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Recap on Deep Generative Models 2/48

6EM

Model family

> Autoregressive Models: pg(x) = [ po(zilz<s)
» Normalizing Flow Models:

px(2;0) = pz(fy ' (x)) |det <af%;(x))‘

» Variational Autoencoders: pg(z) = [ po(z,z)dz

Cons: Model architectures are restricted.




Recap on Deep Generative Models 2/48
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Model family

» Generative Adversarial Networks (GANs).
> ming maxy Eorp,,., 108 Do () + E.p(z) log (L — Dy (Go(2)))
» Two sample tests. Can optimize f-divergences and the
Wasserstein distance.
» Very flexible model architectures. But likelihood is
intractable, training is unstable, hard to evaluate, and has
mode collapse issues.




Recap on Deep Generative Models 2/48
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Model family

Energy-based Models (EBMs).
» Very flexible model architectures.
> Stable training.
» Relatively high sample quality.

» Flexible composition.




How to Parameterize a Distribution? 3/48

0.

» sum-to-one: Y p(xz) =1 or [p(x)dx =1 for continuous
variables

Probability densities p(x) need to satisfy
>

» non-negative: p(z)

Coming up with a non-negative function py(z) is not hard
> po(z) = fo(z)?
> po(z) = exp(fo(z))
> po(x) = [fo(z)]
Sum to one is the key. Although many models allow analytical

integration (e.g., autoregressive models, normalizing flows),
what if the analytical integration is not available?
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Energy-based Model 4/48

po() = W 20) = [ explfola))ds

The normalizing constant Z(#) is also called the partition
function. Why exponential (and not e.g. fy(z)?)?

» Want to capture very large variations in probability.
log-probability is the nature scale we want to work with.
Otherwise need highly non-smooth fjy.

» Exponential families. Many common distributions can be
written in this form.

» These distributions arise under fairly general assumptions
in statistical physics (maximum entropy, second law of
thermodynamics).

» fo(x) is called the energy, hence the name.
» Intuitively, configurations « with low energy (high fy(z))

are more likely. 2R e ; )%
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Energy-based Model 5/48

po(z) = W 20) = [ explola))ds
Pros:

» extreme flexibility. pretty much any function fyp(z) you
want to use

Cons:
» Samping from py(x) is hard

» Evaluating and optimizing likelihood pyg(x) is hard
(learning is hard)

» No feature learning (but can add latent variables)

Curse of dimensionality: The fundamental issue is that
computing Z(f) numerically (when no analytic solution is
available) scales exponentially in the number of dimensions of x.
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Example: Ising Model 6/48

Markov Random Field

X;: noisy pixels
Y;: “true” pixels

» There is a true image y € {0,1}3*3, and a corrupted image
x € {0,1}3*3. We know x, and want to somehow recover y.

» We model the joint probability distribution p(y,z) as

Py, @) ocexp [ wilwivi) + Y Vi (Wi v))
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Example: Ising Model 6/48

Markov Random Field

X;: noisy pixels
Y, “true” pixels

The energy is Zz @bz(%v yz) + Zz‘,jeE %bi,j (yi, yj)
» i(z,y;): the i-th corrupted pixel depends on the i-th
original pixel
» ;i (yi,y;): neighboring pixels tend to have the same value

How did the original image y look like? Solution: maximize

p(y|z). Or equivalently, maximize p(y, ). |
D e xS F —




Example: Restricted Boltzmann Machine (RBM)  7/48

» RBM: energy-based model with latent variables
» Two types of variables:

» 2 € {0,1}"™ are visible variables (e.g., pixel values)
» z € {0,1}™ are latent ones

» The joint distribution is
Pwbe(w,2) o exp(z? Wz +bl'x + ¢T'2)

Hidden units

Visible units Q

» Restricted as there are no within-class connections.

