
Statistical Models & Computing Methods

Lecture 11: Autoregressive Models and VAE

Cheng Zhang

School of Mathematical Sciences, Peking University

December 17, 2020

Introduction 2/66

I Statistical models and inference methods allow us to learn
and explain the generative process of the observed data.

I However, real data distributions are often too complicated
to be handled by standard statistical models in a
satisfactory manner.

I In this lecture, we will introduce some recent techniques
that combine deep neural networks and statistical inference
methods for expressive generative models.

I The material for this lecture is mainly adapted from Ermon
and Grover, 2019.

Generative Models 3/66

We are given a training set of examples, e.g., images of dogs

Goal: learn a probability distribution p(x) over x such that

I Generation: If we sample xnew ∼ p(x), xnew should look
like a real image.

I Density estimation: p(x) should be high if x looks like a
real image, and low otherwise (anomaly detection).

I Unsupervised representation learning: We should be able to
learn high level features of these images, e.g., ears, tail, etc.

Two key questions: (1) How to construct p(x)? (2) How to
learn p(x)?

Chain Rule in Probability 4/66

We can decompose the joint probability using Chain Rule

p(x1, x2, x3, x4) = p(x1)p(x2|x1)p(x3|x1, x2)p(x4|x1, x2, x3)

Fully general (exponential size, no free lunch)

I Bayes Net: assumes conditional independencies; tabular
representations via conditional probability tables (CPT)

p(x1, x2, x3, x4) ≈ p(x1)p(x2|x1)p(x3|x2)p(x4|x3)

I Neural Models: assume specific functional form for the
conditionals. A sufficiently deep neural net can
approximate any function.

p(x1, x2, x3, x4) ≈ p(x1)p(x2|x1)pNeural(x3|x1, x2)
pNeural(x4|x1, x2, x3)

Neural Models for Classification 5/66

I Input features X ∈ {0, 1}n, response variable Y ∈ {0, 1}.
I For classification, we care about p(Y |x), and assume that

p(Y = 1|x;α) = f(x, α)

I Logistic regression: let z(α, x) = α0 +
∑n

i=1 αixi

plogit(Y = 1|x;α) = σ(z(α, x)), σ(z) =
1

1 + exp(−z)

I Neural Nets: let h(x;A, b) be a non-linear transformation
of the input features.

pNeural(Y = 1|x;α,A, b) = σ(z(α, h))

More parameters ⇒ more flexibility. Can repeat multiple
times to get a multilayer perceptron.

Example: MNIST 6/66

Consider a dataset D of handwritten digits (binarized MNIST)

I Each image has n = 28× 28 = 784 pixels. Each pixel can
either be black (0) or white (1).

I Goal: Learn a probability distribution
p(x) = p(x1, . . . , x784) over x ∈ {0, 1}784 such that x ∼ p(x)
looks like a handwritten digit.

I Two step process as mentioned before:
I Parameterize a family of flexible models {pθ(x), θ ∈ Θ}
I Search for model parameters θ based on training data D

We start with the first step.

Autoregressive Models 7/66

I Pick an order of all random variables, i.e., raster scan order
of pixels from top-left (x1) to bottom-right (xn=784)

I Without loss of generality, we can use chain rule for
factorization

p(x1, . . . , xn) = p(x1)p(x2|x1)p(x3|x1, x2) · · · p(xn|x1, . . . , xn−1)

I However, the above parameterization is too heavy to be
practical. We can use neural models to simplify it

p(x1, . . . , x784) = p(x1;α
1)plogit(x2|x1;α2) · · ·
plogit(xn|x1, . . . , xn−1;αn)

Remark: This is a modeling assumption. We are using
parameterized functions to predict next pixel given all the
previous ones (autoregressive models).

Fully Visible Sigmoid Belief Network 8/66

I The conditional distributions Xi|X<i are Bernoulli with
parameters

p(xi = 1|x<i;αi) = σ(αi0 +
∑i−1

j=1
αijxj)

I We can evaluate p(x) as a product of all the conditionals.

I How to sample from p(x)? Sequential sampling!
I Sample x̄1 ∼ p(x1)
I Sample x̄i ∼ p(xi|x<i), i = 2, . . . , n

I How many parameters do we have?
∑n

i=1 i = O(n2)

FVSBN Results 9/66

Training data on the left (Caltech 101 Silhouettes). Samples
from the model on the right.

