Statistical Models & Computing Methods Lecture 19: Generative Adversarial Nets

Cheng Zhang

School of Mathematical Sciences, Peking University

December 16, 2021

Recap on Deep Generative Models

- Autoregressive Models: $p_{\theta}(x) = \prod_{i=1}^{n} p_{\theta}(x_i | x_{< i})$
- ► Variational Autoencoders: $p_{\theta}(x) = \int_{z}^{z} p_{\theta}(x, z) dz$

Normalizing Flow Models:

$$p_X(x;\theta) = p_Z(f_{\theta}^{-1}(x)) \left| \det \left(\frac{\partial f_{\theta}^{-1}(x)}{\partial x} \right) \right|$$

- All the above families are based on maximizing likelihoods (or approximations, e.g., lower bound)
- Is the likelihood a good indicator of the quality of samples generated by the model?

Sample Quality and Likelihood

- ► Optimal generative model will give best sample quality and highest test log-likelihood. However, in practice, high log-likelihoods ≠ good sample quality (Theis et al., 2016)
- ► Case 1: great test log-likelihoods, poor samples. Consider a mixture model $p_{\theta}(x) = 0.01 p_{\text{data}}(x) + 0.99 p_{\text{noise}}(x)$, we have

 $\mathbb{E}_{p_{\text{data}}} \log p_{\text{data}}(x) \geq \mathbb{E}_{p_{\text{data}}} \log p_{\theta}(x) \geq \mathbb{E}_{p_{\text{data}}} \log p_{\text{data}}(x) - \log 100$ This means $\mathbb{E}_{p_{\text{data}}} \log p_{\theta}(x) \approx \mathbb{E}_{p_{\text{data}}} \log p_{\text{data}}(x)$ when the dimension of x is large.

- Case 2: great samples, poor test log-likelihoods. E.g., memorizing training set: samples look exactly like the training set; test set will have zero probability
- ► The above cases suggest that it might be useful to disentangle likelihoods and samples ⇒ likelihood-free learning!

Comparing Distributions via Samples

Given samples from two distributions $S_1 = \{x \sim P\}$ and $S_2 = \{x \sim Q\}$, how can we tell if these samples are from the same distribution? (i.e., P = Q?)

Two-sample Tests

- Given $S_1 = \{x \sim P\}$ and $S_2 = \{x \sim Q\}$, a two-sample test considers the following hypotheses
 - ▶ Null hypothesis $H_0: P = Q$
 - Alternative hypothesis $H_1: p \neq Q$
- Test statistic T compares S_1 and S_2 , e.g., difference in means, variances of the two sets of samples
- ▶ If T is less than a threshold α , the accept H_0 else reject it
- Key observation: Test statistics is likelihood-free since it does not involve the densities P or Q (only samples)

Generative Modeling and Two-sample Tests

- Suppose we have direct access to the data set $S_1 = \mathcal{D} = \{x \sim p_{\text{data}}\}$
- ► Now assume that the model distribution p_{θ} permits efficient sampling (e.g., directed models). Let $S_2 = \{x \sim p_{\theta}\}$
- Use a two-sample test objective to measure the distance between distributions and train the generative model p_{θ} to minimize this distance between S_1 and S_2

6/37

Two-Sample Test via a Discriminator

- Finding a two-sample test objective in high dimensions is non-trivial
- ► In the generative model setup, we know that S_1 and S_2 come from different distributions p_{data} and p_{θ} respectively
- Key idea: Learn a statistic that maximizes a suitable notion of distance between the two sets of samples S₁ and S₂

The **generator** and **discriminator** play a minimax game!

Generator

- ► Directed, latent variable model with a deterministic mapping between z and x given by G_{θ}
- ► Minimizes a two-sample test objective (in support of the null hypothesis $p_{\text{data}} = p_{\theta}$

The **generator** and **discriminator** play a minimax game!

