Statistical Models & Computing Methods

Lecture 12: Variational EM

Cheng Zhang

School of Mathematical Sciences, Peking University

November 15, 2021

EM Recap 2/18

 \blacktriangleright EM algorithm finds the MLE for latent variable model

$$
\mathcal{L}(\theta) = \log p(x|\theta) = \log \sum_{z} p(x, z|\theta)
$$

 \blacktriangleright EM update formula

$$
\theta^{(t+1)} = \arg\max_{\theta} Q^{(t)}(\theta) = \arg\max_{\theta} \mathbb{E}_{p(z|x,\theta^{(t)})} \log p(x,z|\theta)
$$

- \blacktriangleright EM requires the posterior $p(z|x, \theta^{(t)})$ is known. What if $p(z|x, \theta^{(t)})$ is unknown?
	- If somehow we can sample from $p(z|x, \theta^{(t)})$, we can use Monte Carlo estimates, that is Monte Carlo EM.
	- \blacktriangleright However, the associated computation may be expensive.

Variational EM 3/18

 \triangleright Recall EM maximizes the lower bound

$$
\mathcal{F}(q, \theta^{(t)}) = \mathbb{E}_{q(z)} \log \frac{p(x, z | \theta)}{q(z)} \leq \mathcal{L}(\theta), \quad \forall q(z)
$$

- \blacktriangleright When the best $q(z) = p(z|x, \theta^{(t)})$ is not available, we can use approximate $q(z)$ instead.
- \blacktriangleright A widely used approximation is the mean-field approximation

$$
q(z) = \prod_{i=1}^d q_i(z_i)
$$

Mean-Field Lower Bound 4/18

 \blacktriangleright In that case, the lower bound is

$$
\mathcal{F}(q(z),\theta^{(t)}) = \int \prod_{i=1}^d q_i(z_i) \log \frac{p(x,z|\theta^{(t)})}{\prod_{i=1}^d q_i(z_i)} dz_1 dz_2 \dots dz_d
$$

$$
= \int \prod_{i=1}^d q_i(z_i) \log p(x,z|\theta^{(t)}) dz_1 dz_2 \dots dz_d
$$

$$
- \sum_{i=1}^d \int q_i(z_i) \log q_i(z_i) dz_i
$$

 \blacktriangleright Coordinate Ascent

$$
q_i^{(t)}(z_i) \propto \exp\left(\mathbb{E}_{-q_i} \log p(x, z | \theta^{(t)})\right), i = 1, \ldots, d
$$

Mean-Field Variational EM 5/18

 \triangleright E-step. Run coordinate ascent several times to obtain good mean-field approximation

$$
q^{(t)}(z) = \prod_{i=1}^{d} q_i^{(t)}(z_i)
$$

compute the expected complete data log-likelihood

$$
Q^{(t)}(\theta) = \mathbb{E}_{q^{(t)}(z)} \log p(x, z | \theta)
$$

 \blacktriangleright M-step. Update θ to maximize $Q^{(t)}(\theta)$

$$
\theta^{(t+1)} = \arg\max_{\theta} Q^{(t)}(\theta)
$$

Variational Bayesian EM 6/18

 \triangleright Now let us consider Bayesian inference for latent variable models

$$
p(z, \theta | x) \propto p(x, z | \theta) p(\theta)
$$

 \triangleright We can lower bound the marginal likelihood

$$
\mathcal{L}(x) = \log p(x) = \log \int p(x, z | \theta) p(\theta) dz d\theta
$$

$$
= \log \int q(z, \theta) \frac{p(x, z | \theta) p(\theta)}{q(z, \theta)} dz d\theta
$$

$$
\geq \int q(z, \theta) \log \frac{p(x, z | \theta) p(\theta)}{q(z, \theta)} dz d\theta
$$

$$
= \mathcal{F}(q(z, \theta))
$$

 \blacktriangleright Maximizing this lower bound F is equivalent to minimizing $D_{\text{KL}}(q(z, \theta) || p(z, \theta|x))$

Mean-Field Approximation 7/18

 \blacktriangleright Again, we consider a simple factorized approximation $q(z, \theta) = q_z(z)q_{\theta}(\theta)$

$$
\mathcal{L}(x) \ge \int q_z(z) q_\theta(\theta) \log \frac{p(x, z | \theta) p(\theta)}{q_z(z) q_\theta(\theta)} dz d\theta
$$

= $\mathcal{F}(q_z(z), q_\theta(\theta))$

 \blacktriangleright Maximizing this lower bound F, leads to **EM**-like iterative updates

$$
\begin{aligned} & q^{(t+1)}_z(z) \propto \exp\left(\mathbb{E}_{q^{(t)}_{\theta}(\theta)}\log p(x,z|\theta)\right) \\ & q^{(t+1)}_{\theta}(\theta) \propto p(\theta) \cdot \exp\left(\mathbb{E}_{q^{(t+1)}_z(z)}\log p(x,z|\theta)\right) \end{aligned}
$$