» Can be stacked together to make deep RBMs (one of the

first generative models). @ i)




Deep RBMs: Samples 8/48
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Energy-based Models: Learning and Inference 9/48

» Learning by maximizing the likelihood function
max Eypy,, 10g po(x) = max (Bonpg,, fo(x) —log Z(0))

» Gradient of log-likelihood:

VoZ(6)

EIdiatavofe ('/L.) - v0 log Z(e) = E$diatav9f9 (x) - Z(G)

:Ewdiatavafe(x)—/Wwfe(x)dx

= Bypyon Vo o) — / po(2) Vo fo ) da
- Eﬂc”Pdatavef@( ) .’L‘Npg x)vé'fQ( )

» Contrastive Divergence: sample Zgample ~ Po, take

gradient step on vaH(xtrain) — Vefe(xsample)' ;“:'% X N4
g NIy T
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Sampling From EBMs 10/48

po(a) = W 20)= [ e(fate)is

» No direct way to sample like in autoregressive or flow
models.

» Can use gradient-based MCMC methods, e.g., SGLD
e = 2t 4 eV, log py(xh) + V2ent, 1t ~ N(0,1)
» Note that for energy-based models
so(x) = Vylogpe(x) = Va fo(z) — Valog Z(0) = Vo fo(z)

The score function does not depend on Z(6)!
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Modern EBMs 11/48

Face samples

Adapted from Nijkamp et al. 2019

N ;H:;fJ’ ¥__
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Training Without Sampling 12/48

=gt 4 ev, Inge(xt) + \/%nt, 77t ~ N(0,1)

» MCMC sampling converges slowly in high dimensional
spaces, and repetitive sampling for each training iteration
would be expensive.

» Can we train without sampling?

> Note that to generate samples from an EBM, we only need
the score function V, log pg(z).

» Can we properly train the score function without sampling?

R >
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Score Matching 13/48

» A key observation: two distributions are identical iff their
scores are the same

p(z) = q(x) & Valogp(z) = V. log g(z)

where p, ¢ are the unnormalized densities of p, q.

» Match the scores of the data distribution and EBMs by
minimizing

1 2

5 Benpaaia [V 108 Paata(2) — so ()
1

:§E2diata||Vm logpdata(x) - fog(w)HQ

This is also known as Fisher divergence.

R >
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Score Matching 14/48

» Using integration by parts, we have

1

§Ex~pdam ||va: Ingdata(x) - vl‘f@ (l‘) H2

1
=Eorpiara <Tr (Vgsf(?(ﬂ?)) + QHV:va(ﬂf)H2> + Const
» Sample a mini-batch of datapoints

{1,292, .., 2} ~ Pdata(x)

P> Estimate the score matching loss with the empirical mean

Z( IV fo ()| + Tr (V2 f@(xz))>

I
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Score Matching 15/48

» Minimize the score matching loss via stochastic gradient
descent.

» No need to sample from the EBM!

> Note that computing the trace of Hessian Tr (V2 fy(z)) is
in general very expensive for large models.
» Scalable score matching methods: denoising score matching

(Vincent 2010) and sliced score matching (Song et al.
2019).
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Noise Contrastive Estimation 16/48

Learning an energy-based model by constrasting it with a noise
distribuiton.

» Data distribution: pgata().

» Noise distribution: p,(z). Should be analytically tractable
and easy to sample from.

» Training a discriminator Dy(x) € [0, 1] to distinguish
between data samples and noise samples.

max Eppaaia 108 Do(x) + Epp, log(1 — Dy(z))

» Optimal discriminator

* o pdata(x)
Di@) = @ + on@
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Noise Contrastive Estimation 17/48

» If the discriminator is parameterized as

po(7)

Dol=) = po() + pn(x)

» The optimal discriminator Dj(x) satisfies

py(r)  _ pdata(®)

DI = @) + 1@ pawala) +92@)

or equivalently,
p; ((L’) = pdata(x)

oy At 7K ¥ —
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Noise Contrastive Estimation for Training EBMs 18/48

» EBMs require Z(f) to be a normalizing constant, which is
hard to satisfy.

» We can model Z(#) with an additional trainable parameter
Z that relaxs the normalizing constraint

exp(fo(z))

pe,z(l‘) = 7

» With noise contrastive estimation (NCE), the optimal
parameters 6%, Z* satisfy

exp( fo« (x
por (@) = SR )
A
» The optimal parameter Z* hence automatically satifies the
constraint as pg= z+ is a valid density function.