Discriminator

- ► Any function (e.g., neural network) which tries to distinguish "real" samples from the dataset and "fake" sampels generated from the model
- ► Maximizes the two-sample test objective (in support of the alternative hypothesis $p_{data} \neq p_{\theta}$)

Discriminator Training Objective

► Training objective for discriminator:

$$\max_{D} V(G, D) = \mathbb{E}_{x \sim p_{\text{data}}} \log D(x) + \mathbb{E}_{x \sim p_{G}} \log(1 - D(x))$$

• For a fixed generator G, the discriminator is performing binary classification with the cross entropy objective

- Assign probability 1 to true data points $x \sim p_{\text{data}}$
- Assign probability 0 to fake samples $x \sim p_G$
- ▶ Optimal discriminator

$$D_G^*(x) = \frac{p_{\text{data}}(x)}{p_{\text{data}}(x) + p_G(x)}$$

Generator Training Objective

► Training Objective for generator:

$$\min_{G} V(G, D) = \mathbb{E}_{x \sim p_{\text{data}}} \log D(x) + \mathbb{E}_{x \sim p_{G}} \log(1 - D(x))$$

• For the optimal discriminator $D_G^*(\cdot)$, we have

$$V(G, D_G^*) = \mathbb{E}_{x \sim p_{\text{data}}} \log \frac{p_{\text{data}}(x)}{p_{\text{data}}(x) + p_G(x)} + \mathbb{E}_{x \sim p_G} \log \frac{p_G(x)}{p_{\text{data}}(x) + p_G(x)}$$
$$= \mathbb{E}_{x \sim p_{\text{data}}} \log \frac{p_{\text{data}}(x)}{\frac{p_{\text{data}}(x) + p_G(x)}{2}} + \mathbb{E}_{x \sim p_G} \log \frac{p_G(x)}{\frac{p_{\text{data}}(x) + p_G(x)}{2}} - \log 4$$
$$= \text{KL} \left(p_{\text{data}} \left\| \frac{p_{\text{data}} + p_G}{2} \right) + \text{KL} \left(p_G \left\| \frac{p_{\text{data}} + p_G}{2} \right) - \log 4 \right) \right)$$

► The sum of KL in the above equation is known as Jensen-Shannon divergence (JSD)

Jensen-Shannon Divergence

$$JSD(p,q) = KL\left(p \left\|\frac{p+q}{2}\right) + KL\left(q \left\|\frac{p+q}{2}\right)\right)$$

Properties

- ▶ $JSD(p,q) \ge 0$
- JSD(p,q) = 0 iff p = q

$$\blacktriangleright JSD(p,q) = JSD(q,p)$$

• $\sqrt{\text{JSD}(p,q)}$ satisfies triangle inequality

▶ Optimal generator for the JSD GAN

$$p_G = p_{\text{data}}$$

▶ For the optimal discriminator $D^*_{G^*}(\cdot)$ and generator $G^*(\cdot)$, we have

$$V(G^*, D^*_{G^*}(x)) = -\log 4$$

Alternating Optimization in GAN

13/37

$$\min_{\theta} \max_{\phi} V(G_{\theta}, D_{\phi}) = \mathbb{E}_{x \sim p_{\text{data}}} \log D_{\phi}(x) + \mathbb{E}_{z \sim p(z)} \log(1 - D_{\phi}(G_{\theta}(z)))$$

- ▶ sample *m* training points $x^{(1)}, x^{(2)}, \ldots, x^{(m)}$ from \mathcal{D}
- ► sample *m* noise vectors $z^{(1)}, z^{(2)}, \ldots, z^{(m)}$ from p_z
- \blacktriangleright generator parameters θ update: stochastic gradient descent

$$\nabla_{\theta} V(G_{\theta}, D_{\phi}) = \frac{1}{m} \nabla_{\theta} \sum_{i=1}^{m} \log(1 - D_{\phi}(G_{\theta}(z^{(i)})))$$

 \blacktriangleright discriminator parameters ϕ update: stochastic gradient ascent

$$\nabla_{\phi} V(G_{\theta}, D_{\phi}) = \frac{1}{m} \nabla_{\phi} \sum_{i=1}^{m} \log D_{\phi}(x^{(i)}) + \log(1 - D_{\phi}(G_{\theta}(z^{(i)})))$$

