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Introduction 2/62

I Mean-field VI can be slow when the data size is large.

I Moreover, the conditional conjugacy required by mean-field
VI greatly reduces the general applicability of the method.

I Fortunately, as an optimization approach, VI allows us to
easily combine it with various scalable optimization
methods.

I In this lecture, we will introduce some of the recent
advancements on scalable variational inference, both for
mean-field VI and more general VI.

I We will also talk about alternative training objectives in VI
besides KL divergence.



Mean-field VI Could Be Data-inefficient 3/62

I A generic class of models

p(β, z, x) = p(β)

n∏
i=1

p(zi, xi|β)

I The mean-field approximation

q(β, z) = q(β|λ)

n∏
i=1

q(zi|φi)

I Coordinate ascent could be data-inefficient

λ∗ = Eq(z)(ηg(x, z)), φ∗i = Eq(β)(η`(xi, β))

I Requires local computation for each data points.
I Aggregate these computation to update the global

parameter.



Gradients of The ELBO 4/62

I Recall that the λ-ELBO (update to a constant) is

L(λ) = ∇λAg(λ)>

(
α+

n∑
i=1

Eφi(T (zi, xi))− λ

)
+Ag(λ)

I Differentiating this w.r.t. λ yields

∇λL(λ) = ∇2
λAg(λ)

(
α+

n∑
i=1

Eφi(T (zi, xi))− λ

)

I Similarly

∇φiL(φi) = ∇2
φi
A`(φi) (Eλ(η`(xi, β))− φi)



Natural Gradient 5/62

I The gradient of f at λ, ∇λf(λ) points in the same
direction as the solution to

arg max
dλ

f(x+ dλ), s.t. ‖dλ‖2 ≤ ε2

for sufficiently small ε.

I The gradient direction implicitly depends on the Euclidean
distance, which might not capture the distance between the
parameterized probability distribution q(β|λ).

I We can use natural gradient instead, which points in the
same direction as the solution to

arg max
dλ

f(x+ dλ), s.t. Dsym
KL (q(β|λ), q(β|λ+ dλ)) ≤ ε

for sufficiently small ε, where Dsym
KL is the symmetrized KL

divergence.



Natural Gradient 6/62

I We manage the symmetrized KL divergence constraint
with a Riemannian metric G(λ)

Dsym
KL (q(β|λ), q(β|λ+ dλ)) ≈ dλ>G(λ)dλ

as dλ→ 0. G is the Fisher information matrix of q(β|λ)

G(λ) = Eλ
(

(∇λ log q(β|λ))(∇λ log q(β|λ))>
)

I The natural gradient (Amari, 1998)

∇̂λf(λ) , G(λ)−1∇λf(λ)

I When q(β|λ) is in the prescribed exponential family

G(λ) = ∇2
λAg(λ)



Stochastic Variational Inference 7/62

I The natural gradient of the ELBO

∇nat
λ L =

(
α+

n∑
i=1

Eφi(T (zi, xi))

)
− λ

∇nat
φi
L = Eλ(η`(xi, β))− φi

Classical coordinate ascent can be viewed as natural
gradient descent with step size one

I Use the noisy natural gradient instead

∇̂nat
λ L(λ) = α+nEφj (T (zj , xj))−λ, j ∼ Uniform(1, . . . , n)

I This is a good noisy gradient
I The expectation is the exact gradient (unbiased).
I Depends merely on optimized local parameters (cheap).
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Stochastic Variational Inference in LDA 9/62

Classic Coordinate Ascent

φd,n,k ∝ exp
(
E(log θd,k) + E(log βk,wd,n)

)
γd = α+

N∑
n=1

φd,n, λk = η +
D∑
d=1

N∑
n=1

φd,n,kwd,n



Stochastic Variational Inference in LDA 10/62

I Sample a document wd uniform from the data set

I Estimate the local variational parameters using the current
topics. For n = 1, . . . , N

φd,n,k ∝ exp
(
E(log θd,k) + E(log βk,wd,n)

)
, k = 1, . . . ,K

γd = α+

N∑
n=1

φd,n

I Form the intermediate topics from those local parameters
for noisy natural gradient

λ̂k = η +D

N∑
n=1

φd,n,kwd,n, k = 1, . . . ,K

I Update topics using noisy natural gradient

λ = (1− ρt)λ+ ρtλ̂
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VI for General Models 12/62

I Mean-field VI works for conjugate-exponential models,
where the local optimal has closed-form solution.

