Statistical Models & Computing Methods Lecture 19: Generative Adversarial Nets

Cheng Zhang

School of Mathematical Sciences, Peking University

December 16, 2021

Recap on Deep Generative Models 2/37

- Autoregressive Models: $p_{\theta}(x) = \prod_{i=1}^{n} p_{\theta}(x_i | x_{\leq i})$
- Variational Autoencoders: $p_{\theta}(x) = \int_{z}^{x} p_{\theta}(x, z) dz$

$$
\sum_{p_X(x;\theta) = p_Z(f_{\theta}^{-1}(x)) \left| \det \left(\frac{\partial f_{\theta}^{-1}(x)}{\partial x} \right) \right|
$$

- \blacktriangleright All the above families are based on maximizing likelihoods (or approximations, e.g., lower bound)
- \blacktriangleright Is the likelihood a good indicator of the quality of samples generated by the model?

Sample Quality and Likelihood 3/37

- \triangleright Optimal generative model will give best sample quality and highest test log-likelihood. However, in practice, high $log-likelihoods \neq good sample quality$ (Theis et al., 2016)
- ► Case 1: great test log-likelihoods, poor samples. Consider a mixture model $p_{\theta}(x) = 0.01 p_{data}(x) + 0.99 p_{noise}(x)$, we have

 $\mathbb{E}_{p_{\text{data}}}\log p_{\text{data}}(x) \geq \mathbb{E}_{p_{\text{data}}}\log p_{\theta}(x) \geq \mathbb{E}_{p_{\text{data}}}\log p_{\text{data}}(x) - \log 100$ This means $\mathbb{E}_{n_{\text{data}}} \log p_{\theta}(x) \approx \mathbb{E}_{n_{\text{data}}} \log p_{\text{data}}(x)$ when the dimension of x is large.

- \triangleright Case 2: great samples, poor test log-likelihoods. E.g., memorizing training set: samples look exactly like the training set; test set will have zero probability
- \blacktriangleright The above cases suggest that it might be useful to disentangle likelihoods and samples \Rightarrow likelihood-free learning!

Comparing Distributions via Samples 4/37

Given samples from two distributions $S_1 = \{x \sim P\}$ and $S_2 = \{x \sim Q\}$, how can we tell if these samples are from the same distribution? (i.e., $P = Q$?)

$Two-sample Tests$ 5/37

- ► Given $S_1 = \{x \sim P\}$ and $S_2 = \{x \sim Q\}$, a two-sample test considers the following hypotheses
	- \blacktriangleright Null hypothesis $H_0: P = Q$
	- Alternative hypothesis $H_1: p \neq Q$
- \blacktriangleright Test statistic T compares S_1 and S_2 , e.g., difference in means, variances of the two sets of samples
- If T is less than a threshold α , the accept H_0 else reject it
- \triangleright Key observation: Test statistics is likelihood-free since it does not involve the densities P or Q (only samples)

Generative Modeling and Two-sample Tests 6/37

- \triangleright Suppose we have direct access to the data set $S_1 = \mathcal{D} = \{x \sim p_{\text{data}}\}$
- \triangleright Now assume that the model distribution p_{θ} permits efficient sampling (e.g., directed models). Let $S_2 = \{x \sim p_\theta\}$
- \triangleright Use a two-sample test objective to measure the distance between distributions and train the generative model p_{θ} to minimize this distance between S_1 and S_2

Two-Sample Test via a Discriminator 7/37

- \triangleright Finding a two-sample test objective in high dimensions is non-trivial
- In the generative model setup, we know that S_1 and S_2 come from different distributions p_{data} and p_{θ} respectively
- \triangleright Key idea: Learn a statistic that maximizes a suitable notion of distance between the two sets of samples S_1 and S_2

The **generator** and **discriminator** play a minimax game!

Generator

- \triangleright Directed, latent variable model with a deterministic mapping between z and x given by G_{θ}
- I Minimizes a two-sample test objective (in support of the null hypothesis $p_{data} = p_{\theta}$

The **generator** and **discriminator** play a minimax game!