▶ Repeat for fixed number of epochs

A Toy Example

Adapted from Goodfellow, 2014

Frontiers in GAN Research

- GANs have been successfully applied to several domains and tasks
- ► However, working with GANs can be very challenging in practice: unstable optimization/mode collapse/evaluation

Many bag of tricks applied to train GANs successfully
 Image source: Ian Goodfellow. Samples from Goodfellow et al., 2014, Radford et al., 2015, Liu et al., 2016, Karras et al., 2017, Karras et al., 2018

Optimization Challenges

- ► Theorem: If the generator updates are made in function space and discriminator is optimal at every step, then the generator is guaranteed to converge to the data distribution
- ▶ Unrealistic assumptions! In practice, the generator and discriminator loss keeps oscillating during GAN training

▶ No robust stopping criteria in practice (unlike MLE)

Mode Collapse

- ▶ GANs are notorious for suffering from mode collapse
- ► Intuitively, this refers to the phenomena where the generator of a GAN collapse to one or few samples (i.e., "modes")

Arjovsky et al., 2017

Mode Collapse

▶ True distribution is a mixture of Gaussians

 The generator distribution keeps oscillating between different models

- ► Fixes to mode collapse are mostly empirically driven: alternate architectures, adding regularization terms, injecting small noise perturbations etc.
- Tips and tricks to make GAN work by Soumith Chintala: https://github.com/soumith/ganhacks

GAN Generated Artworks

Source: Robbie Barrat, Obvious

GAN generated art auctioned at Christie's. **Expected Price:** \$7,000 - \$10,000 **True Price:** \$432,500

The GAN Zoo: https://github.com/hindupuravinash/the-gan-zoo

► Examples

- ▶ Rich class of likelihood-free objectives
- ▶ Combination with latent representations
- ▶ Application: Image-to-image translation, etc.

f Divergence

• Given two densities p and q, the f- divergence is given by

$$D_f(p||q) = \mathbb{E}_{x \sim q} f\left(\frac{p(x)}{q(x)}\right)$$

where f is any convex, lower-semicontinuous function with f(1)=0

• Lower-semicontinuous: function value at any pint x_0 is close to $f(x_0)$ or greater than $f(x_0)$

• Example: KL divergence with $f(u) = u \log u$

f Divergence

Many more f-divergence!

Name	$D_f(P\ Q)$	Generator $f(u)$
Total variation	$rac{1}{2}\int \left p(x)-q(x) ight \mathrm{d}x$	$\frac{1}{2} u-1 $
Kullback-Leibler	$\int p(x) \log \frac{p(x)}{q(x)} \mathrm{d}x$	$u \log u$
Reverse Kullback-Leibler	$\int q(x) \log \frac{q(x)}{p(x)} dx$	$-\log u$
Pearson χ^2	$\int \frac{(q(x)-p(x))^2}{p(x)} dx$	$(u-1)^2$
Neyman χ^2	$\int \frac{(p(x)-q(x))^2}{q(x)} \mathrm{d}x$	$\frac{(1-u)^2}{u}$
Squared Hellinger	$\int \left(\sqrt{p(x)} - \sqrt{q(x)}\right)^2 \mathrm{d}x$	$\left(\sqrt{u}-1\right)^2$
Jeffrey	$\int (p(x) - q(x)) \log \left(\frac{p(x)}{q(x)} \right) dx$	$(u-1)\log u$
Jensen-Shannon	$\frac{1}{2}\int p(x)\log \frac{2p(x)}{p(x)+q(x)} + q(x)\log \frac{2q(x)}{p(x)+q(x)} dx$	$-(u+1)\log \tfrac{1+u}{2} + u\log u$
Jensen-Shannon-weighted	$\int p(x) \pi \log \frac{p(x)}{\pi p(x) + (1 - \pi)q(x)} + (1 - \pi)q(x) \log \frac{q(x)}{\pi p(x) + (1 - \pi)q(x)} dx$	$\pi u \log u - (1-\pi+\pi u) \log(1-\pi+\pi u)$
GAN	$ \begin{array}{l} \frac{1}{2}\int p(x)\log \frac{2g(x)}{p(x)+q(x)} + q(x)\log \frac{2q(x)}{p(x)+q(x)}dx \\ \int p(x)\pi\log \frac{\pi p(x)+q(x)}{\pi p(x)+(1-\pi)q(x)} + (1-\pi)q(x)\log \frac{q(x)}{\pi p(x)+q(x)}dx \\ \int p(x)\log \frac{2p(x)}{p(x)+q(x)} + q(x)\log \frac{2q(x)}{p(x)+q(x)}dx - \log(4) \end{array} $	$u\log u - (u+1)\log(u+1)$
$\alpha\text{-divergence}\ (\alpha\notin\{0,1\})$	$rac{1}{lpha(lpha-1)}\int \left(p(x)\left[\left(rac{q(x)}{p(x)} ight)^lpha-1 ight]-lpha(q(x)-p(x)) ight)\mathrm{d}x$	$rac{1}{lpha(lpha-1)}\left(u^lpha-1-lpha(u-1) ight)$

