
Statistical Models & Computing Methods

Lecture 10: Advanced VI

Cheng Zhang

School of Mathematical Sciences, Peking University

December 10, 2020

Introduction 2/51

I The approximation accuracy of VI depends on the
expressive power of the approximating distributions.

I Ideally, we want a rich variational family of distributions
that provide accurate approximation while maintaining the
compuational efficiency and scalability.

I In this lecture, we will discuss some recent techniques for
improving the flexibility of variational approximations.

I We will also talk about methods that combine MCMC and
VI for the best of both worlds, and some non-parameteric
VI methods.

Simple Distributions is Not Enough 3/51

I VI requires the approximating distributions to have the
following properties
I Analytic density
I Easy to sample

I Many simple distributions satisfy the above properties,
e.g., Gaussian, general exponential family distributions.
Therefore, they are commonly used in VI.

I Unfortunately, the posterior distribution could be much
more complex (highly skewed, multi-modal, etc).

I How can we improve the complexity of our variational
approximations while maintaining the desired properties?

Improve flexibility via Transforms 4/51

I Idea: Map simple distributions to complex distributions via
learnable transforms.

Change of Variable Formula 5/51

Change of Variables

Assume that the mapping between z and x, given by
f : Rn → Rn, is invertible such that x = f(z) and z = f−1(x)

px(x) = pz(f
−1(x))

∣∣∣∣det

(
∂f−1(x)

∂x

)∣∣∣∣
I x, z need to be continuous and have the same dimension.

For example, if x ∈ Rn then z ∈ Rn

I For any invertible matrix A, det(A−1) = det(A)−1

px(x) = pz(z)

∣∣∣∣det

(
∂f(z)

∂z

)∣∣∣∣−1

Normalizing Flow Models 6/51

I Consider a directed, latent-variable model over observed
variables x and latent variables z.

I In a normalizing flow model, the mapping between z and x,
given by fθ : Rn 7→ Rn, is deterministic and invertible such
that x = fθ(z) and z = f−1θ (x)

I Using change of variables, the probability p(x) is given by

px(x|θ) = pz(z)

∣∣∣∣det

(
∂fθ(z)

∂z

)∣∣∣∣−1

Normalizing Flow Models 7/51

I Normalizing Transforms: Change of variables gives a
normalized density after applying an invertible
transformation

I Flow: Invertible transformations can be composed with
each other

zk = fk(zk−1), k = 1, . . . ,K

I The log-likelihood of zK

log pK(zK) = log p0(z0)−
K∑
k=1

log

∣∣∣∣det

(
∂fk(zk−1)

zk−1

)∣∣∣∣
Remark: for simplicity, we omit the parameters for each of
these transformations f1, f2, . . . , fK .

Normalizing Flows 8/51

Exploit the rule for change of variables

I Start with a simple distribution for z0 (e.g., Gaussian).

I Apply a sequence of K invertible transformations.

Adapted from Mohamed and Rezenda, 2017

Planar Flows 9/51

I Planar flow (Rezende and Mohamed, 2015).

x = fθ(z) = z + uh(w>z + b)

parameterized by θ = (w, u, b) where h is a non-linear
function

I Absolute value of the determinant of the Jacobian∣∣∣∣det
∂fθ(z)

∂z

∣∣∣∣ =
∣∣∣det(I + h′(w>z + b)uw>)

∣∣∣
=
∣∣∣1 + h′(w>z + b)u>w

∣∣∣
I Need to restrict parameters and non-linearity for the

mapping to be invertible. For example,

h(·) = tanh(·), h′(w>z + b)u>w ≥ −1

Planar Flows 10/51

I Base distribution: Gaussian

I Base distribution: Uniform

I 10 planar transformations can transform simple
distributions into a more complicated one.