Adapted from Gan et al., 2015

Neural Autoregressive Density Estimation 10/66

I Use one layer neural network instead of logistic regression

p(xi = 1|x<i;Ai, ci, αi, bi) = σ(αTi hi+bi), hi = σ(Aix<i+ci)

I For example: h2 = σ (A2x1 + c2) , h2 = σ

(
A3

[
x1
x2

]
+ c3

)

Neural Autoregressive Density Estimation 11/66

I Tie weights to reduce the number of parameters

p(xi = 1|x<i;Ai, ci, αi, bi) = σ(αTi hi+bi), hi = σ(W.,<ix<i+c)

I For example: h2=σ
([
w1

]
x1+c

)
, h3=σ

([
w1 w2

][x1
x2

]
+c

)
I If hi ∈ Rd, weights W ∈ Rd×n, biases c ∈ Rd, and n logistic

regression coefficient αi, bi ∈ Rd+1. Probability is evaluated
in O(nd).

NADE Results 12/66

Samples on the left. Conditional probabilities on the right.

Adapted from Larochelle and Murray, 2011

General Discrete Distributions 13/66

I What about multi-class discrete random variables
Xi ∈ {1, . . . ,K}? E.g., pixel intensities varying from 0 to
255

I One solution: use categorical distribution instead of a
binary one

xi|x<i ∼ Cat(πi), πi = softmax(αTi hi + bi)

I Softmax generalizes the sigmoid/logistic function σ(·) and
transforms a vector of K numbers into a vector of K
probabilities

softmax(a) =

(
exp(a1)∑
i exp(ai)

, · · · , exp(aK)∑
i exp(ai)

)

RNADE 14/66

I How to model continuous random variables Xi ∈ R? E.g.,
speech signals.

I Solution: Use a continuous distribution instead! For
example, a mixture of K Gaussians

p(xi|x<i) =
1

K

K∑
j=1

N
(
µji , (σ

j
i)

2
)

where µji , σ
j
i can be functions of hi, e.g., neural networks.

Can use exponential function to ensure σji > 0.

Autoregressive Models vs Autoencoders 15/66

I FVSBN and NADE look similar to an autoencoder.

I Encoder e(·). E.g., e(x) = σ(W 2(W 1x+ b1) + b2).

I Decoder such that d(e(x)) ≈ x. E.g., d(h) = σ(V h+ c).

I Autoencoder can be trained by minimizing some loss
function, e.g., cross-entropy/mean square error.

I In practice, e and d are often constrained so that we don’t
learn identity mappings. Hopefully, e(x) would be a
meaningful, compressed representation of x.

I Note that a vanilla autoencoder is not a generative model

Autoregressive Autoencoders 16/66

I Can we get a generative model from an autoencoder?

I We need to make sure it corresponds to an autoregressive
architecture, which requires a pre-specified order, say
x1, x2, . . . , xn, then x̂i can only depend on x<i, ∀i.

I Benefit: we can use a single neural network to produce all
the parameters, In contrast, NADE requires n passes.
Much more efficient on modern hardware.

Masked Autoencoder for Distribution Estimation 17/66

I Challenge: An autoencoder that is autoregressive.

I Solution: use mask to disallow certain paths (Germain et
al., 2015).

h`(x) = σ((W ` �MW `
)h`−1(x) + b`), ` = 1, . . . , L

where the masks satisfies

MW `

k′,k = 1m`(k′)≥m`−1(k), 1 ≤ ` ≤ L, MV
d,k = 1d>mL(k).

Recurrent Neural Nets 18/66

I Challenge: In autoregressive models, the history x1:t−1 in
conditional distributions p(xt|x<t;αt) keeps getting longer.

I Idea: keep a summary and recursively update it

update rule: ht+1 = tanh(Whhht +Wxhxt+1)

output: ot+1 = Whyht+1

initialization: h0 = b0

I ht is a summary of the inputs seen till time t
I ot−1 specifies parameters for conditional p(xt|x<t)
I Parameterized by b0, and matrices Whh,Wxh,Why.

Constant number of parameters w.r.t. n.

Character RNN 19/66

I Suppose xi ∈ {h, e, l, o}. Use one-hot encoding (e.g., h
encoded as [1, 0, 0, 0], e encoded as [0, 1, 0, 0].

