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Introduction 2/62

» Mean-field VI can be slow when the data size is large.
» Moreover, the conditional conjugacy required by mean-field
VI greatly reduces the general applicability of the method.

» Fortunately, as an optimization approach, VI allows us to
easily combine it with various scalable optimization
methods.

» In this lecture, we will introduce some of the recent
advancements on scalable variational inference, both for
mean-field VI and more general VI.

> We will also talk about alternative training objectives in VI
besides KL divergence.
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Mean-field VI Could Be Data-inefficient 3/62

» A generic class of models

n

p(ﬁv 2, JI) = p(ﬁ) Hp(zivxi‘ﬂ)

i=1
» The mean-field approximation

n

q(8,2) = q(BIN) [ [ azle0)

i=1
» Coordinate ascent could be data-ineflicient
A= Eq(z)(ng(xa Z))v QS: = Eq(ﬁ)(nf(xia B))

» Requires local computation for each data points.
> Aggregate these computation to update the global
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Gradients of The ELBO 4/62

» Recall that the A-ELBO (update to a constant) is

L(A) = Vad,( (a + ZE@ (zi, 7)) )\> + Ay(\)
» Differentiating this w.r.t. A yields
VaL(\) = (a + Z Eg, (T (zi, i) — A)

» Similarly

Vo, L(¢i) = V3, Ae(¢) (Ex(ne(xi, B)) — ¢3)
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Natural Gradient 5/62

» The gradient of f at A, Vf(\) points in the same
direction as the solution to

argmax f(z +d)\), s.t. ||d\]? < €2
dA

for sufficiently small e.

» The gradient direction implicitly depends on the Euclidean
distance, which might not capture the distance between the
parameterized probability distribution ¢(5|\).

» We can use natural gradient instead, which points in the
same direction as the solution to

argdlgl\aax fz+dX), st DE(g(BIN), q(BIA+dN)) <e

for sufficiently small €, where D" is the symmetrized KL

divergence. @ ez XY
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Natural Gradient 6/62

» We manage the symmetrized KL divergence constraint
with a Riemannian metric G(\)

DL (a(B11), a(BIA + X)) ~ dAT G(A)dX
as d\ — 0. G is the Fisher information matrix of ¢(5|\)
G(N) = Ex ((Valoga(BIN)(Valoga(81N) )
» The natural gradient (Amari, 1998)
VAS(A) £ GV
» When ¢(5|A) is in the prescribed exponential family

G(\) = Vidy(\)

ANEIE T

=/ PEKING UNIVERSITY




Stochastic Variational Inference 7/62

» The natural gradient of the ELBO

viaty, — (a + ) B, (T (2, xi))> —A

i=1
Vol L = Ex(ne(wi, B)) — ¢

Classical coordinate ascent can be viewed as natural
gradient descent with step size one

» Use the noisy natural gradient instead
VA*L(A) = a+nEy,(T(zj,2;))—A, j ~ Uniform(1,...,n)

» This is a good noisy gradient
» The expectation is the exact gradient (unbiased).
» Depends merely on optimized local parameters (cheap).
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Stochastic Variational Inference 8/62

Input: data x, model p(, z, X).

Initialize A randomly. Set p, appropriately.

repeat
Sample j ~ Unif(1,...,n).

Set local parameter ¢ «— E, [m(ﬂ,xj)].
Set intermediate global parameter

A= a+nEy[t(Z;,x)].
Set global parameter

A=(1-pJ2r +Pzi-

until forever
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Stochastic Variational Inference in LDA 9/62

Yd ¢d N
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Classic Coordinate Ascent

Gank x exp (E(log Oax) + E(log Bruw,,.))

d—OH-Z(bdn, /\k—Tl+ZZ¢dnk Wd,n

d=1n=1
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Stochastic Variational Inference in LDA 10/62

» Sample a document wy uniform from the data set
> Estimate the local variational parameters using the current
topics. Forn=1,..., N