I For more general models, we may not have this conditional
conjugacy
I Nonlinear Time Series Models
I Deep Latent Gaussian Models
I Generalized Linear Models
I Stochastic Volatility Models
I Bayesian Neural Networks
I Sigmoid Belief Network

I While we may derive a model specific bound for each of
these models (Knowles and Minka, 2011; Paisley et al.,
2012), it would be better if there is a solution that does not
entail model specific work.



VI for Bayesian Logistic Regression 13/62

I The logistic regression model

yi ∼ Bernoulli(pi), pi =
1

1 + exp(−x>i β)
. β ∼ N (0, Id)

I The mean-field approximation

q(β) =

d∏
j=1

N (βj |µj , σ2j )

I The ELBO is

L(µ, σ2) = Eq(log p(β) + log p(y|x, β)− log q(β))



VI for Bayesian Logistic Regression 14/62

L(µ, σ2) = Eq(log p(β)− log q(β) + log p(y|x, β))

= −1

2

d∑
j=1

(µ2j + σ2j ) +
1

2

d∑
j=1

log σ2j + Eq log p(y|x, β) + Const =
1

2

d∑
j=1

(log σ2j − µ2j − σ2j ) + Eq
(
Y >Xβ − log(1 + exp(Xβ))

)

=
1

2

d∑
j=1

(log σ2j − µ2j − σ2j ) + Y >Xµ− Eq(log(1 + exp(Xβ)))

I We can not compute the expectation term

I This hides the objective dependence on the variational
parameters, making it hard to directly optimize.



Stochastic Optimization 15/62

I Let p(x, θ) be the joint probability (i.e., the posterior up to
a constant), and qφ(θ) be our variational approximation

I The ELBO is

L(φ) = Eq(log p(x, θ)− log qφ(θ))

I Instead of requiring a closed-form lower bound and
differentiating afterwards, we can take derivatives directly

I As shown later, this leads to a stochastic optimization
approach that handles massive data sets as well.



Score Function Estimator 16/62

I Compute the gradient

∇φL = ∇φEq(log p(x, θ)− log qφ(θ))

=

∫
∇φqφ(θ)(log p(x, θ)− log qφ(θ)) dθ

− qφ(θ)∇φ log qφ(θ) dθ

=

∫
qφ(θ)∇φ log qφ(θ)(log p(x, θ)− log qφ(θ))

− qφ(θ)∇φ log qφ(θ) dθ

= Eq (∇φ log qφ(θ)(log p(x, θ)− log qφ(θ)− 1))

Using ∇φ log qφθ =
∇φqφ(θ)
qφ(θ)



Score Function Estimator 17/62

I Recall that

∇φL = Eq (∇φ log qφ(θ)(log p(x, θ)− log qφ(θ)− 1))

I Note that
Eq∇φ log qφ(θ) = 0

I We can simplify the gradient as follows

∇φL = Eq (∇φ log qφ(θ)(log p(x, θ)− log qφ(θ)))

I This is known as score function estimator or REINFORCE
gradients (Williams, 1992; Ranganath et al., 2014; Minh et
al., 2014)



Monte Carlo Estimate 18/62

∇φL = Eq (∇φ log qφ(θ)(log p(x, θ)− log qφ(θ)))

I Unbiased stochastic gradients via Monte Carlo!

