
Statistical Models & Computing Methods

Lecture 4: Numerical Integration

Cheng Zhang

School of Mathematical Sciences, Peking University

September 30, 2021

Overview 2/30

I Statistical inference often depends on intractable integrals
I(f) =

∫
Ω f(x)dx

I This is especially true in Bayesian statistics, where a
posterior distribution is usually non-trivial.

I In some situations, the likelihood itself may depend on
intractable integrals so frequentist methods would also
require numerical integration

I In this lecture, we start by discussing some simple
numerical methods that can be easily used in low
dimensional problems

I Next, we will discuss several Monte Carlo strategies that
could be implemented even when the dimension is high

Newton-Côtes Quadrature 3/30

I Consider a one-dimensional integral of the form
I(f) =

∫ b
a f(x)dx

I A common strategy for approximating this integral is to
use a tractable approximating function f̃(x) that can be
integrated easily

I We typically constrain the approximating function to agree
with f on a grid of points: x1, x2, . . . , xn

Newton-Côtes Quadrature 4/30

I Newton-Côtes methods use equally-spaced grids

I The approximating function is a polynomial

I The integral then is approximated with a weighted sum as
follows

Î =

n∑
i=1

wif(xi)

I In its simplest case, we can use the Riemann rule by
partitioning the interval [a, b] into n subintervals of length
h = b−a

n ; then

ÎL = h

n−1∑
i=0

f(a+ ih)

This is obtained using a piecewise constant function f̃ that
matches f at the left points of each subinterval

Newton-Côtes Quadrature 5/30

I Alternatively, the approximating function could agree with
the integrand at the right or middle point of each
subinterval

ÎR = h

n∑
i=1

f(a+ ih), ÎM = h

n−1∑
i=0

f(a+ (i+
1

2
)h)

I In either case, the approximating function is a zero-order
polynomial

I To improve the approximation, we can use the trapzoidal
rule by using a piecewise linear function that agrees with
f(x) at both ends of subintervals

Î =
h

2
f(a) + h

n−1∑
i=1

f(xi) +
h

2
f(b)

Newton-Côtes Quadrature 6/30

I We would further improve the approximation by using
higher order polynomials

I Simpson’s rule uses a quadratic approximation over each
subinterval∫ xi+1

xi

f(x)dx ≈ xi+1 − xi
6

(
f(xi) + 4f(

xi + xi+1

2
) + f(xi+1)

)
I In general, we can use any polynomial of degree k

Gaussian Quadrature 7/30

I Newton-Côtes rules require equally spaced grids

I With a suitably flexible choice of n+ 1 nodes,
x0, x1, . . . , xn, and corresponding weights, A0, A1, . . . , An,

n∑
i=0

Aif(xi)

gives the exact integration for all polynomials with degree
less than or equal to 2n+ 1

I This is called Gaussian quadrature, which is especially
useful for the following type of integrals

∫ b
a f(x)w(x)dx

where w(x) is a nonnegative function and∫ b
a x

kw(x)dx <∞ for all k ≥ 0

Orthogonal Functions 8/30

I In general, for squared integrable functions,∫ b

a
f(x)2w(x)dx ≤ ∞

denoted as f ∈ L2
w,[a,b], we define the inner product as

〈f, g〉w,[a,b] =

∫ b

a
f(x)g(x)w(x)dx

where f, g ∈ L2
w,[a,b]

I We said two functions to be orthogonal if 〈f, g〉w,[a,b] = 0. If
f and g are also scaled so that 〈f, f〉w,[a,b] = 1,
〈g, g〉w,[a,b] = 1, then f and g are orthonormal

Orthogonal Polynomials 9/30

I We can define a sequence of orthogonal polynomials by a
recursive rule

Tk+1(x) = (αk+1 + βk+1x)Tk(x)− γk+1Tk−1(x)

I Example: Chebyshev polynomials (first kind).

T0(x) = 1, T1(x) = x

Tn+1(x) = 2xTn(x)− Tn−1(x)

I Tn(x) are orthogonal with respect to w(x) = 1√
1−x2 and

[−1, 1] ∫ 1

−1
Tn(x)Tm(x)

1√
1− x2

dx = 0, ∀n 6= m

Orthogonal Polynomials 10/30

I In general orthogonal polynomials are not unique since
〈f, g〉 = 0 implies 〈cf, dg〉 = 0

I To make the orthogonal polynomial unique, we can use the
following standarizations
I make the polynomial orthonormal: 〈f, f〉 = 0
I set the leading coefficient of Tj(x) to 1

I Orthogonal polynomials form a basis for L2
w,[a,b] so any

function in this space can be written as

f(x) =

∞∑
n=0

anTn(x)

where an = 〈f,Tn〉
〈Tn,Tn〉

Gaussian Quadrature 11/30

I Let {Tn(x)}∞n=0 be a sequence of orthogonal polynomials
with respect to w on [a, b].