Discriminator

- \blacktriangleright Any function (e.g., neural network) which tries to distinguish "real" samples from the dataset and "fake" sampels generated from the model
- I Maximizes the two-sample test objectivee (in support of the alternative hypothesis $p_{data} \neq p_{\theta}$

Discriminator Training Objective 10/37

 \triangleright Training objective for discriminator:

$$
\max_{D} V(G, D) = \mathbb{E}_{x \sim p_{\text{data}}} \log D(x) + \mathbb{E}_{x \sim p_G} \log(1 - D(x))
$$

- \blacktriangleright For a fixed generator G, the discriminator is performing binary classification with the cross entropy objective
	- ► Assign probability 1 to true data points $x \sim p_{data}$
	- ► Assign probability 0 to fake samples $x \sim p_G$
- \triangleright Optimal discriminator

$$
D_G^*(x) = \frac{p_{\text{data}}(x)}{p_{\text{data}}(x) + p_G(x)}
$$

Generator Training Objective 11/37

\triangleright Training Objective for generator:

$$
\min_{G} V(G, D) = \mathbb{E}_{x \sim p_{\text{data}}} \log D(x) + \mathbb{E}_{x \sim p_G} \log(1 - D(x))
$$

► For the optimal discriminator $D^*_{G}(\cdot)$, we have

$$
V(G, D_G^*) = \mathbb{E}_{x \sim p_{\text{data}}} \log \frac{p_{\text{data}}(x)}{p_{\text{data}}(x) + p_G(x)} + \mathbb{E}_{x \sim p_G} \log \frac{p_G(x)}{p_{\text{data}}(x) + p_G(x)}
$$

= $\mathbb{E}_{x \sim p_{\text{data}}} \log \frac{p_{\text{data}}(x)}{\frac{p_{\text{data}}(x) + p_G(x)}{2}} + \mathbb{E}_{x \sim p_G} \log \frac{p_G(x)}{\frac{p_{\text{data}}(x) + p_G(x)}{2}} - \log 4$
= KL $\left(p_{\text{data}} \middle| \frac{p_{\text{data}} + p_G}{2} \right) + \text{KL} \left(p_G \middle| \frac{p_{\text{data}} + p_G}{2} \right) - \log 4$

 \triangleright The sum of KL in the above equation is known as Jensen-Shannon divergence (JSD)

Jensen-Shannon Divergence 12/37

$$
JSD(p, q) = KL\left(p \left\| \frac{p+q}{2}\right.\right) + KL\left(q \left\| \frac{p+q}{2}\right.\right)
$$

Properties

- \blacktriangleright JSD $(p, q) > 0$
- \blacktriangleright JSD $(p, q) = 0$ iff $p = q$

$$
\blacktriangleright \text{JSD}(p, q) = \text{JSD}(q, p)
$$

 $\blacktriangleright \sqrt{\text{JSD}(p,q)}$ satisfies triangle inequality

 \triangleright Optimal generator for the JSD GAN

$$
p_G = p_{\text{data}}
$$

For the optimal discriminator $D^*_{G^*}(\cdot)$ and generator $G^*(\cdot)$, we have

$$
V(G^*, D^*_{G^*}(x)) = -\log 4
$$

Alternating Optimization in GAN 13/37

 $\min_{\theta} \max_{\phi} V(G_{\theta}, D_{\phi}) = \mathbb{E}_{x \sim p_{\text{data}}} \log D_{\phi}(x) + \mathbb{E}_{z \sim p(z)} \log(1 - D_{\phi}(G_{\theta}(z)))$

- \blacktriangleright sample *m* training points $x^{(1)}, x^{(2)}, \ldots, x^{(m)}$ from \mathcal{D}
- \blacktriangleright sample *m* noise vectors $z^{(1)}, z^{(2)}, \ldots, z^{(m)}$ from p_z
- \triangleright generator parameters θ update: stochastic gradient descent

$$
\nabla_{\theta} V(G_{\theta}, D_{\phi}) = \frac{1}{m} \nabla_{\theta} \sum_{i=1}^{m} \log(1 - D_{\phi}(G_{\theta}(z^{(i)})))
$$

 \blacktriangleright discriminator parameters ϕ update: stochastic gradient ascent

$$
\nabla_{\phi} V(G_{\theta}, D_{\phi}) = \frac{1}{m} \nabla_{\phi} \sum_{i=1}^{m} \log D_{\phi}(x^{(i)}) + \log(1 - D_{\phi}(G_{\theta}(z^{(i)})))
$$