¢d,n,k X exp (E(log ed,k‘) + E(log Bk,wd’n)) ) k= 17 cee 7K

N
Y4 =+ Z ¢d,n
n=1

» Form the intermediate topics from those local parameters
for noisy natural gradient

N
)\k:n+DZ¢d,n7kwd,nv k:LvK

n=1
» Update topics using noisy natural gradient

A= (1—p)A+ g\
(1= p) A+ pt S
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Stochastic Variational Inference in LDA 11/62

Online 98K
900
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»
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VI for General Models 12/62

» Mean-field VI works for conjugate-exponential models,
where the local optimal has closed-form solution.

» For more general models, we may not have this conditional
conjugacy

| 4
>
>
>
>

>

Nonlinear Time Series Models
Deep Latent Gaussian Models
Generalized Linear Models
Stochastic Volatility Models
Bayesian Neural Networks
Sigmoid Belief Network

» While we may derive a model specific bound for each of
these models (Knowles and Minka, 2011; Paisley et al.,
2012), it would be better if there is a solution that does not
entail model specific work.
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VI for Bayesian Logistic Regression 13/62

» The logistic regression model

1

= Ty SO

y; ~ Bernoulli(p;), p;

» The mean-field approximation

d

a(8) = T[N Bjlus. 03)

Jj=1

» The ELBO is

L(p,0%) = Eq(log p(B) + log p(ylz, B) — log q(B))
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VI for Bayesian Logistic Regression 14/62

L(p,0%) = Eq(log p(8) — log ¢(B) + log p(y|, B))

d d
1 1
= =5 2 (45 + )+ 5D loga +Eglogp(ylx, §) + Const
= <
d
> (loga? — i —0F) + YT Xp —Ey(log(1 + exp(X5)))
7j=1

_1
2

» We can not compute the expectation term

» This hides the objective dependence on the variational
parameters, making it hard to directly optimize.
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Stochastic Optimization 15/62

» Let p(x,0) be the joint probability (i.e., the posterior up to
a constant), and g4(#) be our variational approximation

» The ELBO is

L(¢) = Eq(log p(x, 0) — log q4(0))

» Instead of requiring a closed-form lower bound and
differentiating afterwards, we can take derivatives directly

» As shown later, this leads to a stochastic optimization
approach that handles massive data sets as well.
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Score Function Estimator 16/62

» Compute the gradient
VoL = VyE4(logp(z,0) — log g4(0))
= /V¢q¢(0)(logp(a:, ) —logqy(6)) df
—q4(0)Vylogqe(0) db
— [ (6)V.s0ga5(6) (g (.6) ~ og 44(6))

—q4(0)Vylogqe(8) do
— B, (Vs log 45(0)(log p(z,0) — log 4s(0) — 1))

. _ Vaqs(0)
Using V log gg0 = %
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Score Function Estimator 17/62

» Recall that

VoL = E, (Vs log 4(6)(log p(x, 0) — log g5(6) — 1))

» Note that
E,Vglogges(0) =0

» We can simplify the gradient as follows
VoL =Eq (Vg loggs(0)(logp(x,0) —log 44(0)))

» This is known as score function estimator or REINFORCE
gradients (Williams, 1992; Ranganath et al., 2014; Minh et
al., 2014)
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Monte Carlo Estimate 18/62

VoL =Eq (Vglogqs(0)(log p(x,0) — log qs(0)))

» Unbiased stochastic gradients via Monte Carlo!