I Denote the n+ 1 roots of Tn+1(x) by

a < x0 < x1 < . . . < xn < b.

I We can find weights A1, A2, . . . , An+1 such that∫ b

a
P (x)w(x)dx =

n∑
i=0

AiP (xi), ∀ deg(P) ≤ 2n+ 1

I To do that, we first show: there exists weights
A1, A2, . . . , An+1 such that∫ b

a
P (x)w(x)dx =

n∑
i=0

AiP (xi), ∀ deg(P) < n+ 1

Gaussian Quadrature 12/30

I Sketch of proof. We only need to satisfy∫ b

a
xkw(x)dx =

n∑
i=0

Aix
k
i , ∀ k = 0, 1, . . . , n

This leads to a system of linear equations
1 1 . . . 1
x0 x1 . . . xn
...

...
...

...
xn0 xn1 . . . xnn

A0

A1
...
An

 =

I0

I1
...
In

where Ik =

∫ b
a x

kw(x)dx. The determinant of the
coefficient matrix is a Vandermonde determinant, and is
non-zero since xi 6= xj , ∀i 6= j

Gaussian Quadrature 13/30

I Now we show that the above Gaussian Quadrature can be
exact for polynomials of degree ≤ 2n+ 1

I Let P (x) be a polynomial with deg(P) ≤ 2n+ 1, there
exist polynomials g(x) and r(x) such that

P (x) = g(x)Tn+1(x) + r(x)

with deg(g) ≤ n, deg(r) ≤ n, Therefore,∫ b

a
P (x)w(x)dx =

∫ b

a
r(x)w(x)dx =

n∑
i=0

Air(xi)

=

n∑
i=0

AiP (xi)

Monte Carlo Method 14/30

I We now discuss the Monte Carlo method mainly in the
context of statistical inference

I As before, suppose we are interested in estimating
I(h) =

∫ b
a h(x)dx

I If we can draw iid samples, x(1), x(2), . . . , x(n) uniformly
from (a, b), we can approximate the integral as

În = (b− a)
1

n

n∑
i=1

h(x(i))

I Note that we can think about the integral as

(b− a)

∫ b

a
h(x) · 1

b− a
dx

where 1
b−a is the density of Uniform(a, b)

Monte Carlo Method 15/30

I In general, we are interested in integrals of the form∫
X h(x)f(x)dx, where f(x) is a probability density function

I Analogous to the above argument, we can approximate this
integral (or expectation) by drawing iid samples
x(1), x(2), . . . , x(n) from the density f(x) and then

Î =
1

n

n∑
i=1

h(x(i))

I Based on the law of large numbers, we know that

lim
n→∞

În
p−→ I

I And based on the central limit theorem

√
n(În − I)→ N (0, σ2), σ2 = Var(h(X))

Example: estimating π 16/30

I Let h(x) = 1B(0,1)(x), then π = 4
∫

[−1,1]2 h(x) · 1
4 dx

I Monte Carlo estimate of π

În =
4

n

n∑
i=1

1B(0,1)(x
(i))

x(i) ∼ Uniform([−1, 1]2)

Example: estimating π 17/30

Monte Carlo vs Quadrature 18/30

I Convergence rate for Monte Carlo: O(n−1/2)

p

(
|În − I| ≤

σ√
nδ

)
≥ 1− δ, ∀δ

often slower than quadrature methods (O(n−2) or better)

I However, the convergence rate of Monte Carlo does not
depend on dimensionality

I On the other hand, quadrature methods are difficult to
extend to multidimensional problems, because of the curse
of dimensionality. The actual convergence rate becomes
O(n−k/d), for any order k method in dimension d

I This makes Monte Carlo strategy very attractive for high
dimensional problems

Exact Simulation 19/30

I Monte Carlo methods require sampling a set of points
chosen randomly from a probability distribution

I For simple distribution f(x) whose inverse cumulative
distribution functions (CDF) exists, we can sampling x
from f as follows

x = F−1(u), u ∼ Uniform(0, 1)

where F−1 is the inverse CDF of f

I Proof.

p(a ≤ x ≤ b) = p(F (a) ≤ u ≤ F (b)) = F (b)− F (a)

Examples 20/30

I Exponential distribution: f(x) = θ exp(−θx). The CDF is

F (a) =

∫ a

0
θ exp(−θx) = 1− exp(−θa)

therefore, x = F−1(u) = −1
θ log(1− u) ∼ f(x). Since 1− u

also follows the uniform distribution, we often use
x = −1

θ log(u) instead

I Normal distribution: f(x) = 1√
2π

exp(−x
2

2
). Box-Muller

Transform

X =
√
−2 logU1 cos 2πU2

Y =
√
−2 logU1 sin 2πU2

where U1 ∼ Uniform(0, 1), U2 ∼ Uniform(0, 1)