 \blacktriangleright Repeat for fixed number of epochs

A Toy Example 14/37

Adapted from Goodfellow, 2014

Frontiers in GAN Research 15/37

2018

- \triangleright GANs have been successfully applied to several domains and tasks
- \blacktriangleright However, working with GANs can be very challenging in practice: unstable optimization/mode collapse/evaluation

 \blacktriangleright Many bag of tricks applied to train GANs successfully Image source: Ian Goodfellow. Samples from Goodfellow et al., 2014, Radford et al., 2015, Liu et al., 2016, Karras et al., 2017, Karras et al., 2018

Optimization Challenges 16/37

- \blacktriangleright Theorem: If the generator updates are made in function space and discriminator is optimal at every step, then the generator is guaranteed to converge to the data distribution
- \triangleright Unrealistic assumptions! In practice, the generator and discriminator loss keeps oscillating during GAN training

 \triangleright No robust stopping criteria in practice (unlike MLE)

Mode Collapse 17/37

- I GANs are notorious for suffering from mode collapse
- \blacktriangleright Intuitively, this refers to the phenomena where the generator of a GAN collapse to one or few samples (i.e., "modes")

Arjovsky et al., 2017

Mode Collapse 18/37

 \blacktriangleright True distribution is a mixture of Gaussians

 \blacktriangleright The generator distribution keeps oscillating between different models

- \blacktriangleright Fixes to mode collapse are mostly empirically driven: alternate architectures, adding regularization terms, injecting small noise perturbations etc.
- \triangleright Tips and tricks to make GAN work by Soumith Chintala: <https://github.com/soumith/ganhacks>

GAN Generated Artworks 20/37

Source: Robbie Barrat, Obvious

GAN generated art auctioned at Christie's. Expected Price: \$7,000 – \$10,000 True Price: \$432,500

\blacktriangleright The GAN Zoo: <https://github.com/hindupuravinash/the-gan-zoo>

\blacktriangleright Examples

- \blacktriangleright Rich class of likelihood-free objectives
- \triangleright Combination with latent representations
- ▶ Application: Image-to-image translation, etc.

$Divergence$ 22/37

 \triangleright Given two densities p and q, the f – divergence is given by

$$
D_f(p||q) = \mathbb{E}_{x \sim q} f\left(\frac{p(x)}{q(x)}\right)
$$

where f is any convex, lower-semicontinuous function with $f(1) = 0$

 \blacktriangleright Lower-semicontinuous: function value at any pint x_0 is close to $f(x_0)$ or greater than $f(x_0)$

Example: KL divergence with $f(u) = u \log u$

f Divergence 23/37

Many more f-divergence!

Name	$D_f(P Q)$	Generator $f(u)$
Total variation	$\frac{1}{2} \int p(x) - q(x) dx$	$rac{1}{2} u-1 $
Kullback-Leibler	$\int p(x) \log \frac{p(x)}{q(x)} dx$	$u \log u$
Reverse Kullback-Leibler	$\int q(x) \log \frac{q(x)}{p(x)} dx$	$-\log u$
Pearson χ^2	$\int \frac{(q(x)-p(x))^2}{p(x)}\,\mathrm{d}x$	$(u-1)^2$
Neyman χ^2	$\int \frac{(p(x)-q(x))^2}{q(x)}\,\mathrm{d}x$	$(1-u)^2$
Squared Hellinger	$\int \left(\sqrt{p(x)} - \sqrt{q(x)}\right)^2 dx$	$(\sqrt{u}-1)^2$
Jeffrey	$\int (p(x) - q(x)) \log \left(\frac{p(x)}{q(x)}\right) dx$	$(u-1)$ log u
Jensen-Shannon	$\frac{1}{2}\int p(x) \log \frac{2p(x)}{p(x)+q(x)} + q(x) \log \frac{2q(x)}{p(x)+q(x)} dx$	$-(u+1)\log \frac{1+u}{2} + u \log u$
Jensen-Shannon-weighted		$\pi u \log u - (1 - \pi + \pi u) \log(1 - \pi + \pi u)$
GAN	$\int p(x) \pi \log \frac{p(x)}{\pi p(x) + (1 - \pi)q(x)} + (1 - \pi)q(x) \log \frac{q(x)}{\pi p(x) + (1 - \pi)q(x)} dx$ $\int p(x) \log \frac{2p(x)}{p(x) + q(x)} + q(x) \log \frac{2q(x)}{p(x) + q(x)} dx - \log(4)$	$u \log u - (u+1) \log(u+1)$
α -divergence ($\alpha \notin \{0, 1\}$)	$\frac{1}{\alpha(\alpha-1)}\int \left(p(x)\left[\left(\frac{q(x)}{p(x)}\right)^{\alpha}-1\right]-\alpha(q(x)-p(x))\right) dx$	$\frac{1}{\alpha(\alpha-1)}(u^{\alpha}-1-\alpha(u-1))$