By e 5 ) F —
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Noise Contrastive Estimation for Training EBMs 19/48

» Now we parameterize the discriminator Dy z(x) as

)
ep(fo@)/Z _ exp(fo(a))
xp(fo(@))/Z + pulz) ~ exp(folx)) + palx)Z

» The training objective in NCE becomes

Dy z(x) =

rgaZszdiata log Dy z(x) + Egrp, log(1 — Dy z(x))

= n;ngzfvpdata (fo(x) —log(exp(fo(x)) + Zpn(x)))

+ Eonp, (108(Zpn(z)) — log(exp(fo(z)) + Zpn(z)))

» One can use the log-sum-exp trick for numerical stability.

ANELT Y
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Noise

v

Contrastive Estimation for Training EBMs 20/48

Sample a mini-batch of datapoints x1,xa, ...,y ~ Pdata(T).
Sample a mini-batch of noise samples y1,y2, ..., yn ~ Pn(y).
Estimate the NCE loss

- Z fé’ xz — log eXp(fH(xz)) + an(xi))

+log Z + log pn(yi) — log(exp(fo(yi)) + Zpn(vi)))

Stochastic gradient ascent.
No need to sample from the EBM!
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Comparing NCE and GAN 21/48

Similarities:

» Both involve training a discriminator to perform binary
classification with a cross-entropy loss.

» Both are likelihood-free.

Differences:

» GAN requires adversarial training or minimax optimization
for training, while NCE does not.

» NCE requires the likelihood of the noise distribution for
training, while GAN only requires efficient sampling from
the prior.

» NCE trains an energy-based model, while GAN trains a
deterministic sample generator.

Yo A
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Flow Contrastive Estimation 22/48

Intuition:

» We need to both evaluate the probability of p,(z), and
sample from it efficiently.

» We hope to make the classification task as hard as possible,
i.e., pp(x) should be close to pgata(z).

Flow contrastive estimation:

» Parameterize the noise distribution with a normalizing flow
model p,, ().

» Parameterize the discriminator Dy z 4(x) as

Do olz) = —2RWo@)/Z exp(fo(x))
2= (o (0)) /2 + Prg(@)  exp(fo(@)) + Zpng(a)

» Train the flow model to minimize D js(pdata; Pn.¢):

minmax E;p... 108 Do, 7,6() + Eznp, , log(1 — Dy z,4(z))

¢ 0,Z N
Gy R r T —
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Score-based Models 23/48

» When the pdf is differentiable, we can compute the
gradient of a probability density, and use it to represent
the distribution.

Score function V, log p(x)

S

///3’5/\\\
\7/\@

(pdf and score) (Electrical potentials and fields)

SELT RS
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How to Train Score-based Models 24/48

» Given i.i.d. samples {z1,...,zn} ~ p(x)

» We want to estimate the score V, 1og pqata()

v

v

Goal: sg(x) = V;1og pgata(x)

Score model: a learnable vector-valued function

so(z) :RP - R

» How to compare two vector fields of scores?

P
/v/v/v—>
/ —»/
Vx Ingdata(X) /\/

/

,
-/
—

s9(x)

WV

Prads
Arr_x Average

~” Euclidean distance

<X
o Z, over the space
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How to Train Score-based Models 25/48

» Objective: Average Euclidean distance over the whole
space.

2

|

§E$~pdata Hvx log paata(®) — sg (x)

» Score matching:

v (315001 + TH(Vasu(0) )

> Requirements:

» The score model must be efficient to evaluated.
» Do we need the score model to be a proper score function?

oA
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Score Matching is Not Scalable 26/48

» We can use deep neural networks for more expressive score
models

oA
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Score Matching is Not Scalable 26/48

» We can use deep neural networks for more expressive score
models

» However, Tr(V;sg(z)) can be a problem.

O(D) Backprops!

as'g'lT;), asgl(x) 80,1 (x)

3Z3
VXSQ(X) — 539 2]('x')' I?)se 2(x)I Ose, 2(x)
339 3(x) UF@ 3f5¢7 '7939 3?33

ox1 Oz | Ox3
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Score Matching is Not Scalable 26/48

» We can use deep neural networks for more expressive score
models

836,1 (X)
a.’L'l
0s9,2(x)
(9I2
Dsp,3(x)
3903

» However, Tr(V sp(z)) can be a problem.

O(D) Backprops!