VI with Normalizing Flows 11/51

I Learning via maximizing the ELBO

L = EqK(zK) log
p(x, zK)

qK(zK)

= Eq0(z0) log p(x, zK)− Eq0(z0) log q0(z0)

−
K∑
k=1

Eq0(z0) log

∣∣∣∣det

(
∂fk(zk−1)

∂zk−1

)∣∣∣∣
I Exact likelihood evaluation via inverse transformation and

change of variable formula

I Sampling via forward transformation

z0 ∼ q0(z0), zK = fK ◦ fK−1 ◦ · · · ◦ f1(z0)

VI with Normalizing Flows 12/51

Adapted from Rezenda and Mohamed, 2015

Requirements for Normalizing Flows 13/51

I Simple initial distribution q0(z0) that allows for efficient
samping and tractable likelihood evaluation, e.g., Gaussian

I Sampling requires efficient evaluation of

zk = fk(zk−1), k = 1, . . . ,K

I Likelihood computation also requires the evaluation of
determinants of n× n Jacobian matrices ∼ O(n3),
prohibitively expensive within a learning loop!

I Design transformations so that the resulting Jacobian
matrix has special structure. For example
I lower rank update to identity as in planar flows.
I triangular matrix whose determinant is just the product of

the diagonal entries, i.e., an O(n) operation.

Designing Invertible Transformations 14/51

I NICE or Nonlinear Independent Components Estimation
(Dinh et al., 2014) composes two kinds of invertible
transformations: additive coupling layers and rescaling
layers

I Real-NVP (Dinh et al., 2017)

I Inverse Autoregressive Flow (Kingma et al., 2016)

I Masked Autoregressive Flow (Papamakarios et al., 2017)

NICE: Additive Coupling Layers 15/51

I Partition the variable z into two disjoint subsets

z = z1:d ∪ zd+1:n

I Forward mapping z 7→ x:

x1:d = z1:d, xd+1:n = zd+1:n +mθ(z1:d)

where mθ : Rd 7→ Rn−d is a neural network with parameters
θ

I Backward mapping x 7→ z:

z1:d = x1:d, zd+1:n = xd+1:n −mθ(x1:d)

I Forward/Backward mapping is volume preserving: the
determinant of the Jacobian is 1.

NICE: Rescaling Layers 16/51

I Additive coupling layers are composed together (with
arbitrary partitions of variables in each layer)

I Final layer of NICE uses a rescaling transformation

I Forward mapping z 7→ x:

xi = sizi, i = 1, . . . , n

where si > 0 is the scaling factor for the i-th dimension.

I Backward mapping x 7→ z:

zi =
xi
si
, i = 1, . . . , n

I Jacobian of forward mapping:

J = diag(s), det(J) =

n∏
i=1

si.

RealNVP: Non-volume Preserving NICE 17/51

I Forward mapping z 7→ x:

x1:d = z1:d, xd+1:n = zd+1:n � exp(αθ(z1:d)) + µθ(z1:d)

where αθ and µθ are both neural networks.

I Backward mapping x 7→ z:

z1:d = x1:d, zd+1:n = exp(−αθ(x1:d))� (xd+1:n − µθ(x1:d))

I The determinant of the Jacobian of forward mapping

det

(
∂x

∂z

)
= exp

(∑
αθ(z1:d)

)
I Non-volume preserving transformation in general since

determinant can be less than or greater than 1.

Autoregressive Models as Normalizing Flows 18/51

I Consider a Gaussian autoregressive model

p(x) =

n∏
i=1

p(xi|x<i)

where p(xi|x<i) = N (µi(x1:i−1), exp(αi(x1:i−1))
2). µi and

αi are neural networks for i > 1 and constants for i = 1.

I Sequential sampling:

zi ∼ N (0, 1), xi = exp(αi(x1:i−1))zi+µi(x1:i−1), i = 1, . . . , n

I Flow interpretation: transforms samples from the standard
Gaussian to those generated from the model via invertible
transformations (parameterized by µi, αi)

Masked Autoregressive Flow (MAF) 19/51

I Forward mapping from z 7→ x:

xi = exp(αi(x1:i−1))zi + µi(x1:i−1), i = 1, . . . , n

I Like autoregressive models, sampling is sequential and slow
(O(n))

Masked Autoregressive Flow (MAF) 20/51

I Inverse mapping from x 7→ z: shift and scale

zi = (xi − µi(x1:i−1))/ exp(αi(x1:i−1)), i = 1, . . . , n

Note that this can be done in parallel.

I Jacobian is lower diagonal, hence determinant can be
computed efficiently.