Source: Nowozin et al., 2016

Variational Divergence Minimization 24/37

- \triangleright To use f-divergences as a two-sample test objective for likelihood-free learning, we need to be able to estimate it only via samples
- \blacktriangleright Fenchel conjugate: For any function $f(\cdot)$, its convex conjugate is defined as

$$
f^*(t) = \sup_{u \in \text{dom}_f} ut - f(u)
$$

▶ Duallity: $f^{**} = f$. When $f(·)$ is convex, lower semicontinuous, so is $f^*(\cdot)$

$$
f(u) = \sup_{t \in \text{dom}_{f^*}} tu - f^*(t)
$$

Variational Divergence Minimization 25/37

 \triangleright We can obtain a lower bound to any f-divergence via its Fenchel conjugate

$$
D_f(p||q) = \mathbb{E}_{x \sim q} f\left(\frac{p(x)}{q(x)}\right)
$$

\n
$$
= \mathbb{E}_{x \sim q} \sup_{t \in \text{dom}_{f^*}} \left(t \frac{p(x)}{q(x)} - f^*(t)\right)
$$

\n
$$
\geq \mathbb{E}_{x \sim q} t(x) \frac{p(x)}{q(x)} - f^*(t(x))
$$

\n
$$
= \int_{\mathcal{X}} t(x)p(x) - f^*(t(x))q(x)dx
$$

\n
$$
= \mathbb{E}_{x \sim p} t(x) - \mathbb{E}_{x \sim q} f^*(t(x))
$$

for any function $t: \mathcal{X} \mapsto \text{dom}_{f^*}$

f -GAN 26/37

 \blacktriangleright Variational lower bound

$$
D_f(p||q) \ge \sup_{t \in \mathcal{T}} (\mathbb{E}_{x \sim p} t(x) - \mathbb{E}_{x \sim q} f^*(t(x)))
$$

- \blacktriangleright Choose any f-divergence
- In Let $p = p_{\text{data}}$ and $q = p_G$
- **Parameterize** t by ϕ and G by θ
- \triangleright Consider the following f-GAN objective

$$
\min_{\theta} \max_{\phi} F(\theta, \phi) = \mathbb{E}_{x \sim p_{\text{data}}} t_{\phi}(x) - \mathbb{E}_{x \sim p_{G_{\theta}}} f^*(t_{\phi}(x))
$$

 \triangleright Generator G_{θ} tries to minimize the divergence estimate and discriminator t_{ϕ} tries to tighten the lower bound

Inferring Latent Representation in GANs 27/37

- \blacktriangleright The generator of a GAN is typically a directed, latent variable model with latent variable z and observed variables x . How can we infer the latent feature representations in a GAN?
- If Unlike a normalizing flow model, the mapping $G: z \mapsto x$ need not to be invertible
- \blacktriangleright Unlike a variational autoencoder, there is no inference network $q(\cdot)$ which can learn a variational posterior over latent variables
- \triangleright Solution 1: For any point x, use the activations of the prefinal layer of a discriminator as a feature representation
- \blacktriangleright Intuition: similar to supervised deep neural networks, the discriminator would have learned useful representations for x while distinguishing real and fake x

Inferring Latent Representation in GANs 28/37

- If we want to directly learn the latent representation of x , we need a different learning algorithm
- I A regular GAN optimizes a two-sample test objective that compares samples of x from the generator and the data distribution
- \triangleright Solution 2: To infer latent representations, we will compare samples of x, z from joint distributions of observed and latent variables as per the model and the data distribution
- \triangleright For any x generated via the model, we have access to z (sampled from a simple prior $p(z)$)
- \blacktriangleright For any x from the data distribution, the z is however unobserved (latent)