S
1
5D Vologas(0s)(ogp(x, 05) —1og 4s(0)), 05 ~ a(6)

s=1

» The requirements for inference
» Sampling from ¢4 (6)
» Evaluating V4 log g4(0)
» Evaluating log p(z, 6) and log ¢4(0)
» This is called Black Box Variational Inference (BBVI):
no model specific work! (Ranganath et al., 2014)
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Basci BBVI 19/62

Algorithm 1: Basic Black Box Variational Inference
Input :Model logp(x,z),

Variational approximation q(z; v)
Output : Variational Parameters: v

while not converged do
z[s] ~ q // Draw S samples from ¢
p = t-th value of a Robbins Monro sequence
y=v+pi>°  V,logq(zls]; »)(logp(x,z[s]) —logq(z[s]; »))
t=t+1
end

Ranganath et al., 2014
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Basic BBVI Doesn’t Work 20/62

Variance of the gradient can be a problem

Varg, ) = Eq (Vg log g5(0) (log p(x, ) — log g4 (6)) — V4 L)?)

2.0

e PDF
15 e Abs Mu Score

0.5

0.0

-2.0 -15 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0
Adapted from Blei, Ranganath and Mohamed

» magnitude of log p(x, ) — log gy (0) varies widely
P> rare values sampling

» too much variance to be useful
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Control Variates 21/62

» To make BBVI work in practice, we need methods to
reduce the variance of naive Monte Carlo estimates

» Control Variates. To reduce the variance of Monte Carlo
estimates of E(f(z)), we replace f with f such that
E(f(z)) =E(f(z)). A general class

f(z) = f(2) — a(h(z) — Eh(x))

—— PDF
5 — = x X
A ’ h=at » a can be chosen to minimize
5 fed the variance.
2 » £ is a function of our choice.
1 Good h have high correlation
0 with the original function f.

-1
—20 —-1.5 —-1.0 —-05 0.0 0.5 1.0 1.5 2.0
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Control Variates for VI 22/62

f(x) = f(z) — a(h(z) — Eh(z))

» For variational inference, we need h functions with known ¢
expectation

» A commonly used one is h(0) = V4loggs(6), where
Eq(Vglogge(0)) =0, Vg
» The variance of f is
Var(f) = Var(f) + a®Var(h) — 2aCov(f, h)

and the optimal scaling is a* = Cov(f, h)/Var(h). In
practice this can be estimated using the empirical variance

ez x Y
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Baseline 23/62

» When h(f) = V4 loggs(0), the control variate gradient is

VL =Eq (Vyloggy(0)(logp(x,0) —logqs(0) — a))

and a is called a baseline.
» Baselines can be constant, or input-dependent a(x).

» While we can estimate the baseline using the samples as
before, people often use a model-agnostic baseline to centre
the learning signal (Minh and Gregor, 2014)

p=argminE,({(x,0,¢) — ap(x))2
P

where the learning signal is
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Rao-Blackwellization 24/62

» We can use Rao-Blackwellization to reduce the variance by
integrating out some random variables.

» Consider the mean-field variational family

d
q(0) = [ ai(0:l¢:)
i=1

» Let q(;) be the distribution of variables that depend on the
ith variable (i.e., the Markov blanket of §; and 6;), and let
pi(z,0(;)) be the terms in the joint probability that depend
on those variables.

Vo, L =Eq,, (Vg log qi(0i] 1) log pi(z, (s)) — log 4i(:]61)))

» This can be combined with control variates.
ez K F
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The Reparameterization Trick 25/62

» Another commonly used variance reduction technique is
the reparameterization trick (Kingma et al., 2014;
Rezende et al., 2014)

» The Reparameterization
0=05(0), c~ale) = 6~ aq5(6)
> Example:
0=co+pu, e~N(O,1) <= 0~N(uo?)
» Compute the gradient via the reparameterization trick
VoL = VyE,, ) (log p(z, ) — log gy (6))

= v¢>]ECIe(€) (logp(:c, g¢(6)) - IOg qd)(g¢(6)))
=Ey. (o Velogp(z, gg(e)) — log gs(ge(€)))
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Variance Comparison 26/62

10°
10!
107! Reparameterization
Reinforce
1073 Reinforce with

control variate
10° 10' 10*> 10°
Number of MC samples

Kucukelbir et al., 2016
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Score Function

Differentiates the density
Vae(0)

Works for general models,
including both discrete and
continuous models.