I Likelihood evaluation is easy and parallelizable.

Inverse Autoregressive Flow (IAF) 21/51

I Forward mapping from z 7→ x (parallel):

xi = exp(αi(z1:i−1))zi + µi(z1:i−1), i = 1, . . . , n

I Backward mapping from x 7→ z (sequential):

zi = (xi − µi(z1:i−1))/ exp(αi(z1:i−1))

I Fast to sample from, slow to evaluate likelihoods of data
points. However, likelihood evaluation for a sampled point
is fast.

IAF is Inverse of MAF 22/51

Inverse pass of MAF (left) vs. Forward pass of IAF (right)

I Interchanging z and x in the inverse transformation of
MAF gives the forward transformation of IAF.

I Similarly, forward transformation of MAF is inverse
transformation of IAF.

Summary of Nomalizing Flows 23/51

I Transform simple distributions into more complex
distributions via change of variables

I Jacobian of transformations should have tractable
determinant for efficient learning and density estimation

I Computational tradeoff in evaluating forward and inverse
transformations
I MAF: Fast likelihood evaluation, slow sampling, more

suited for MLE based training, density estimation.
I IAF: Fast sampling, slow likelihood evaluation, more suited

for variational inference, real time generation.
I NICE and RealNVP: Fast on both side, but generally less

flexible than the others.

MCMC Recap 24/51

I MCMC approximates the posterior through a sequence of
transitions

z0 ∼ q(z0), zt ∼ q(zt|zt−1, x), t = 1, 2, . . .

where the transition kernel satisfies the detailed balance
condition

p(x, zt−1)q(zt|zt−1, x) = p(x, zt)q(zt−1|zt, x)

I Pros
I automatically adapts to true posterior
I asymptotically unbiased

I Cons
I slow convergence, hard to assess quality
I tuning headaches

MCMC as Flows 25/51

I Each iteration in MCMC can be viewed as a mapping
zt−1 7→ zt, and the marginal likelihood of zT is

q(zT |x) =

∫
q(z0|x)

T∏
t=1

q(zt|zt−1, x) dz0, . . . , dzT−1

I Variational lower bound

L = Eq(zT |x) log
p(x, zT)

q(zT |x)
≤ log p(x)

I The stochastic Markov chain, therefore, can be viewed as a
nonparametric variational approximation.

I Can we combine MCMC and VI to get the best of both
worlds?

Auxiliary Variational Lower Bound 26/51

I Use auxiliary random variables y = (z0, . . . , zT−1) to
construct a tractable lower bound

Laux = Eq(y,zT |x) log
p(x, zT)r(y|zT , x)

q(y, zT |x)
≤ log p(x)

I r(y|zT , x) is an arbitrary auxiliary distribution, e.g.

r(y|zT , x) =

T∏
t=1

rt(zt−1|zt, x)

I This is a looser lower bound

Laux = Eq(y,zT |x) (log p(x, zT) + log r(y|zT , x)− log q(y, zT |x))

= L− Eq(zT |x) (DKL(q(y|zT , x)‖r(y|zT , x)))

≤ L ≤ log p(x)

Monte Carlo Estimate of MCMC Lower Bound 27/51

I Suppose z0, z1, . . . , zT is a sampled trajectory

z0 ∼ q(z0|x)

zt ∼ qt(zt|zt−1, x), t = 1, . . . , T

I Unbiased stochastic estimate of Laux

L̂aux = log p(x, zT)− log q(z0|x) +

T∑
t=1

(
log

rt(zt−1|zt, x)

qt(zt|zt−1, x)

)

= log p(x, z0)− log q(z0|x) +

T∑
t=1

logαt

where

αt =
p(x, zt)rt(zt−1|zt, x)

p(x, zt−1)qt(zt|zt−1, x)

MCMC Always Improves The ELBO 28/51

I Using the detailed balance condition

αt =
p(x, zt)rt(zt−1|zt, x)

p(x, zt−1)qt(zt|zt−1, x)
=
rt(zt−1|zt, x)

qt(zt−1|zt, x)