I Autoregressive modeling: p(x = hello) = p(x1 = h)p(x2 =
e|x1 = h) · · · p(x5 = o|x1 = h, x2 = e, x3 = l, x4 = l)

I For example:

p(x2 = e|x1 = h) = softmax(o1) =
exp(2.2)

exp(1.0) + · · ·+ exp(4.0)

Recursive Neural Nets 20/66

Pros:

I Can be applied to sequences of arbitrary length.

I Very general: for every computable function, there exists a
finite RNN that can compute it.

Cons:

I Still requires an ordering

I Sequential likelihood evaluation (very slow for training)

I Sequential generation (unavoidable in an autoregressive
model)

I Can be difficult to train (vanishing/exploding gradients)

Examples: Character RNN 21/66

Train 3-layer RNN with 512 hidden nodes on all the works of
Shakespeare. Then sample from the model:

Remark: generation happens character by character. Needs to
learn valid words, grammar, punctuation, etc.

Examples: Character RNN 22/66

Train on Wikipedia. Then sample from the model:

Remark: correct Markdown syntax. Opening and closing of
brackets [[·]]

Examples: Character RNN 23/66

Train on data set of baby names. Then sample from the model:

Pixel RNN 24/66

I Model images pixel by pixel using raster scan order
I Each pixel conditional p(xt|x1:t−1) needs to specify 3 colors

p(xt|x1:t−1) = p(xred
t |x1:t−1)p(x

green
t |x1:t−1, x

red
t)p(xblue

t |x1:t−1, x
red
t , xgreen

t)

I Conditionals modeled using RNN variants. LSTM +
Masking (like MADE)

Pixel RNN 25/66

Results on downsampled ImageNet. Very slow: sequential
likelihood evaluation.

Convolutional Architectures 26/66

Convolutions are natural for image data and easy to parallelize
on modern hardware.

Pixel CNN 27/66

Idea: use convolutional architecture to predict next pixel given
context (a neighborhood of pixels)
Challenge: Has to be autoregressive. Masked convolutions
preserve raster scan order. Additional masking for colors order.

Examples: Pixel CNN 28/66

Samples from the PixelCNN model trained on Imagenet (32×32
pixels). Similar performance to PixelRNN, but much faster.

Adversarial Attacks 29/66

Machine learning methods are vulnerable to adversarial
examples

Can we detect them?

PixelDefend 30/66

I Train a generative model p(x) on clean inputs (PixelCNN)

I Given a new input x̄, evaluate p(x̄)

I Adversarial examples are significantly less likely under p(x)

WaveNet 31/66

State of the art model for speech:

Dilated convolutions increases the receptive field: kernel only
touches the signal at every 2d entries.

Summary of Autoregressive Models 32/66

I Easy to sample from via sequential sampling

x0 ∼ p(x0), x1 ∼ p(x1|x0), . . . , xn ∼ p(xn|x<n)

I Easy to compute probability p(x)

p(x) = p(x0)p(x1|x0) · · · p(xn|x<n)

Ideally, these conditional distributions can be computed in
parallel for fast training

I Easy to extend to continuous variables. For example,
p(xt|x<t) = N (µθ(x<t),Σθ(x<t))) or mixture of logistics

I No natural way to get features, cluster points, do
unsupervised learning

I Next, we will discuss learning methods for autoregressive
models

Setting 33/66

I Assume that the domain is governed by some underlying
distribution pdata.

I We are given a dataset D of m samples from pdata. Each
sample is an assignment of values to the variables, e.g.,
Xbank = 1, Xdollar = 0, . . . , Y = 1 or pixel intensities.

I The standard assumption is that the data instances are
independent and identically distributed (IID)

I We are also given a family of models M, and our task is to
learn some “good” model M̂ ∈ M that defines a
distribution pM̂. For example
I All Bayes nets with a given graph structure, for all possible

choices of the CPD tables
I A FVSBN for all possible choice of the logistic regression

parameters. M = {pθ; θ ∈ Θ}, where θ is the concatenation
of all logistic regression coefficients.

Goal of Learning 34/66

I The goal of learning is to return a model M̂ that precisely
captures the distribution pdata from which our data was
sampled

I This is in general not achievable because of
I limited data only provides a rough approximation of the

true underlying distribution
I can not handle too complicated models due to

computational reasons

I Binary MNIST Example: The number of possible states is
2784 ≈ 10236. Even 107 training examples provide
extremely sparse coverage!