1

S

S∑
s=1

∇φ log qφ(θs)(log p(x, θs)− log qφ(θs)), θs ∼ qφ(θ)

I The requirements for inference
I Sampling from qφ(θ)
I Evaluating ∇φ log qφ(θ)
I Evaluating log p(x, θ) and log qφ(θ)

I This is called Black Box Variational Inference (BBVI):
no model specific work! (Ranganath et al., 2014)



Basci BBVI 19/62

Ranganath et al., 2014



Basic BBVI Doesn’t Work 20/62

Variance of the gradient can be a problem

Varqφ(θ) = Eq
(
(∇φ log qφ(θ)(log p(x, θ)− log qφ(θ))−∇φL)2

)

Adapted from Blei, Ranganath and Mohamed

I magnitude of log p(x, θ)− log qφ(θ) varies widely

I rare values sampling

I too much variance to be useful



Control Variates 21/62

I To make BBVI work in practice, we need methods to
reduce the variance of naive Monte Carlo estimates

I Control Variates. To reduce the variance of Monte Carlo
estimates of E(f(x)), we replace f with f̂ such that
E(f̂(x)) = E(f(x)). A general class

f̂(x) = f(x)− a(h(x)− Eh(x))

I a can be chosen to minimize
the variance.

I h is a function of our choice.
Good h have high correlation
with the original function f .



Control Variates for VI 22/62

f̂(x) = f(x)− a(h(x)− Eh(x))

I For variational inference, we need h functions with known q
expectation

I A commonly used one is h(θ) = ∇φ log qφ(θ), where

Eq(∇φ log qφ(θ)) = 0, ∀q

I The variance of f̂ is

Var(f̂) = Var(f) + a2Var(h)− 2aCov(f, h)

and the optimal scaling is a∗ = Cov(f, h)/Var(h). In
practice this can be estimated using the empirical variance
and covariance on the samples



Baseline 23/62

I When h(θ) = ∇φ log qφ(θ), the control variate gradient is

∇φL = Eq (∇φ log qφ(θ)(log p(x, θ)− log qφ(θ)− a))

and a is called a baseline.

I Baselines can be constant, or input-dependent a(x).

I While we can estimate the baseline using the samples as
before, people often use a model-agnostic baseline to centre
the learning signal (Minh and Gregor, 2014)

ρ = arg min
ρ

Eq(`(x, θ, φ)− aρ(x))2

where the learning signal is

`(x, θ, φ) = log p(x, θ)− log qφ(θ)



Rao-Blackwellization 24/62

I We can use Rao-Blackwellization to reduce the variance by
integrating out some random variables.

I Consider the mean-field variational family

q(θ) =

d∏
i=1

qi(θi|φi)

I Let q(i) be the distribution of variables that depend on the
ith variable (i.e., the Markov blanket of θi and θi), and let
pi(x, θ(i)) be the terms in the joint probability that depend
on those variables.

∇φiL = Eq(i)
(
∇φi log qi(θi|φi)(log pi(x, θ(i))− log qi(θi|φi))

)
I This can be combined with control variates.



The Reparameterization Trick 25/62

I Another commonly used variance reduction technique is
the reparameterization trick (Kingma et al., 2014;
Rezende et al., 2014)

I The Reparameterization

θ = gφ(ε), ε ∼ qε(ε) =⇒ θ ∼ qφ(θ)

I Example:

θ = εσ + µ, ε ∼ N (0, 1) ⇐⇒ θ ∼ N (µ, σ2)

I Compute the gradient via the reparameterization trick

∇φL = ∇φEqφ(θ)(log p(x, θ)− log qφ(θ))

= ∇φEqε(ε)(log p(x, gφ(ε))− log qφ(gφ(ε)))

= Eqε(ε)∇φ(log p(x, gφ(ε))− log qφ(gφ(ε)))



Variance Comparison 26/62

Kucukelbir et al., 2016



Control Variates vs. Reparameterization 27/62

Score Function

I Differentiates the density
∇φqφ(θ)

I Works for general models,
including both discrete and
continuous models.

I Works for large class of
variational approximations

I May suffer from large
variance

Reparameterization

I Differentiates the function
∇φ(log p(x, θ)− log qφ(θ))

I Requires differentiable
models

I Requires variational
approximation to have
form θ = gφ(ε)

I Better behaved variance in
general



Doubly Stochastic Optimization 28/62

I Scale up previous stochastic variational inference methods
to large data set via data subsampling.