Bidirectional GAN 29/37

- \blacktriangleright In a BiGAN, we have an encoder network E in addtion to the generator network G
- \triangleright The encoder network only observes $x \sim p_{\text{data}}(x)$ during training to learn a mapping $E: x \mapsto z$
- \triangleright As before, the generator network only observes the samples from the prior $z \sim p(z)$ during training to learn a mapping $G: z \mapsto x$

Bidirectional GAN 30/37

- \blacktriangleright The discriminator D observes samples from the generative model z, $G(z)$ and encoding distribution $E(x)$, x
- \blacktriangleright The goal of the discriminator is the maximize the two-sample test objective between $z, G(z)$ and $E(x), x$
- \blacktriangleright After training is complete, new samples are generated via G and latent representations are inferred via E

Translating Across Domains 31/37

- \blacktriangleright Image-to-image translation: we are given image from two domains, $\mathcal X$ and $\mathcal Y$
- ▶ Paired vs. unpaired examples

Source: Zhu et al., 2016

 \triangleright Paired examples can be expensive to obtain. Can we translate from $\mathcal{X} \Leftrightarrow \mathcal{Y}$ in an unsupervised manner?

CycleGAN 32/37

- \triangleright To match the two distributions, we learn two parameterized conditional generative models $G : \mathcal{X} \mapsto \mathcal{Y}$ and $F : \mathcal{Y} \mapsto \mathcal{X}$
- \blacktriangleright G maps an element of X to an element of Y. A discriminator $D_{\mathcal{V}}$ compares the observed dataset Y and the generated samples $\ddot{Y} = G(X)$
- \blacktriangleright Similarly, F maps an element of Y to an element of X. A discriminator $D_{\mathcal{X}}$ compares the observed dataset X and the generated samples $\hat{X} = F(Y)$

Source: Zhu et al., 2016

CycleGAN $33/37$

 \blacktriangleright Cycle consistency: If we can go from X to \hat{Y} via G, then it should also be possible to go from \hat{Y} back to X via F

 \blacktriangleright $F(G(X)) \approx X$

 \blacktriangleright Similarly, vice versa: $G(F(Y)) \approx Y$

Source: Zhu et al., 2016

 \triangleright Overall loss function

$$
\mathcal{L}_{GAN}(G, D_{\mathcal{Y}}, X, Y) + \mathcal{L}_{GAN}(F, D_{\mathcal{X}}, X, Y) + \lambda(\mathbb{E}_{X} || F(G(X)) - X ||_{1} + \mathbb{E}_{Y} || G(F(Y)) - Y ||_{1})
$$

CycleGAN in Practice 34/37

Source: Zhu et al., 2016

Summary of Generative Adversarial Networks $35/37$

- ► Key observation: Samples and likelihoods are not correlated in practice
- \blacktriangleright Two-sample test objectives allow for learning generative mdoels only via samples (likelihood-free)
- \triangleright Wide range of two-sample test objectives covering f-divergences (and more)
- ► Latent representations can be inferred via BiGAN (and other GANs with similar autoencoder structures)
- \triangleright Cycle-consistent domain translations via CycleGAN and other variants

References 36/37

- ► L. Theis, A. van den Oord, and M. Bethge. A note on the evaluation of generative models. In ICLR, 2016
- ► Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in neural information processing systems, pages 2672–2680, 2014.
- ▶ Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434, 2015.
- \blacktriangleright Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein gan. arXiv preprint arXiv:1701.07875, 2017.

References 37/37

- ▶ L. Metz, B. Poole, D. Pfau, and J. Sohl-Dickstein. Unrolled generative adversarial networks. arXiv preprint arXiv:1611.02163, 2016.
- I S. Nowozin, B. Cseke, and R. Tomioka. f-gan: Training generative neural samplers using variational divergence minimization. In Advances in neural information processing systems, pages 271–279, 2016.
- ▶ Jeff Donahue, Philipp Krähenbühl, and Trevor Darrell. Adversarial feature learning. arXiv preprint arXiv:1605.09782, 2016.
- ▶ Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. Unpaired image-to-image translation using cycle-consistent adversarial networks. In ICCV, 2017.