Intuition for Box-Muller Transform 21/30

I Assume Z = (X,Y) follows the standard bivariate normal
distribution. Consider the following transform

X = R cos Θ, Y = R sin Θ

I From symmetry, clearly Θ follows the uniform distribution
on the interval (0, 2π) and is independent of R

I What distribution does R follow? Let’s take a look at its
CDF

p(R ≤ r) = p(X2 + Y 2 ≤ r2)

=
1

2π

∫ r

0
t exp(− t

2

2
)dt

∫ 2π

0
dθ = 1− exp(−r

2

2
)

Therefore, using the inverse CDF rule, R =
√
−2 logU1

Rejection Sampling 22/30

I If it is difficult or computationally intensive to sample
directly from f(x) (as described above), we need to use
other strategies

I Although it is difficult to sample from f(x), suppose that
we can evaluate the density at any given point up to a
constant f(x) = f∗(x)/Z, where Z could be unknown
(remember that this make Bayesian inference convenient
since we usually know the posterior distribution only up to
a constant)

I Furthermore, assume that we can easily sample from
another distribution with the density g(x) = g∗(x)/Q,
where Q is also a constant

Rejection Sampling 23/30

I Now we choose the constants c such that cg∗(x) becomes
the envelope (blanket) function for f∗(x):

cg∗(x) ≥ f∗(x), ∀x

I Then, we can use a strategy known as rejection sampling in
order to sample from f(x) indirectly

I The rejection sampling method works as follows

1. draw a sample x from g(x)
2. generate u ∼ Uniform(0, 1)

3. if u ≤ f∗(x)
cg∗(x) we accept x as the new sample, otherwise,

reject x (discard it)
4. return to step 1

Rejection Sampling 24/30

Rejection sampling generates samples from the target density,
no approximation involved

p(XR ≤ y) = p(Xg ≤ y|U ≤ f∗(Xg)

cg∗(Xg)
)

= p(Xg ≤ y, U ≤ f∗(Xg)

cg∗(Xg)
)/p(U ≤ f∗(Xg)

cg∗(Xg)
)

=

∫ y
−∞

∫ f∗(z)
cg∗(z)

0 dug(z)dz∫∞
−∞

∫ f∗(z)
cg∗(z)

0 dug(z)dz

=

∫ y

−∞
f(z)dz

Example 25/30

I Assume that it is difficult to sample from the Beta(3, 10)
distribution (this is not the case of course)

I We use the Uniform(0, 1) distribution with
g(x) = 1, ∀x ∈ [0, 1], which has the envelop proporty:
4g(x) > f(x), ∀x ∈ [0, 1]. The following graph shows the
result after 3000 iterations

Advanced Rejection Sampling 26/30

Rejection sampling becomes challenging as the dimension of x
increases. A good rejection sampling algorithm must have three
properties

I It should be easy to construct envelops that exceed the
target everywhere

I The envelop distributions should be easy to sample from

I It should have a low rejection rate

Squeezed Rejection Sampling 27/30

I When evaluating f∗ is computationally expensive, we can
improve the simulation speed of rejection sampling via
squeezed rejection sampling

I Squeezed rejection sampling reduces the evaluation of f via
a nonnegative squeezing function s that does not exceed f∗

anywhere on the support of f : s(x) ≤ f∗(x), ∀x
I The algorithm proceeds as follows:

1. draw a sample x from g(x)
2. generate u ∼ Uniform(0, 1)

3. if u ≤ s(x)
cg∗(x) , we accept x as the new sample, return to step

1
4. otherwise, determine whether u ≤ f∗(x)

cg∗(x) . If this inequality

holds, we accept x as the new sample, otherwise, we reject
it.

5. return to step 1

Squeezed Rejection Sampling 28/30

Remark: The proportion of iterations in which evaluation of f
is avoided is

∫
s(x)dx/

∫
e(x)dx

Adaptive Rejection Sampling 29/30

I For a continuous, differentiable, log-concave density on a
connected region of support, we can adapt the envelope
construction (Gilks and Wild, 1992)

I Let T = {x1, . . . , xk} be the set of k starting points.

I We first sample x∗ from the piecewise linear upper envelop
e(x), formed by the tangents to the log-likelihood ` at each
point in Tk.

Adaptive Rejection Sampling 29/30

I To sample from the upper envelop, we need to transform
from log space by exponentiating and using properties of
the exponential distribution

I We then either accept or reject x∗ as in squeeze rejection
sampling, with s(x) being the piecewise linear lower bound
formed from the chords between adjacent points in T

I Add x∗ to T whenever the squeezing test fails.

References 30/30

I P. J. Davis and P. Rabinowitz. Methods of Numerical
Integration. Academic, New York, 1984.

I W. R. Gilks and P. Wild. Adaptive rejection sampling for
Gibbs sampling. Applied Statistics, 41:337–348, 1992.