Source: Nowozin et al., 2016

Variational Divergence Minimization

- ► To use *f*-divergences as a two-sample test objective for likelihood-free learning, we need to be able to estimate it only via samples
- ▶ Fenchel conjugate: For any function $f(\cdot)$, its convex conjugate is defined as

$$f^*(t) = \sup_{u \in \operatorname{dom}_f} ut - f(u)$$

▶ Duallity: f^{**} = f. When f(·) is convex, lower semicontinuous, so is f^{*}(·)

$$f(u) = \sup_{t \in \operatorname{dom}_{f^*}} tu - f^*(t)$$

Variational Divergence Minimization

▶ We can obtain a lower bound to any *f*-divergence via its Fenchel conjugate

$$D_f(p||q) = \mathbb{E}_{x \sim q} f\left(\frac{p(x)}{q(x)}\right)$$
$$= \mathbb{E}_{x \sim q} \sup_{t \in \text{dom}_{f^*}} \left(t\frac{p(x)}{q(x)} - f^*(t)\right)$$
$$\geq \mathbb{E}_{x \sim q} t(x)\frac{p(x)}{q(x)} - f^*(t(x))$$
$$= \int_{\mathcal{X}} t(x)p(x) - f^*(t(x))q(x)dx$$
$$= \mathbb{E}_{x \sim p} t(x) - \mathbb{E}_{x \sim q} f^*(t(x))$$

for any function $t: \mathcal{X} \mapsto \operatorname{dom}_{f^*}$

f-GAN

► Variational lower bound

$$D_f(p||q) \ge \sup_{t \in \mathcal{T}} (\mathbb{E}_{x \sim p} \ t(x) - \mathbb{E}_{x \sim q} \ f^*(t(x)))$$

- Choose any f-divergence
- Let $p = p_{\text{data}}$ and $q = p_G$
- Parameterize t by ϕ and G by θ
- Consider the following f-GAN objective

$$\min_{\theta} \max_{\phi} F(\theta, \phi) = \mathbb{E}_{x \sim p_{\text{data}}} t_{\phi}(x) - \mathbb{E}_{x \sim p_{G_{\theta}}} f^{*}(t_{\phi}(x))$$

• Generator G_{θ} tries to minimize the divergence estimate and discriminator t_{ϕ} tries to tighten the lower bound

Inferring Latent Representation in GANs

- ▶ The generator of a GAN is typically a directed, latent variable model with latent variable *z* and observed variables *x*. How can we infer the latent feature representations in a GAN?
- ▶ Unlike a normalizing flow model, the mapping $G: z \mapsto x$ need not to be invertible
- Unlike a variational autoencoder, there is no inference network $q(\cdot)$ which can learn a variational posterior over latent variables
- Solution 1: For any point x, use the activations of the prefinal layer of a discriminator as a feature representation
- ▶ Intuition: similar to supervised deep neural networks, the discriminator would have learned useful representations for *x* while distinguishing real and fake *x*

Inferring Latent Representation in GANs

- If we want to directly learn the latent representation of x, we need a different learning algorithm
- ► A regular GAN optimizes a two-sample test objective that compares samples of *x* from the generator and the data distribution
- Solution 2: To infer latent representations, we will compare samples of x, z from joint distributions of observed and latent variables as per the model and the data distribution
- ► For any x generated via the model, we have access to z (sampled from a simple prior p(z))
- ► For any *x* from the data distribution, the *z* is however unobserved (latent)