Works for large class of
variational approximations

May suffer from large
variance

Control Variates vs. Reparameterization 27/62

Reparameterization

Differentiates the function
Vg (logp(x,0) —logqy(0))
Requires differentiable
models

Requires variational
approximation to have
form 6 = g4(€)

Better behaved variance in
general
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Doubly Stochastic Optimization 28/62

» Scale up previous stochastic variational inference methods
to large data set via data subsampling.

> Replace the log joint distribution with unbiased stochastic
estimates

n m
log p(, 0) ~ log p(6) + Zl log p(zy,10), m < n

» Example: score function estimator
1 S
Vol =< ; Vg log g4 (0s) <logp Zlogp 1,105)

— logq¢(95)>, s ~ qg(0)
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Summary on Stochastic VI 29/62

» When the data size is large, we can use stochastic
optimization to scale up VI

» For conditional exponential models, we can use noisy
natural gradient.
» For general models, naive stochastic gradient estimators

may have large variance, variance reduction techniques are
often required.

» Score function estimator (for both discrete and continuous
latent variable)
» The reparameterization trick (for continuous variable, and
requires reparameterizable variational family)
» We can also combine score function estimators with the
reparameterization trick for more general and robust
stochastic gradient estimators (Ruiz et al., 2016)
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Training Objectives in VI 30/62

» So far, we have only used the KL divergence as a distance
measure in VL.

» Other than the KL divergence, there are many alternative
statistical distance measures between distributions that
admit a variety of statistical properties.

» In this lecture, we will introduce several alternative
divergence measures to KL, and discuss their statistical
properties, with applications in VI.
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Potential Problems with The KL Divergence 31/62

— P

el
L .
’ .
2 S
)
g S '
. .
’ 1
* [
S
« \
.
.

» VI does not work well for non-smooth potentials

» This is largely due to the zero-avoiding behaviour

» The area where p() is close to zero has very negative log p,
so does the variational distribution ¢ distribution when
trained to minimize the KL.
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Potential Problems with The KL Divergence 31/62

—p
—— q (VI fit)
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» VI does not work well for non-smooth potentials

» This is largely due to the zero-avoiding behaviour

» The area where p() is close to zero has very negative log p,
so does the variational distribution ¢ distribution when
trained to minimize the KL.

» In this truncated normal example, VI will fit a delta

ez x Y
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Beyond The KL Divergence 32/62

> Recall that the KL divergence from ¢ to p is

Dxr(qllp) = Eq log% = /Q(x) log% dzx

» An alternative: the reverse KL divergence

DY (pllg) = E, log% = /p(fc) logz% da

o)
<k,

Reverse KL KL P
ANELF LS.




The f-Divergence 33/62

» The f-divergence from ¢ to p is defined as

Dy(qllp) = / p(@)f (%) »

where f is a convex function such that f(1) = 0.

» The f-divergence defines a family of valid divergences

Dy (qllp) = /p(fL‘)f (qg) dx
q(z)

> 1 (o085 dr) = ) =0

D¢(qllp) = 0= q(x) = p(x) as.

and
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The f-Divergence 34/62

Many common divergences are special cases of f-divergence,
with different choices of f.