I We want to select M̂ to provide the “best” approximation
to the underlying distribution pdata

I So, what is the “best”?

Learning as Density Estimation 35/66

I If our goal is to learn the full distribution so that later we
can answer any probabilistic inference query, we can view
the learning problem as density estimation.

I Therefore, we want to construct pθ as “close” as possible to
pdata (where we assume the dataset D come from)

I How do we measure “closeness”?

KL-divergence and Expected Log-likelihood 36/66

I One possibility is to use KL-divergence

KL(pdata‖pθ) = Ex∼pdata

(
log

pdata(x)

pθ(x)

)
=
∑
x

pdata(x) log
pdata(x)

pθ(x)

I Minimizing KL divergence is equivalent to maximizing the
expected log-likelihood

arg min
pθ

KL(pdata‖pθ) = arg max
pθ

Ex∼pdata log pθ(x)

I Ask that pθ assign high probability to instances sampled
from pdata so as to reflect the true distribution

I Heavily penalize samples x where pθ(x) ≈ 0

I Remark: we do not know how close we are to the data
distribution since we do not know pdata

MLE Learning for Autoregressive Models 37/66

I Log-likelihood of an autoregressive model

`(θ) = log p(θ,D) =

m∑
j=1

n∑
i=1

log pneural(x
(j)
i |pa(xi)

(j); θi)

I This is an empirical version of Ex∼pdata log pθ(x). Its
negative value can be taken as an Empirical Risk

I Can be trained via gradient ascent

θt+1 = θ(t) + αt∇θ`(θt)

I When the data size m is large, we can use stochastic
gradient ascent

∇θ`(θ) ≈ m
n∑
i=1

∇θ log pneural(x
(j)
i |pa(xi)

(j); θi), x(j) ∼ D

Empirical Risk and Overfitting 38/66

I Empirical risk minimization can easily overfit the data.
One extreme case is that the model just memorizes all the
training data.

I In practice, people usually care more about generalization:
how the model performs on samples that have not yet been
seen.

I Thus, we typically restrict the hypothesis space of
distributions that we search over, which involves a
Bias-Variance trade off
I Limited hypothesis space might not be able to represent

pdata, leading to large bias
I Highly expressive hypothesis space learns too much from

the dataset D (together with random noises), and small
perturbations on D can result in very different estimates,
i.e., large variance

Recap of Autoregressive Models 39/66

I Autoregressive models:
I Chain rule based factorization is fully general
I Compact representation via conditional independence and

/or neural parameterizations

I Pros:
I Easy to evaluate likelihoods
I Easy to train

I Cons:
I Requires an ordering
I Generation is sequential
I Cannot learn features in an unsupervised way

Latent Variable Models: Motivation 40/66

I Lots of variability in images x due to gender, eye color, hair
color, pose, etc. However, unless images are annotated,
these factors of variation are not explicitly available (latent)

I Idea: explicitly model these factors using latent variables z

Latent Variable Models: Motivation 41/66

I Only shaded variables x are observed in the data (pixel
values)

I Latent variables z correspond to high level features
I If z chosen properly, p(x|z) could be much simpler than p(x)
I If we had trained this model, then we could identify

features via p(z|x), e.g., p(EyeColor = Blue|x)

I Challenge: Very difficult to specify these conditionals by
hand

Deep Latent Variable Models 42/66

I z ∼ N (0, I)

I p(x|z) = N (µθ(z),Σθ(z)) where µθ,Σθ are neural networks

I Hope that after training, z will correspond to meaningful
latent factors of variation (features). Unsupervised
representation learning

I As before, features can be computed via p(z|x)

Mixture Models 43/66

Combine simple models into a more complex and expressive one

p(x) =
∑
z

p(x, z) =
∑
z

p(z)p(x|z) =

K∑
k=1

p(z = k)N (x;µk,Σk)

Variational Autoencoder: Marginal Likelihood 44/66

A mixture of infinite many Gaussians

I z ∼ N (0, I)

I p(x|z) = N (µθ(z),Σθ(z)) where µθ,Σθ are neural networks

I Even though p(x|z) is simple, the marginal p(x) could be
very complex/flexible

pθ(x) =

∫
z
pθ(x, z)dz =

∫
z
pθ(x|z)p(z)dz

Recap of Latent Variable Models 45/66

I Allow us to define complex models p(x) in terms of simple
building blocks p(x|z)