I Replace the log joint distribution with unbiased stochastic
estimates

log p(x, θ) ' log p(θ) +
n

m

m∑
i=1

log p(xti |θ), m� n

I Example: score function estimator

∇̂φL =
1

S

S∑
s=1

∇φ log qφ(θs)

(
log p(θs) +

n

m

m∑
i=1

log p(xti |θs)

− log qφ(θs)

)
, θs ∼ qφ(θ)



Summary on Stochastic VI 29/62

I When the data size is large, we can use stochastic
optimization to scale up VI.

I For conditional exponential models, we can use noisy
natural gradient.

I For general models, naive stochastic gradient estimators
may have large variance, variance reduction techniques are
often required.
I Score function estimator (for both discrete and continuous

latent variable)
I The reparameterization trick (for continuous variable, and

requires reparameterizable variational family)

I We can also combine score function estimators with the
reparameterization trick for more general and robust
stochastic gradient estimators (Ruiz et al., 2016)



Training Objectives in VI 30/62

I So far, we have only used the KL divergence as a distance
measure in VI.

I Other than the KL divergence, there are many alternative
statistical distance measures between distributions that
admit a variety of statistical properties.

I In this lecture, we will introduce several alternative
divergence measures to KL, and discuss their statistical
properties, with applications in VI.



Potential Problems with The KL Divergence 31/62

I VI does not work well for non-smooth potentials

I This is largely due to the zero-avoiding behaviour
I The area where p(θ) is close to zero has very negative log p,

so does the variational distribution q distribution when
trained to minimize the KL.

I In this truncated normal example, VI will fit a delta
function!
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Beyond The KL Divergence 32/62

I Recall that the KL divergence from q to p is

DKL(q‖p) = Eq log
q(x)

p(x)
=

∫
q(x) log

q(x)

p(x)
dx

I An alternative: the reverse KL divergence

DRev
KL (p‖q) = Ep log

p(x)

q(x)
=

∫
p(x) log

p(x)

q(x)
dx

Reverse KL KL



The f -Divergence 33/62

I The f -divergence from q to p is defined as

Df (q‖p) =

∫
p(x)f

(
q(x)

p(x)

)
dx

where f is a convex function such that f(1) = 0.

I The f -divergence defines a family of valid divergences

Df (q‖p) =

∫
p(x)f

(
q(x)

p(x)

)
dx

≥ f
(∫

p(x)
q(x)

p(x)
dx

)
= f(1) = 0

and
Df (q‖p) = 0⇒ q(x) = p(x) a.s.



The f -Divergence 34/62

Many common divergences are special cases of f -divergence,
with different choices of f .

I KL divergence. f(t) = t log t

I reverse KL divergence. f(t) = − log t

I Hellinger distance. f(t) = 1
2(
√
t− 1)2

H2(p, q) =
1

2

∫
(
√
q(x)−

√
p(x))2dx =

1

2

∫
p(x)

(√
q(x)

p(x)
− 1

)2

dx

I Total variation distance. f(t) = 1
2 |t− 1|

dTV(p, q) =
1

2

∫
|p(x)− q(x)|dx =

1

2

∫
p(x)

∣∣∣∣q(x)

p(x)
− 1

∣∣∣∣ dx



Amari’s α-Divergence 35/62

When f(t) = tα−t
α(α−1) , we have the Amari’s α-divergence (Amari,

1985; Zhu and Rohwer, 1995)

Dα(p‖q) =
1

α(1− α)

(
1−

∫
p(θ)αq(θ)1−α dθ

)

Adapted from Hernández-Lobato et al.