I Therefore,

Laux = Eq(z0|x) log
p(x, z0)

q(z0|x)
+

T∑
t=1

Eq(y,zT |x) log
rt(zt−1|zt, x)

qt(zt−1|zt, x)

I For optimal rt(zt−1|zt, x) = q(zt−1|zt, x)

Eq log
rt(zt−1|zt, x)

qt(zt−1|zt, x)
= Eq log

q(zt−1|zt, x)

qt(zt−1|zt, x)
≥ 0

I MCMC iterations always improve approximation unless
already perfect! In practice, we need

rt(zt−1|zt, x) ≈ q(zt−1|zt, x)

Optimizing The Markov Chain 29/51

I Specify a parameterized Markov chain

qθ(z) = qθ(z0|x)

T∏
t=1

qθ(zt|zt−1, x)

I Specify a parameterized auxiliary distribution rθ(y|zT , x)

I Sample MCMC trajectories for the variational lower bound

L̂(θ) = log p(x, zT)− log q(z0|x) +

T∑
t=1

(
log

rt(zt−1|zt, x)

qt(zt|zt−1, x)

)
I Run SGD using ∇θL̂(θ) (reparameterization trick)

Example: Bivariate Gaussian 30/51

I A bivariate Gaussian target distribution

p(z1, z2) ∝ exp

(
− 1

2τ21
(z1 − z2)2 − 1

2τ22
(z1 + z2)2

)
I Gibbs sampling

q(zit|zt−1) = p(zi|z−i) = N (µi, σ
2
i)

I Over-relaxation (Adler, 1981)

q(zit|zt−1) = N (µi + α(zit−1 − µi), σ2i (1− α2))

I Gaussian reverse model rt(zt−1|zt), linear dependence on zt.
Find the best α via variational lower bound maximization.

Example: Bivariate Gaussian 31/51

Gibbs sampling versus over-relaxation for a bivariate Gaussian

The improved mixing of over-relaxation results in an improved
variational lower bound.

Hamiltonian Variational Inference 32/51

I We can use Hamiltonian dynamics for more efficient
transition distributions

v′t ∼ q(v′t|zt−1, x), (vt, zt) = Φ(v′t, zt−1)

where Φ : R2n 7→ R2n is the Hamiltonian flow.

I Φ is deterministic, invertible and volume preserving

q(vt, zt|zt−1, x) = q(v′t|zt−1, x), r(v′t, zt−1|zt, x) = r(vt|zt, x)

I Note that we would use leapfrog integrator to discretize the
Hamiltonian flow. However, the resulting map Φ̂ is also
invertible and volume preserving, and the above equations
still hold.

Hamiltonian Variational Inference 33/51

I HMC trajectory

z0 ∼ q(z0|x)

v′t ∼ qt(v′t|zt−1, x), vt, zt = Φ̂(v′t, zt−1), t = 1, . . . , T

I Lower bound estimate

L̂(θ) = log p(x, z0)−log q(z0|x)+

T∑
t=1

log
p(x, zt)rt(vt|zt, x)

p(x, zt−1)qt(v′t|x, zt−1)

I Stochastic optimization using ∇θL̂(θ)
I No rejection step, to keep everything differentiable.
I θ includes all parameters in q and r, and may include some

HMC hyperparameters (stepsize and mass matrix) as well.
I Differentiate through the leapfrog integrator.

Examples: Overdispersed Counts 34/51

A simple 2-dimensional beta-binomial model for overdispersion.
One step of Hamiltonian dynamics with varying number of
leapfrog steps.

Examples: Generative Model for MNIST 35/51

Variational autoencoder for binarized MNIST, Gaussian prior
p(z) = N (0, I), MLP conditional likelihood pθ(x|z)

I MCMC makes bound tighter, give better marginal
likelihood.

I MCMC also works with simple initialization.

Examples: Generative Model for MNIST 35/51

Variational autoencoder for binarized MNIST, Gaussian prior
p(z) = N (0, I), MLP conditional likelihood pθ(x|z)

I MCMC makes bound tighter, give better marginal
likelihood.

I MCMC also works with simple initialization.

Examples: Generative Model for MNIST 35/51

Variational autoencoder for binarized MNIST, Gaussian prior
p(z) = N (0, I), MLP conditional likelihood pθ(x|z)

I MCMC makes bound tighter, give better marginal
likelihood.