» KL divergence. f(t) =tlogt
» reverse KL divergence. f(t) = —logt
> Hellinger distance. f(t) = (vt — 1)

H?(p /F F%x_;/ ()( ax) >dx

> Total variation distance. f(t) = 3|t — 1|

drv(p; q) /Ip —q(2)|dz = 5 /()

p(z) o
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Amari’s a-Divergence 35/62

When f(t) = aiz:tl), we have the Amari’s a-divergence (Amari,

1985; Zhu and Rohwer, 1995)

Da(pllg) = a(ll_a) <1 - /p(G)O‘Q(G)l‘a d9>

& KL(q | p) VBm D1 (qllp) = iinga(qu)
A Dk (pllg) = lim Dq(pllq)
a=1 o = oo a—1

KL(p|lq) EP

Adapted from Herndndez-Lobato et al. .
P e i XS
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Rényi’s a-Divergence 36,62

Dalalp) = = log [ a(6)p(6)' ds
> Some special cases of Rényi’s a-divergence

» Di(g|lp) := lima—1 Da(qllp) = Dxr(qllp)

> Do(qllp) = —1log [, 5~ (0)d0 = 0 iff supp(p) C supp(q).

> Dyoo(qllp) = log maxy 43

> D1 (qllp) = —2log (1 — Hel?(q||p))
» Importance properties

» Rényi divergence is non-decreasing in «
Da1 (qu) 2 Doéz (q”p), if aq > oo

» Skew symmetry: Di_o(qllp) = 5% Da(pllq)
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The Rényi Lower Bound 37/62

» Consider approximating the exact posterior p(f|z) by
minimizing Rényi’s a-divergence D, (q(0)||p(0|z)) for some
selected o > 0

» Using p(6|z) = p(8,x)/p(x), we have

Dala(®)p(6l2)) = -+ log [ a(6)p(64e)'~* a8
= logp(z) — 7 !

log / q(0)*p(6,z)' = db
—

l—«a
= log p(x) — ﬁ log E, <p((19(,09)c)>

» The Rényi lower bound (Li and Turner, 2016)
1 p(0,2)\'"*
Lo(q) & ——1logE ’
@)= =g le q< q(0)

ANEIE T
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The Rényi Lower Bound 38/62

» Theorem(Li and Turner 2016). The Rényi lower bound is
continuous and non-increasing on « € [0, 1] U {|Lqy| < +00}.
Especially for all 0 < ae < 1

Lvi(q) = lim La(q) < La(q) < Lo(q)
a—1

Lo(q) = log p(z) iff supp(p(f|z)) C supp(q(h)).

15100500 05 10 0.0 05 1.0 15 2.0
S § A
L LI )
1.0 v :
L} L]
0.5
0.0
—-0.5 — exact —_— a=0.5
-6 — —00 —_ a= 1
10 a——o0 a=1.0 (V)
- a=0.0 . a— +00
| 8
(a) Approximated posterior. (b) Hyper-parameter optimisation.
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Monte Carlo Estimation 39/62

» Monte Carlo estimation of the Rényi lower bound

-«

K .
L@ = g lon e 3o (B) o 0

» Unlike traditional VI, here the Monte Carlo estimate is
biased. Fortunately, the bias can be characterized by the
following theorem

A

» Theorem(Li and Turner, 2016). E{ei}fil(La,K(Q)) as a
function of o and K is -

» non-decreasing in K for fixed o < 1, and converges to L, (q)
as K — +oo if supp(p(0|z)) C supp(q(0)).
» continuous and non-increasing in « on [0, 1] U {|Ly| < 400}
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Multiple Sample ELBO 40/62

» When a = 0, the Monte Carlo estimate reduces to the
multiple sample lower bound (Burda et al., 2015)

L (q) =log ( plz ) 0; ~ q(0)

» This recovers the standard ELBO when K = 1.

» Using more samples improves the tightness of the bound
(Burda et al., 2015)

log p(z) > E(Lk+1(q)) > E(Lk(q))

Moreover, if p(x,6)/q(#) is bounded, then

E(Lk(q)) — logp(x), as K — +o0
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Lower Bound Maximization 41/62

Using the reparameterization trick

0~ qy(0) < 0 = gp(e), €~ ge(e)

bV log POs(G )
Veleastae) = Zxaﬂwg%mw»» o

l—a
), @
s o (P2ELEL2Y'
q5(9s(€:))
the normalized importance weight with finite samples. This is a
biased estimate of V4L, (qg) (except av = 1).

where

» o = 1: Standard VI with the reparamterization trick
» o = 0: Importance weighted VI (Burda et al., 2015)
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Minibatch Training 42/62

» Full batch training for maximizing the Rényi lower bound
could be very inefficient for large datasets

» Stochastic optimization is non-trivial since the Rényi lower
bound can not be represented as an expectation on a
datapoint-wise loss, except for a = 1.