Conjugate-Exponential Models 8/18

Let's focus on conjugate-exponential (CE) models, which satisfy Condition 1 The joint probability over variables is in the exponential family

$$
p(x, z | \theta) = h(x, z) \exp (\phi(\theta) \cdot T(x, z) - A(\theta))
$$

Condition 2

The prior over parameters is conjugate to this joint probability

$$
p(\theta | \eta, \nu) \propto \exp (\phi(\theta) \cdot \nu - \eta A(\theta))
$$

Conjugate priors are computationally convenient and have an intuitive interpretation:

- \blacktriangleright η : number of pseudo-observations
- \blacktriangleright *ν*: values of pseudo-observations

Conjugate-Exponential Models 9/18

Now suppose we have an iid data set $x = \{x_1, \ldots, x_n\}$ \triangleright VB E-step.

$$
q_z^{(t+1)}(z) \propto \exp\left(\mathbb{E}_{q_\theta^{(t)}(\theta)}\log p(x, z|\theta)\right)
$$

$$
\propto \prod_{i=1}^n h(x_i, z_i) \exp\left(\bar{\phi} \cdot T(x_i, z_i)\right)
$$

where
$$
\bar{\phi} = \mathbb{E}_{q_{\theta}^{(t)}}(\phi(\theta))
$$

• VB M-step

$$
q_{\theta}^{(t+1)}(\theta) \propto \exp\left(\phi(\theta) \cdot \left(\nu + \sum_{i=1}^{n} \overline{T}(x_i, z_i)\right) - (\eta + n)A(\theta)\right)
$$

where $\overline{T}(x_i, z_i) = \mathbb{E}_{q_z^{(t+1)}}(T(x_i, z_i))$

EM for MAP v.s. Variational Bayesian EM 10/18

EM for MAP

- \blacktriangleright Goal: maximize $p(x, \theta)$
- \blacktriangleright E-step: compute

 $q_z^{(t+1)}(z) = p(z|x, \theta^{(t)})$

 \blacktriangleright M-step:

$$
\theta^{(t+1)} = \arg\max_{\theta} Q^{(t)}(\theta)
$$

$$
Q^{(t)}(\theta) = \mathbb{E}_{q_z^{(t+1)}} \log p(x, z, \theta)
$$

Variational Bayesian EM

- \blacktriangleright Goal: lower bound $p(x)$
- \triangleright VB E-step: compute

$$
q_z^{(t+1)}(z) = p(z|x, \bar{\phi})
$$

 \triangleright VB M-step:

$$
q_{\theta}^{(t+1)}(\theta) \propto \exp\left(Q^{(t)}(\theta)\right)
$$

$$
Q^{(t)}(\theta) = \mathbb{E}_{q_z^{(t+1)}} \log p(x, z, \theta)
$$

- Reduces to the EM algorithm if $q_{\theta}(\theta) = \delta(\theta \theta^*)$.
- \triangleright F increases monotonically, and incorporates the model complexity penalty.
- \blacktriangleright Analytical parameter distributions
- \triangleright VB E-step has the same complexity as corresponding E step, and is almost identical except that it uses the expected natural parameters, $\bar{\phi}$.
- ▶ The lower bound given by VBEM can be used for model selection.

Bayesian Model Selection 12/18

 \blacktriangleright In Bayesian model selection, we want to select the model class with the highest marginal likelihood (evidence)

$$
p(x|m) = \int p(x|\theta, m)p(\theta|m)d\theta
$$

 \triangleright Occam's Razor

PEKING UN

Bayesian Model Selection 13/18

Adapted from Zoubin Ghahramani

 \triangleright Bayesian Information Criterion (BIC):

$$
\log p(x|m) \approx \log p(x|\hat{\theta}_{\text{MAP}}, m) - \frac{d}{2}\log n
$$

 \blacktriangleright Annealed Importance Sampling (AIS):

$$
Z_k = \int p(x|\theta, m)^{\tau_k} p(\theta|m) d\theta, \quad 0 = \tau_0 < \dots < \tau_K = 1
$$

$$
\log p(x|\theta) = Z_K = \prod_{k=0}^{K-1} \frac{Z_{k+1}}{Z_k}
$$

where $\frac{Z_{k+1}}{Z_k}$ can be estimated via importance sampling. ▶ Variational Bayesian EM (VB): use VBEM lower bound estimate

Example: A Bipartite Structured Model 15/18

 \blacktriangleright A simple bipartite graphical model: **two** binary hidden variables, and four five-valued discrete observed variables

- \blacktriangleright Experiment: there are 136 distinict structures with 2 latent variables as potential parents of 4 conditionally independent observed variables
- ▶ Score each structure with 3 methods: BIC, VB and the gold standard AIS.

How Reliable is The AIS Gold Standard? 16/18

Ranking The True Structure 17/18

VB score finds correct structure earlier, and more reliably

References 18/18

- \blacktriangleright Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics, 6:461–464.
- \blacktriangleright Neal, R. M. (2001). Annealed importance sampling. Statistics and Computing, 11:125–139.
- \blacktriangleright M. J. Beal and Z. Ghahramani, "The variational bayesian em algorithm for in- complete data: With application to scoring graphical model structures", Bayesian statistics, vol. 7, J. Bernardo, M. Bayarri, J. Berger, A. Dawid, D Heckerman, A. Smith, M West, et al., Eds., pp. 453–464, 2003.