I Natural for unsupervised learning tasks (clustering,
unsupervised representation learning, etc)

I No free lunch: much more difficult to learn compared to
fully observed autoregressive models

First Attempt: Naive Monte Carlo 46/66

pθ(x) = Ez∼p(z)pθ(x|z), ∇θpθ(x) = Ez∼p(z)∇θpθ(x|z)

We can use Monte Carlo estimate for the marginal likelihood
and its gradient

I Sample z(1), · · · , z(k) from the prior p(z)

I Approximate expectation with sample average

pθ(x) ≈ 1

k

k∑
i=1

pθ(x|z(i)), ∇θpθ(x) ≈ 1

k

k∑
i=1

∇θpθ(x|z(i))

Remark: work in theory but not in practice. For most z ∼ p(z),
pθ(x|z) is very low, i.e., mismatch between the prior and
posterior. This leads to large variance for the Monte Carlo
estimates. We need a clever way to select z(i) to reduce the
variance of the estimator.

Second Attempt: Importance Sampling 47/66

We can use importance sampling to reduce the variance

pθ(x) =

∫
z
pθ(x|z)p(z)dz =

∫
z
q(z)

pθ(x, z)

q(z)
dz = Ez∼q(z)

pθ(x, z)

q(z)

Similarly, we can use Monte Carlo estimate

I Sample z(1), · · · , z(k) from the important distribution q(z)

I Approximate expectation with sample average

pθ(x) ≈ 1

k

k∑
i=1

pθ(x, z
(i))

q(z(i))

Remark: What is a good choice for q(z)?

Variational Inference 48/66

I Evidence Lower Bound (ELBO)

log pθ(x) ≥ Ez∼q(z) log
pθ(x, z)

q(z)

= Ez∼q(z) log pθ(x, z)− Ez∼q(z) log q(z)

= Ez∼q(z) log pθ(x, z) +H(q)

I Equality holds when q(z) = p(z|x; θ)

log pθ(x) = Ez∼p(z|x;θ) log pθ(x, z) +H(p(z|x; θ))

This is the E-step in EM!

I In practice, p(z|x, θ) is usually intractable. We can find the
“best” q(z) by maximizing the ELBO in a parameterized
family of {qφ(z) : φ ∈ Φ}

The Evidence Lower Bound 49/66

log pθ(x) ≥
∫
z
qφ(z|x) log

pθ(x, z)

qφ(z|x)
= L(x; θ, φ)

= L(x; θ, φ) + KL(qφ(z|x)‖p(z|x; θ))

The better qφ(z|x) can approximate the posterior p(z|x; θ), the
closer ELBO will be to the log pθ(x). We then jointly optimize
over θ and φ to maximize the ELBO over a dataset.

Variational Learning 50/66

L(x; θ, φ1) and L(x; θ, φ2) are both lower bounds, we want to
jointly optimize θ and φ.

ELBO for The Entire Dataset 51/66

I For each data point x, ELBO holds

log pθ(x) ≥
∫
z
qφ(z|x) log pθ(x, z) +H(qφ(z|x)) = L(x; θ, φ)

I Maximum likelihood learning over the entire dataset

`(θ;D) =
∑
xi∈D

log pθ(x
i) ≥

∑
xi∈D

L(xi; θ, φi)

I Therefore

max
θ
`(θ;D) ≥ max

θ,φ1,··· ,φM

M∑
i=1

L(xi; θ, φi)

I Note that we use different variational parameters φi for
every data point xi, because the true posterior pθ(z|xi) is
different across data points xi

Variational Approximations Across Dataset 52/66

I Assume pθ(z, x
i) is close to pdata(z, x

i). Suppose z captures
information such as digit identity (label), style, etc. For
simplicity, assume z ∈ {0, 1, . . . , 9}

I Suppose qφi(z) is a probability distribution over the hidden
variable z parameterized by φi = (p0, . . . , p9)

I If φi = (0, 0, 0, 1, . . . , 0), is qφi(z) a good approximation of
pθ(z|x1)(x1 is the leftmost datapoint)? Yes

I If φi = (0, 0, 0, 1, . . . , 0), is qφi(z) a good approximation of
pθ(z|x3)(x3 is the rightmost datapoint)? No

I For each xi, need to find a good φi,∗ via optimization, can
be expensive

Learning via SVI 53/66

I Optimizing
∑

xi∈D L(xi; θ, φi) as a function of θ, φ1, . . . , φM

using stochastic gradient ascent

L(D; θ, φ1:M) =

M∑
i=1

Eqφi (zi)
(
log pθ(x

i, z)− log qφi(z
i)
)

1. Initialize θ, φ1, · · · , φM
2. Randomly sample a data point xi from D
3. Optimize L(xi; θ, φi) as a function of φi, e.g., local gradient

update
4. Compute ∇θL(xi; θ, φi,∗)
5. Update θ in the gradient direction. Go to step 2

I How to compute the gradients? Often no close form
solution for the expectations. Use Monte Carlo estimates!