{9501 (0!  8s01(%) 9s0,1(x)

10z | L e Ox3
Vieso(x) = 950200 [B502(0)] s02x)
x50 0y I Oz2 | ATz
9s0,3(x) 05530 [95,5(x)}
Ox1 Oxa I Oz3 }
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Denoising Score Matching 27/48

» Denoising score matching (Vincent

[ 2011) used a noise-perturbed data
' pdata(x) distribution
x | S | V2108, () — 50 )]
wx|x) 2
| —5 [ 4@V log4,(2) — so(a) P

= E‘”

K

Q

~~

b3

N—r
l\D\>—~

/q(7 )||se(Z | dz

X /qg )Wz log qo (2) s¢(#)dZ + Const
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Denoising Score Matching 28/48

» The second term can be rewritten as

- [ 4@V low 0o &) (@5 = [ Viar @) a0

— [v:( / Paala >qa<x|x>dx) so(2)d
-/ ( / pdam(x)qug(azm)dx>Tsa<fc>da~:

- / / Patata ()0 (212) Vs 1og o (3]2) s (#)dad

= —Ex,\,pdata(x)’j,vqa(jﬂm)Vi« log ¢, (:Z'|$)T89 ({Z‘)
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Denoising Score Matching 29/48

» Plug it back we have

1 - NIE

Vs, V3 10805 (2) — s0(3)
1 - ~

= 3 Erpanea(a) ao (i) | 50(F) — Vi log 4o ()| + Const

» The noise score V;log ¢-(Z|z) is easy to compute. For
example, when use Gaussian noise ¢, (Z|z) = N (Z|z, 021),

the score is N
T—x

Vi loggs(2]z) = — o2

» Pros: efficient to optimize even for very high dimensional
data, and useful for optimal denoising.

» Cons: cannot estimate the score of clean data (noise-free)

R >
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Denoising Score Matching 30/48

» Sample a minibatch of datapoints {x1,...,Z,} ~ pdata(T)-
» Sample a minibatch of perturbed datapoints

ji’\’qg(i‘iui), i:1,2,...,n

P> Estimate the denoising score matching loss with empirical
means

1 — . ~
o Z Is9(2) — Vi log qo (F;|2)||”
=1

» Stochastic gradient descent

» Need to choose a very small o! However, the loss variance
would also increase drastically as o — 0!

Yo A
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Tweedie’s Formula and Denoising Score Matching 31/48

» Denoising score matching is suitable for optimal denoising

» Given p(), ¢, (Z|z) = N(Z|z,0%I), we can define the
posterior p(z|Z) with Bayes’ rule

2|F) = p(2)q0(Z|2)
40 (Z)
where

4o (E) = / (&) () d

» Tweedie’s formula:

Egp(ziz)z] = 7 + 02V ;log ¢ (Z)

~ T+ o2s(T)

NELF TS
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Sliced Score Matching

» One dimensional problems should be easier.

» Consider projections onto random directions.

» Sliced score matching (Song et al 2019).

~ =
R e R iy
x 10g PdatalX —_— ""-é-?- -
=~ ~
/'—; -
- =4
we TLs Sz
-/ 2=/
7 Z

32/48
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Sliced Score Matching 33/48

» Objective: Sliced Fisher Divergence

1

2
QEUNPUEmNPdata (UTvx 10g pdata () — UTS@ (w))

» Similarly, we can do integration by parts

1
v Bovp, (01 Tusala)o + 507 s0(0) )
» Computing Jacobian-vector products is scalable
vV ,s0(x)v = 0T Vo (se(z) T v)

This only requires one backpropagation!

R >
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Sliced Score Matching 34/48

» Sample a minibatch of datapoints {x1,...,Zn} ~ pdata()

v

Sample a minibatch of projection directions {v; ~ p, }7

> Estimate the sliced score matching loss with empirical
means

Z( T 450 () v; + ;( ?Se(xz))2>

» The perturbation distribution is typically Gaussian or
Rademacher. When Evv” = I, this is equivalent to the
Hutchinson’s trick.

» Can use |[sp(x)||? instead of (vTse(x))? to reduce variance.

» Can use more projections per datapoint to boost
performance.

oA
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Pitfalls: Manifold Hypothesis 35/48

» Datapoints would lie on a lower dimensional manifold.

Data points

» Data score hence would be undefined.

ANELT LY =
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Pitfalls: Challenges in Low Data Density Region 36/48

I

1
§]Eszdata va logpdata(x) — S0 (515)

Data scores Estimated scores

Data density

» Poor score estimation in low data density regions.

