)] (2)

where F is a rich enough set of functions.

» Traditionally, Stein’s method takes F to be sets of
functions with bounded Lipschitz norm, which is
computationally difficult for practical use.

» We can use a kernel trick to construct a reproducing kernel

Hilbert space (RKHS) where there is a closed form solution
to (2).
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Reproducing Kernel Hilbert Space 26/35

» Let k(x,2’) be a positive definite kernel, that is
/ g(@)k(x, 2" )g(2") dedr’ >0, V0 < |g]3 < occ.
By MGXI'CGI"’S theorem,
k(z,2') = ZZ Niei(z)e;(2')

» We can define a RKHS # that contains linear
combinations of these eigenfunctions

flz)= ZZ fiei(x), (f,9)n = Zz f;ii
with || fI13, = (f, fa = X5 f2/ M-

» Reproducing Property
f(l‘) = <f7 k('>$)>Ha k(l‘,$l) = </€(,l‘),k(,ﬂj‘,)>7{
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Kernelized Stein Discrepancy 27/35

» Given a positive definite kernel k(z,2’), Liu et al. define a
kernelized Stein discrepancy (KSD) D(q||p) as follows

D(qllp) = \/Eaormalbpq(@)Th(z, )55 0(a")]

where §, 4(x) = sp(x) — s¢(x). Obviously,

D(qllp) >0, D(qllp) =0« q=np.

> With the spectral decomposition, we can rewrite KSD as

D(gllp) = ¢ZAHEM i@
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Kernelized Stein Discrepancy 28/35

» It turns out that KSD can be viewed as standard Stein
discrepancy over a specific family of functions F, i.e, the
unit ball of H? =H x - x H.

» Denote 3(a') = Epng[Apky ()], then
D(qllp) = ||Bl3a
» Moreover, we have

(B, fyma = BonglApf(2)], Vf € H

» Therefore,
D(qllp) = max EoglApf ()]

where F = {f € H? : || f|ly¢ < 1}. The maximum is

ez x Y
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Stein Variational Gradient Descent 29/35

Proposed by Liu and Wang, 2016.

Idea: represent the distribution using a collection of particles
{x;}7_, and iteratively move these particles toward the target p
by updates of form

zi < T(xi), T(x) =2+ eg(x)

where ¢ is a perturbation direction chosen
to maximumly decrease the KL divergence.

9 ‘ T\

$ = argmax { 9 D arllp) } (1 2

beF Oe e=0 ‘ *le

= o

where g7 is the density of 2’ = T'(z) when = ==/

the current density of = is ¢(z).
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Stein Variational Gradient Descent 30/35

» Perturbation direction is closely related to Stein operator

= Eyng[App ()]

e=0

0
—EDKL(QT”P)

» This gives another interpretation of Stein discrepancy

o

» Most importantly, the optimum direction has a closed form
when F is the unit ball of RKHS H%:

¢*(") = EgnglApk(z, )]
= Eyng[Valogp(z)k(z, ) + Vik(z,-)]

)
D(qllp) = max { —aDKL(QTHp)
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Stein Variational Gradient Descent 31/35

We can approximate the expectation F,., with the empirical
average over current particles
1 n
T; — :):Z'—I—eﬁ Z [V,,; log p(z))k(xj, x;) + ] ,1<i<n
j=1
» Deterministically transport probability mass from initial gq
to target p.
» Reduces to standard gradient ascent for MAP when using a
single particle (n = 1).
» V.logp(x;): the gradient term moves the particles towards
high probability domains of p(x).
> : the repulsive force term enforces diversity in
the particles and prevents them from collapsing to the
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Examples: Mixture of Gaussian 32/35

Oth Iteration 50th Iteration 75th Iteration 100th Iteration 150th lteration 500th Iteration

10 0 10 -10 0 10 10 0 10
08 o -5-Monte Carlo
- ; -2 -©-Stein Variational Gradient Descent|
E 25

Log10 MSE

5
)

0 50 250 0 50 250 10 50 250
Sample Size (n) Sample Size (n) Sample Size (n)

(a) Estimating E(x)  (b) Estimating E(x?)  (c) Estimating E(cos(wz + b))

Liu et al., 2016
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Examples: Bayesian Logistic Regression 33/35

X 0.75 —e—Stein Variational Gradient Descent (Our Method)
> > ——Stochastic Langevin (Parallel SGLD)
8 8 ~v—Particle Mirror Descent (PMD)
5 =] -+ Doubly Stochastic (DSVI)
38 8 -% Stochastic Langevin (Sequential SGLD)
< < 07
g g
208 ki
. 0.65 .
0.1 1 2 1 10 50 250
Number of Epoches Particle Size (n)
(a) Particle size n = 100 (b) Results at 3000 iteration (= 0.32 epoches)

Liu et al., 2016
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