I MCMC also works with simple initialization.

Combining MCMC and VI 36/51

I MCMC improves variational approximation
I MCMC kernels automatically adapt to target p(z|x).
I More flexible approximations in addition to standard

exponential family distributions.
I More MCMC steps ⇒ slower iterations, but few iterations

needed for convergence.

I Optimizing variational bound improves MCMC
I Automatic tuning, convergence assessment, independent

sampling, no rejections.
I Learning MCMC transitions qt(zt|zt−1, x).
I Optimize initialization q(z0|x).

I Many possibilities left to explore.

Particle Based Variational Inference 37/51

I So far, most of the approximating distributions used in VI
take a parametric form, that is qθ(x) with parameter θ.

I This parametric form often limits the power of the
approximating distributions.

I In what follows, we will introduce a particle based VI
introduced by Liu et al. that uses non-parameteric
approximating distributions.

Stein’s Method 38/51

I A general theoretical tool for bounding differences between
distributions, introduced by Charles Stein.

I The key idea is to characterize a distribution p with a Stein
operator Ap, such that

p = q ⇐⇒ Ex∼q[Apf(x)] = 0, ∀f ∈ F

For continuous distributions with smooth density p(x),

Apf(x) := sp(x)T f(x) +∇x · f(x)

where sp(x) = ∇x log p(x) is the score function.

Note that sp(x) does not dependent on the normalizing
constant of p(x), so p(x) can be unnormalized.

Stein’s Method 39/51

I When p = q, we have Stein’s Identity

Ex∼p [sp(x)T f(x) +∇x · f(x)] = 0

I Stein’s identity defines an infinite number of identities
indexed by test function f , widely applied in learning
probabilistic models, variance reduction, optimization and
many more.

I When p 6= q, we have (also by Stein’s Identity)

Ex∼q[Apf(x)] = Ex∼q[(sp(x)− sq(x))T f(x)] (1)

Easy to find test function f(x) such that (1) is non-zero.
For example:

f(x) = sp(x)− sq(x)

Stein Discrepancy 40/51

I We therefore, define Stein Discrepancy between p and q as
follows

D(q‖p) := max
f∈F

Ex∼q[Apf(x)] (2)

where F is a rich enough set of functions.

I Traditionally, Stein’s method takes F to be sets of
functions with bounded Lipschitz norm, which is
computationally difficult for practical use.

I We can use a kernel trick to construct a reproducing kernel
Hilbert space (RKHS) where there is a closed form solution
to (2).

Reproducing Kernel Hilbert Space 41/51

I Let k(x, x′) be a positive definite kernel, that is∫
X
g(x)k(x, x′)g(x′) dxdx′ > 0, ∀ 0 < ‖g‖22 <∞.

By Mercer’s theorem,

k(x, x′) =
∑

i
λiei(x)ei(x

′)

I We can define a RKHS H that contains linear
combinations of these eigenfunctions

f(x) =
∑

i
fiei(x), 〈f, g〉H =

∑
i

figi
λi

with ‖f‖2H = 〈f, f〉H =
∑

i f
2
i /λi.

I Reproducing Property

f(x) = 〈f, k(·, x)〉H, k(x, x′) = 〈k(·, x), k(·, x′)〉H.

Kernelized Stein Discrepancy 42/51

I Given a positive definite kernel k(x, x′), Liu et al. define a
kernelized Stein discrepancy (KSD) D(q‖p) as follows

D(q‖p) =
√

Ex,x′∼q[δp,q(x)Tk(x, x′)δp,q(x′)]

where δp,q(x) = sp(x)− sq(x). Obviously,

D(q‖p) ≥ 0, D(q‖p) = 0⇔ q = p.

I With the spectral decomposition, we can rewrite KSD as

D(q‖p) =

√∑
i

λi‖Ex∼q[Apei(x)]‖22

Kernelized Stein Discrepancy 43/51

I It turns out that KSD can be viewed as standard Stein
discrepancy over a specific family of functions F , i.e, the
unit ball of Hd = H× · · · × H.