» Two possible methods:

» derive the fixed point iteration on the whole dataset, then
use the minibatch data to approximately compute it (Li et
al., 2015)

» approximate the bound using the minibatch data, then
derive the gradient on this approximate objective
(Hernandez-Lobato et al., 2016)

Remark: the two methods are equivalent when o = 1
(standard VI).
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Minibatch Training: Energy Approximation 43/62

» Suppose the true likelihood is

N
p(al6) = T] p(al0)
n=1

» Approximate the likelihood as

[S]
(Hp%w> 2 fs(o)

nes

» Use this approximation for the energy function

La(q,8) = ;—logE, (w)
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Example: Bayesian Neural Network 44/62

mass-covering < » zero-forcing
® o —oo (max) ® =00 ® a=05 ® a=10(VD) @ a-+oo

average negative test LL/nats average test RMSE

1
-1.110 2.840 2.950 098 361 : 0.0810 416 4.65 0650 9.15 ®
2.945 ©
-1a1s 2835 360 | 0.0805 414 460 0.645 9.10
2.940 0.97 -
-1120 359 ! 412
2.830 2.935 1 0.0800 0.640 9.05
-1125 2930 0.96 358 ' 410 455
2.825 ! 0.0795 0635 9.00
- 2.925 1
1130 357 ' 4.08 450
2.820 2.920 095 0.0790 0630 8951 @g
-1135 3.56 ' 4.06
2915 1 b
_1.140 2815 355] @ | 0.0785 204 445 0.625 so0| @
2.910 0.94 ° . )
-1.145 -1 10 2.905 - - .54 10,0780 L 4.02 4.40 — 0. —— 885
kin8nm power protein wine year 1 kin8nm power protein wine year

Adapted from Li and Turner, 2016

» The optimal o may vary for different data sets.

» Large « improves the predictive error, while small «
provides better test log-likelihood.

» o = 0.5 seems to produce overall good results for both test

LL MSE. N
and RMS @ e




Expectation Propagation 45/62

» In standard VI, we often minimize Dk, (¢||p). Sometimes,
we can also minimize Dk, (pl|¢) (can be viewed as MLE).

¢" = argmin Dy,(p||q) = arg maxE, log ¢(6)
q q

» Assume ¢ is from the exponential family

a(6l) = 1(8) exp (0 T(0) — A(n))
» The optimal n* satisfies
n* = argmax E, log ¢(6|n)
n

= arg max <77TIEp (T(9)) — A(n)> + Const
U
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Moment Matching 46/62

» Differentiate with respect to n
E, (T(0)) = VyA(n7)

» Note that ¢(f|n) is a valid distribution Vn

0=V / exp TT(9) — A(n)) df

= [ atéln) (x(®) - v,4w) a0
=E, (T(0)) — V,A(n)

» The KL divergence is minimized if the expected sufficient
statistics are the same
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Expectation Propagation 47/62

» An approximate inference method proposed by Minka 2001.