Bidirectional GAN

- ▶ In a BiGAN, we have an encoder network E in addition to the generator network G
- ▶ The encoder network only observes $x \sim p_{\text{data}}(x)$ during training to learn a mapping $E: x \mapsto z$
- ► As before, the generator network only observes the samples from the prior z ~ p(z) during training to learn a mapping G : z ↦ x

Bidirectional GAN

- ▶ The discriminator *D* observes samples from the generative model z, G(z) and encoding distribution E(x), x
- ▶ The goal of the discriminator is the maximize the two-sample test objective between z, G(z) and E(x), x
- After training is complete, new samples are generated via G and latent representations are inferred via E

Translating Across Domains

- ► Image-to-image translation: we are given image from two domains, X and Y
- ▶ Paired vs. unpaired examples

Source: Zhu et al., 2016

▶ Paired examples can be expensive to obtain. Can we translate from $\mathcal{X} \Leftrightarrow \mathcal{Y}$ in an unsupervised manner?

CycleGAN

- ▶ To match the two distributions, we learn two parameterized conditional generative models $G : \mathcal{X} \mapsto \mathcal{Y}$ and $F : \mathcal{Y} \mapsto \mathcal{X}$
- G maps an element of \mathcal{X} to an element of \mathcal{Y} . A discriminator $D_{\mathcal{Y}}$ compares the observed dataset Y and the generated samples $\hat{Y} = G(X)$
- ► Similarly, F maps an element of \mathcal{Y} to an element of \mathcal{X} . A discriminator $D_{\mathcal{X}}$ compares the observed dataset X and the generated samples $\hat{X} = F(Y)$

Source: Zhu et al., 2016

CycleGAN

• Cycle consistency: If we can go from X to \hat{Y} via G, then it should also be possible to go from \hat{Y} back to X via F

 $\blacktriangleright \ F(G(X)) \approx X$

▶ Similarly, vice versa: $G(F(Y)) \approx Y$

Source: Zhu et al., 2016

Overall loss function

 $\mathcal{L}_{\text{GAN}}(G, D_{\mathcal{Y}}, X, Y) + \mathcal{L}_{\text{GAN}}(F, D_{\mathcal{X}}, X, Y) \\ + \lambda(\mathbb{E}_X \| F(G(X)) - X \|_1 + \mathbb{E}_Y \| G(F(Y)) - Y \|_1)$

CycleGAN in Practice

Source: Zhu et al., 2016

Summary of Generative Adversarial Networks

- Key observation: Samples and likelihoods are not correlated in practice
- Two-sample test objectives allow for learning generative mdoels only via samples (likelihood-free)
- Wide range of two-sample test objectives covering f-divergences (and more)
- ▶ Latent representations can be inferred via BiGAN (and other GANs with similar autoencoder structures)
- Cycle-consistent domain translations via CycleGAN and other variants

35/37

References

- ▶ L. Theis, A. van den Oord, and M. Bethge. A note on the evaluation of generative models. In ICLR, 2016
- Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in neural information processing systems, pages 2672–2680, 2014.
- Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434, 2015.
- Martin Arjovsky, Soumith Chintala, and Léon Bottou.
 Wasserstein gan. arXiv preprint arXiv:1701.07875, 2017.

References

- ▶ L. Metz, B. Poole, D. Pfau, and J. Sohl-Dickstein. Unrolled generative adversarial networks. arXiv preprint arXiv:1611.02163, 2016.
- S. Nowozin, B. Cseke, and R. Tomioka. f-gan: Training generative neural samplers using variational divergence minimization. In Advances in neural information processing systems, pages 271–279, 2016.
- Jeff Donahue, Philipp Krähenbühl, and Trevor Darrell. Adversarial feature learning. arXiv preprint arXiv:1605.09782, 2016.
- Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. Unpaired image-to-image translation using cycle-consistent adversarial networks. In ICCV, 2017.