I Denote β(x′) = Ex∼q[Apkx′(x)], then

D(q‖p) = ‖β‖Hd

I Moreover, we have

〈β, f〉Hd = Ex∼q[Apf(x)], ∀f ∈ Hd

I Therefore,
D(q‖p) = max

f∈F
Ex∼q[Apf(x)]

where F = {f ∈ Hd : ‖f‖Hd ≤ 1}. The maximum is
achieved at f∗ = β/‖β‖Hd .

Stein Variational Gradient Descent 44/51

Proposed by Liu and Wang, 2016.

Idea: represent the distribution using a collection of particles
{xi}ni=1 and iteratively move these particles toward the target p
by updates of form

xi ← T (xi), T (x) = x+ εφ(x)

where φ is a perturbation direction chosen
to maximumly decrease the KL divergence.

φ = arg max
φ∈F

{
− ∂

∂ε
DKL(qT ‖p)

∣∣∣∣
ε=0

}
where qT is the density of x′ = T (x) when
the current density of x is q(x).

Stein Variational Gradient Descent 45/51

I Perturbation direction is closely related to Stein operator

− ∂

∂ε
DKL(qT ‖p)

∣∣∣∣
ε=0

= Ex∼q[Apφ(x)]

I This gives another interpretation of Stein discrepancy

D(q‖p) = max
φ∈F

{
− ∂

∂ε
DKL(qT ‖p)

∣∣∣∣
ε=0

}
I Most importantly, the optimum direction has a closed form

when F is the unit ball of RKHS Hd:

φ∗(·) = Ex∼q[Apk(x, ·)]
= Ex∼q[∇x log p(x)k(x, ·) +∇xk(x, ·)]

Stein Variational Gradient Descent 46/51

We can approximate the expectation Ex∼q with the empirical
average over current particles

xi ← xi+ε
1

n

n∑
j=1

[
∇x log p(xj)k(xj , xi) +∇xjk(xj , xi)

]
, 1 ≤ i ≤ n

I Deterministically transport probability mass from initial q0
to target p.

I Reduces to standard gradient ascent for MAP when using a
single particle (n = 1).

I ∇x log p(xj): the gradient term moves the particles towards
high probability domains of p(x).

I ∇xk(xj , xi): the repulsive force term enforces diversity in
the particles and prevents them from collapsing to the
modes of p(x).

Examples: Mixture of Gaussian 47/51

Liu et al., 2016

Examples: Bayesian Logistic Regression 48/51

Liu et al., 2016

References 49/51

I D. J. Rezende and S. Mohamed. Variational inference with
normalizing flows. Proceedings of the 32nd International
Conference on Machine Learning, pages 1530–1538, 2015.

I L. Dinh, D. Krueger, and Y. Bengio. NICE: Non-linear
Independent Components Estimation. arXiv:1410.8516,
2014.

I L. Dinh, J. Sohl-Dickstein, and S. Bengio. Density
estimation using Real NVP. Proceedings of the 5th
International Conference on Learning Representations,
2017.

I Stephen L Adler. Over-relaxation method for the monte
carlo evaluation of the partition function for multiquadratic
actions. Physical Review D, 23(12):2901, 1981.

References 50/51

I D. P. Kingma, T. Salimans, R. Jozefowicz, X. Chen, I.
Sutskever, and M. Welling. Improved variational inference
with Inverse Autoregressive Flow. Advances in Neural
Information Processing Systems 29, pages 4743–4751, 2016.

I Papamakarios, G., Murray, I., and Pavlakou, T. (2017).
Masked autoregressive flow for density estimation. In
Advances in Neural Information Processing Systems, pages
2335–2344.

I T. Salimans,D. P. Kingma,and M. Welling. Markov chain
monte carlo and variational inference: Bridging the gap. In
ICML, 2015.

References 51/51

I Q. Liu, J. D. Lee, and M. I. Jordan. A kernelized Stein
discrepancy for goodness-of-fit tests and model evaluation.
In ICML, 2016.

I Q. Liu and D. Wang. Stein variational gradient descent: A
general purpose bayesian inference algorithm. In Advances
in Neural Information Processing Systems 29, pp.
2370–2378, 2016