» Suitable for approximating product forms. For example,
with iid observations, the posterior takes the following form

p(0)x) o< p(6) H (x4]0) = Hfl

=1

» We use an approximation

One common choice for fz is the exponential family

7:(6) = h(6) exp (0] T(0) - A(m))

> Tteratively refinement of the terms f;(6)

=~/ PEKING UNIVF RSITY




[terative Updating 48/62

» Take out term approximation ¢
V() o [T 50
J#i
» Put back in term 4

Osz Hf]

J#
» Match moments. Find ¢ such that

Ey(T(0)) = Ex(T(0))

» Update the new term approximation

']EineW(e) o
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How Does EP Work? 49/62

f" substitute E W o
=
<

project e

» Minimize the KL divergence from p to ¢

D1 (pllg) = Eplog (%)

» Equivalent to moment matching when ¢ is in the
exponential family.
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Example: The Clutter Problem 50,/62

» Goal: fit a multivariate Gaussian into data in the presence
of background clutter (also Gaussian)

p(z]0) = (1 — w)N (210, ) + wN (2|0, al)
» The prior is Gaussian: p(6) = N (6]0,b1).
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Example: The Clutter Problem 51/62

» The joint distribution

p(0, ) = p(0) [ [ p(x:10)
=1

is a mixture of 2" Gaussians, intractable for large n.

> We approximate it using a spherical Gaussian
q(0) = N(6|m, vI)

» This is an exponential family with

» sufficient statistics 7'(0) = (9 670)
» natural parameters n = (v=1m, %v_l)

» normalizing constant Z(n) = (2mv)%? exp (m;jm)
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Initialization 52/62

» For the clutter problem, we have

fo(0) = p(0)
fz(é?) :p(.%'ile), 1= 1, oy

» The approxmation is of the form

fo(0) = fo(0) = p(0)
fi(0) = siexp(n; T(0)), i=1,....n

ochz ) = sN(6;m)

» Initialize n; = (0,0) for i =1,...,n
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Take Out and Put Back 53/62

> With natural parameters, taking out term approximation ¢

is trivial.
20) o L0 o N (9:)
fi(0)
where ‘
N\ =n—mn

» Now we put back in term

PO) o< (1 — w)N ()0, 1) + wN (4]0, al)) N'(0;7\)
(1w Z(n")
Z(n=) Z(n\t)

o rN'(0;n7) + (1 — )N (00"

N(O;7F) + wN (2|0, al )N (0;7V)

where nt = n\l + 9%, T = (2, —3).
e 7 F
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Match Moments and Update 54/62

» Now we match the sufficient statistics of the Gaussian
mixture

() = rN(8; ") + (1 — )N (651")
From E4(T(6)) = E5(T(0)), we have
m=rm* + (1 —r)m"

v+m'm=r (v+ + (m+)Tm+> +(1-7) (’U\i + (m\i)Tm\i)
» Similarly, the update of f; is trivial

z q(f) .
fi(0) o< m o< N(6;m;)

where '
m=n—n" .
ez x Y
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Marginal Likelihood by EP 55/62

» We can use EP to evaluate the marginal likelihood p(x)

» To do this, we include a scale on f;(6)

o o, 4(0)

where ¢*(#) is a normalized version of ¢(f) and

a:/ﬁ@mmw

» Use the normalizing constant of ¢(z) to approximate p(x)

po)~ [ T[ 70 as
=0
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Marginal Likelihood For The Clutter Problem 56/62

» For the clutter problem

()
siexp(n] T(6)) = fi(0) = Zi 5 0)
implies
L Z(nY)
=W
N
Zi=(1- w)Z(nzz()nZ()n\l) + wN (2;|0,al)

» The marginal likelihood estimate is
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Summary 57/62

» Other than the standard KL divergence, there are many
alternative distance measures for VI (e.g., f-divergence,
Rényi a-divergence).

» The Rényi a-divergences allow tractable lower bound and
promote different learning behaviors through the choice of
a (from mode-covering to model-seeking as a goes from
—00 to 00), which can be adapted to specific learning tasks.

» We also introduced another approximate inference method,
expectation propagation (EP), that uses the reversed KL.
More recent development on EP (Li et al., 2015,
Hernéndez-Lobato et al., 2016).

» Many other options including variational upper bounds,
adaptive variational bounds, etc.
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