DKL(q‖p) = lim
α→0

Dα(p‖q)

DKL(p‖q) = lim
α→1

Dα(p‖q)



Rényi’s α-Divergence 36/62

Dα(q‖p) =
1

α− 1
log

∫
q(θ)αp(θ)1−α dθ

I Some special cases of Rényi’s α-divergence
I D1(q‖p) := limα→1Dα(q‖p) = DKL(q‖p)
I D0(q‖p) = − log

∫
q(θ)>0

p(θ)dθ = 0 iff supp(p) ⊂ supp(q).
I D+∞(q‖p) = log maxθ

q(θ)
p(θ)

I D 1
2
(q‖p) = −2 log

(
1−Hel2(q‖p)

)
I Importance properties

I Rényi divergence is non-decreasing in α

Dα1
(q‖p) ≥ Dα2

(q‖p), if α1 ≥ α2

I Skew symmetry: D1−α(q‖p) = 1−α
α Dα(p‖q)



The Rényi Lower Bound 37/62

I Consider approximating the exact posterior p(θ|x) by
minimizing Rényi’s α-divergence Dα(q(θ)‖p(θ|x)) for some
selected α > 0

I Using p(θ|x) = p(θ, x)/p(x), we have

Dα(q(θ)‖p(θ|x)) =
1

α− 1
log

∫
q(θ)αp(θ|x)1−α dθ

= log p(x)− 1

1− α
log

∫
q(θ)αp(θ, x)1−α dθ

= log p(x)− 1

1− α
logEq

(
p(θ, x)

q(θ)

)1−α

I The Rényi lower bound (Li and Turner, 2016)

Lα(q) ,
1

1− α
logEq

(
p(θ, x)

q(θ)

)1−α



The Rényi Lower Bound 38/62

I Theorem(Li and Turner 2016). The Rényi lower bound is
continuous and non-increasing on α ∈ [0, 1] ∪ {|Lα| < +∞}.
Especially for all 0 < α < 1

LVI(q) = lim
α→1

Lα(q) ≤ Lα(q) ≤ L0(q)

L0(q) = log p(x) iff supp(p(θ|x)) ⊂ supp(q(θ)).



Monte Carlo Estimation 39/62

I Monte Carlo estimation of the Rényi lower bound

L̂α,K(q) =
1

1− α
log

1

K

K∑
i=1

(
p(θi, x)

q(θi)

)1−α
, θi ∼ q(θ)

I Unlike traditional VI, here the Monte Carlo estimate is
biased. Fortunately, the bias can be characterized by the
following theorem

I Theorem(Li and Turner, 2016). E{θi}Ki=1
(L̂α,K(q)) as a

function of α and K is
I non-decreasing in K for fixed α ≤ 1, and converges to Lα(q)

as K → +∞ if supp(p(θ|x)) ⊂ supp(q(θ)).
I continuous and non-increasing in α on [0, 1] ∪ {|Lα| < +∞}



Multiple Sample ELBO 40/62

I When α = 0, the Monte Carlo estimate reduces to the
multiple sample lower bound (Burda et al., 2015)

L̂K(q) = log

(
1

K

K∑
i=1

p(x, θi)

q(θi)

)
, θi ∼ q(θ)

I This recovers the standard ELBO when K = 1.

I Using more samples improves the tightness of the bound
(Burda et al., 2015)

log p(x) ≥ E(L̂K+1(q)) ≥ E(L̂K(q))

Moreover, if p(x, θ)/q(θ) is bounded, then

E(L̂K(q))→ log p(x), as K → +∞



Lower Bound Maximization 41/62

Using the reparameterization trick

θ ∼ qφ(θ)⇔ θ = gφ(ε), ε ∼ qε(ε)

∇φL̂α,K(qφ) =

K∑
i=1

(
ŵα,i∇φ log

p(gφ(εi), x)

qφ(gφ(εi))

)
, εi ∼ qε(ε)

where

ŵα,i ∝
(
p(gφ(εi), x)

qφ(gφ(εi))

)1−α
,

the normalized importance weight with finite samples. This is a
biased estimate of ∇φLα(qφ) (except α = 1).

I α = 1: Standard VI with the reparamterization trick

I α = 0: Importance weighted VI (Burda et al., 2015)



Minibatch Training 42/62

I Full batch training for maximizing the Rényi lower bound
could be very inefficient for large datasets

I Stochastic optimization is non-trivial since the Rényi lower
bound can not be represented as an expectation on a
datapoint-wise loss, except for α = 1.