Learning Variational Autoencoder 54/66

L(x; θ, φ) = Eqφ(z) (log pθ(x, z)− log qφ(z))

I Similarly as in VI, we assume qφ(z) is tractable, i.e., easy
to sample from and evaluate

I Suppose z1, . . . , zk are samples from qφ(z)

I The gradient with respect to θ is easy

∇θL(x; θ, φ) = ∇θEqφ(z) (log pθ(x, z)− log qφ(z))

= Eqφ(z)∇θ log pθ(x, z)

≈ 1

k

k∑
i=1

∇θ log pθ(x, z
i)

Learning Variational Autoencoder 55/66

I The gradient with respect to φ is more complicated
because the expectation depends on φ

I We can use score function estimator (or REINFORCE)
with control variates. When qφ(z) is reparameterizable, we
can also use the reparameterization trick.

I If these exists gφ and qε, s.t. z = gφ(ε), ε ∼ qε ⇒ z ∼ qφ(z)

∇φL(x; θ, φ) = ∇φEqε(ε) (log pθ(x, gφ(ε))− log qφ(gφ(ε)))

= Eqε(ε) (∇φ log pθ(x, gφ(ε))−∇φ log qφ(gφ(ε)))

≈ 1

k

k∑
i=1

(
∇φ log pθ(x, gφ(εi))−∇φ log qφ(gφ(εi))

)
where εi ∼ qε(ε), i = 1, . . . , k

I Example: z = µ+ σε, ε ∼ N (0, 1)⇔ z ∼ N (µ, σ2) = qφ(z)

Amortized Inference 56/66

max
θ
`(θ;D) ≥ max

θ,φ1:M

M∑
i=1

L(xi; θ, φi)

I So far we have used a set of variational parameters φi for
each data point xi. Unfortunately, this does not scale to
large datasets.

I Amortization: Learn a single parameteric function fλ
that maps each x to a set of variational parameters. Like
doing regression xi 7→ φi,∗

I For example, if q(z|xi) are Gaussians with different means
µ1, . . . , µm, we learn a single neural network fλ mapping xi

to µi

I We approximate the posteriors q(z|xi) using this
distribution qλ(z|xi)

Amortized Inference 57/66

I Assume pθ(z, x
i) is close to pdata(z, x

i). Suppose z captures
information such as digit identity (label), style, etc.

I Suppose qφi(z) is a probability distribution over the hidden
variable z parameterized by φi

I For each xi, need to find a good φi,∗ via optimization,
expensive for large dataset

I Amortized Inference: learn how to map xi to a good set of
parameters φi via q(z; fλ(xi)). fλ learns how to solve the
optimization problem for you, jointly across all datapoints.

I In the literature, q(z; fλ(xi)) often denoted as qφ(z|xi)

Autoencoder Perspective 58/66

L(x; θ, φ) = Eqφ(z|x) (log pθ(x, z)− log qφ(z|x))

= Eqφ(z|x) (log pθ(x|z) + log p(z)− log qφ(z|x))

= Eqφ(z|x) log p(x|z; θ)−KL (qφ(z|x)‖p(z))
Take a data point xi → Map it to ẑ by sampling from qφ(z|xi)
(encoder) → Reconstruct x̂ by sampling from p(x|ẑ; θ) (decoder)

What does the training objective L(x; θ, φ) do?

I First term encourages x̂ ≈ xi (xi likely under p(x|ẑ; θ))
I Second term encourages ẑ to be likely under the prior p(z)

Variational AutoEncoder 59/66

I Alice goes on a space mission and needs to send images to
Bob. Given an image xi, she (stochastically) compress it
using ẑ ∼ qφ(z|xi) obtaining a message ẑ. Alice sends the
message ẑ to Bob

I Given ẑ, Bob tries to reconstruct the image using pθ(x|ẑ)
I This scheme works well if Eqφ(z|x) log pθ(x|z) is large
I The term KL (qφ(z|x)‖p(z)) forces the distribution over

messages to have a specific shape p(z). If Bob knows p(z),
he can generate realistic messages ẑ ∼ p(z) and the
corresponding image, as if he had received them from Alice!