» Langevin MCMC will also have trouble exploring low
density regions.

oy e g K —
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Pitfalls: Slow Mixing Between Data Modes 37/48

5 i.i.d samples g Langevin dynamics samples
6 6
4 4
2 2
0 0
-2 -2
-4 s -4
-6 -6
-8 -8
-5 0 5 -5 0 5

Adapted from Song et al 2019.
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Gaussian Perturbation 38/48

» The solution to all pitfalls: Gaussian perturbation!

» Inflate the flat manifold with noise.

» Score matching on noise data

6.4e+6
)
6.6e+6
g +6 :
o | 6.8e+6
3
() “<ot 7ot
>+9 7.2e+
0 10k 20k 30k 40k 50k 0 10k 20k 30k 40k 50k
# of lterations # of Iterations
CIFAR-10 Noisy CIFAR-10 __ .
S e 7 X
NPT EE B
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39/48

Estimated scores
AASS S b B R

)2

(#) — so(Z
Perturbed scores

Eing, [|Vzlog qs
e s

1

2

Perturbed density

Noisy Data Score Estimation

N R o

Wy E
, &
Lﬂm
N
»E

5

......... P
DR R .

B e |
R R e

» Noisy score can provide useful directional information for
Langevin MCMC.




Multi-scale Noise Perturbation 40/48

» Multi-scale noise perturbations.

g1 > 09 >+ >0[_1>0]

» Trading off data quality and estimator accuracy

Data density

Perturbed diiisity ‘

(Red encodes error)

T

Worse data quality!
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41/48

» Sample using o1, ..., 0, sequentially with Langevin
dynamics.

Annealed Langevin Dynamics

» Anneal down the noise level.

» Samples used as initialization for the next level.
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Annealed Langevin Dynamics 42/48

Algorithm 1 Annealed Langevin dynamics.

Require: {o;} ¢ T.
1: Initialize X
2: fori < 1to L do
3: a; «—€-02/o2 B> o is the step size.
4 fort < 1to7 do
5 Draw z; ~ N(0,1)
6: Xy — X1 + %Sg(it_l,ai) + @Zt
7: end for
8 Xo ¢ X7
9: end for
return X

@ Je g K F
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43/48

Noise Conditional Score Networks

» Learning score functions jointly with noise conditional

score networks!

Noise Conditional

Score Network

PZIIIIII

(NCSN)

¥

#
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Training Noise Conditional Score Networks 44/48

> As the goal is to estimate the score of perturbed data
distributions, we can use denoising score matching for
training.

» Assign different weights to combine denoising score
matching losses for different noise levels.

L

1 - -

L > ANO)EBing,, ) Vz108 6o, (&) — (2, 03)]|?
i=1

L
= = > NODEampy imao, (31) | Vi 108 6o, (F|7) = 59(F, 03)[|* + Const
i=1
L 2
Z MO By paun,e (0,1 186 (% + 032, 04) + ;!\2 + Const.
(2

=1

SIE
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Noise Scales and Weighting Functions 45/48

» Adjacent noise scales should have sufficient overlap to ease
transitioning across noise scales in annealed Langevin
dynamics.

» For example, a geometric progression

g; .
L —a>1, i=1,...,L—1
Oi+1

» What about the weighting function A7

» Use A(0) = 02 to balance different score matching losses

L
1 z
Z Z UZ?EINPdata,ZNN(O,I) ”8(9(:1j + 05z, Ui) + ;||2
=1 i
1 L
:Z Z EprdatayzNN(O,I) HU’LSQ(‘T + 0-1;27 UZ) + ZH2

Z:1 N »
N ez I F
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Training Noise Conditional Score Networks 46/48

» Sample a mini-batch of datapoints {z1,..., 25} ~ pdata-

v

Sample a mini-batch of noise scale indices
{i1, . yint ~U{1,2,..., L}
» Sample a mini-batch of Gaussian noise
{z1,.. . z2n} ~ N(0,1)
> Estimate the weighted mixture of score matching losses

1
n Z ||Uz'k36(l’k + oiy, 2k, Uik) + Zk||2
k=1

» As efficient as training one single non-conditional
score-based model.

Yo A
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