Summary on Latent Variable Models 60/66

I Combine simple models to get a more flexible one (e.g.,
mixture of Gaussians)

I Directed model permits ancestral sampling (efficient
generation): z ∼ p(z), x ∼ pθ(x|z)

I However, log-likelihood is generally intractable, hence
learning is difficult (compared to autoregressive models)

I Joint learning of a model (θ) and an amortized inference
component φ to achieve tractability via ELBO optimization

I Latent representations for any x can be inferred via qφ(z|x)

Research Directions 61/66

Improving variational learning via

I Better optimization techniques

I More expressive approximating families

I Alternate loss functions

Model Families 62/66

Amortization (Gershman & Goodman, 2015; Kingma;
Rezende;..)

I Scalability: efficient learning and inference on massive
datasets

I Regularization effect: due to joint training, it also
implicitly regularizes the model θ (Shu et al., 2018)

Augmenting variational posteriors

I Monte Carlo methods: Importance sampling (Burda et al.,
2015), MCMC (Salimans et al., 2015, Hoffman, 2017, Levy
et al., 2018), Sequential Monte Carlo (Maddison et al.,
2017, Le et al., 2018, Naesseth et al., 2018), Rejection
sampling (Grover et al., 2018)

I Normalizing flwos (Rezende & Mohammed, 2015, Kingma
et al., 2016)

Variational Objective 63/66

Tighter ELBO does not imply:

I Better samples: sample quality and likelihoods are
uncorrelated (Theis et al., 2016)

I Informative latent codes: powerful decoders can ignore
latent codes due to tradeoff in minimizing reconstruction
error vs KL prior penalty (Bowman et al., 2015, Chen et
al., 2016, Zhao et al., 2017, Alemi et al., 2018)

Alternatives to the KL divergence:

I Renyi’s alpha-divergences (Li & Turner, 2016)

I Integral probability metrics such as maximum mean
discrepancy, Wasserstein distance (Dziugaite et al., 2015,
Zhao et al., 2017, Tolstikhin et al., 2018)

References 64/66

I Zhe Gan, Ricardo Henao, David E. Carlson, and Lawrence
Carin. 2015. Learning deep sigmoid belief networks with
data augmentation. In Proceedings of the AISTATS.

I Larochelle, H. and Murray, I. The neural autoregressive
distribution estimator. In Proceedings of the Fourteenth
International Conference on Artificial Intelligence and
Statistics, pp. 29–37, 2011.

I Uria, B., Murray, I., and Larochelle, H. Rnade: The
realvalued neural autoregressive density-estimator. In
Advances in Neural Information Processing Systems, pp.
2175–2183, 2013.

I M. Germain, K. Gregor, I. Murray, H. Larochelle, “MADE:
Masked autoencoder for distribution estimation” in 32nd
International Conference on Machine Learning, ICML
2015, vol. 2, pp. 881–889

References 65/66

I Aäron Van Den Oord, Nal Kalchbrenner, and Koray
Kavukcuoglu. Pixel recurrent neural networks. In
Proceedings of the 33rd International Conference on
International Conference on Machine Learning, pages
1747–1756. JMLR. org, 2016.

I A. Van den Oord, N. Kalchbrenner, L. Espeholt, O.
Vinyals, A. Graves, et al. 2016. Conditional image
generation with PixelCNN decoders. In Advances in
Neural Information Processing Systems. 4790–4798.

I Yang Song, Taesup Kim, Sebastian Nowozin, Stefano
Ermon, and Nate Kushman. Pixeldefend: Leveraging
generative models to understand and defend against
adversarial examples. In International Conference on
Learning Representations, 2018.

References 66/66

I A. v. d. Oord, S. Dieleman, H. Zen, K. Simonyan, O.
Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K.
Kavukcuoglu, “WaveNet: A generative model for raw
audio,” arXiv preprint arXiv:1609.03499, 2016.

I Diederik P Kingma and Max Welling. Auto-encoding
variational bayes. arXiv preprint arXiv:1312.6114, 2013.