I Two possible methods:
I derive the fixed point iteration on the whole dataset, then

use the minibatch data to approximately compute it (Li et
al., 2015)

I approximate the bound using the minibatch data, then
derive the gradient on this approximate objective
(Hernández-Lobato et al., 2016)

Remark: the two methods are equivalent when α = 1
(standard VI).



Minibatch Training: Energy Approximation 43/62

I Suppose the true likelihood is

p(x|θ) =

N∏
n=1

p(xn|θ)

I Approximate the likelihood as

p(x|θ) ≈

(∏
n∈S

p(xn|θ)

) N
|S|

, f̄S(θ)N

I Use this approximation for the energy function

L̃α(q,S) =
1

1− α
logEq

(
p0(θ)f̄S(θ)N

q(θ)

)1−α



Example: Bayesian Neural Network 44/62

Adapted from Li and Turner, 2016

I The optimal α may vary for different data sets.

I Large α improves the predictive error, while small α
provides better test log-likelihood.

I α = 0.5 seems to produce overall good results for both test
LL and RMSE.



Expectation Propagation 45/62

I In standard VI, we often minimize DKL(q‖p). Sometimes,
we can also minimize DKL(p‖q) (can be viewed as MLE).

q∗ = arg min
q

DKL(p‖q) = arg max
q

Ep log q(θ)

I Assume q is from the exponential family

q(θ|η) = h(θ) exp
(
η>T (θ)−A(η)

)
I The optimal η∗ satisfies

η∗ = arg max
η

Ep log q(θ|η)

= arg max
η

(
η>Ep (T (θ))−A(η)

)
+ Const



Moment Matching 46/62

I Differentiate with respect to η

Ep (T (θ)) = ∇ηA(η∗)

I Note that q(θ|η) is a valid distribution ∀η

0 = ∇η
∫
h(θ) exp

(
η>T (θ)−A(η)

)
dθ

=

∫
q(θ|η) (T (θ)−∇ηA(η)) dθ

= Eq (T (θ))−∇ηA(η)

I The KL divergence is minimized if the expected sufficient
statistics are the same

Eq (T (θ)) = Ep (T (θ))



Expectation Propagation 47/62

I An approximate inference method proposed by Minka 2001.

I Suitable for approximating product forms. For example,
with iid observations, the posterior takes the following form

p(θ|x) ∝ p(θ)
n∏
i=1

p(xi|θ) =

n∏
i=0

fi(θ)

I We use an approximation

q(θ) ∝
n∏
i=0

f̃i(θ)

One common choice for f̃i is the exponential family

f̃i(θ) = h(θ) exp
(
η>i T (θ)−A(ηi)

)
I Iteratively refinement of the terms f̃i(θ)



Iterative Updating 48/62

I Take out term approximation i

q\i(θ) ∝
∏
j 6=i

f̃j(θ)

I Put back in term i

p̂(θ) ∝ fi(θ)
∏
j 6=i

f̃j(θ)

I Match moments. Find q such that

Eq(T (θ)) = Ep̂(T (θ))

I Update the new term approximation

f̃newi (θ) ∝ q(θ)

q\i(θ)



How Does EP Work? 49/62

I Minimize the KL divergence from p̂ to q

DKL(p̂‖q) = Ep̂ log

(
p̂(θ)

q(θ)

)
I Equivalent to moment matching when q is in the

exponential family.



Example: The Clutter Problem 50/62

I Goal: fit a multivariate Gaussian into data in the presence
of background clutter (also Gaussian)

p(x|θ) = (1− w)N (x|θ, I) + wN (x|0, aI)

I The prior is Gaussian: p(θ) = N (θ|0, bI).



Example: The Clutter Problem 51/62

I The joint distribution

p(θ, x) = p(θ)

n∏
i=1

p(xi|θ)

is a mixture of 2n Gaussians, intractable for large n.

I We approximate it using a spherical Gaussian

q(θ) = N (θ|m, vI)

I This is an exponential family with
I sufficient statistics T (θ) = (θ, θ>θ)
I natural parameters η = (v−1m,− 1

2v
−1)

I normalizing constant Z(η) = (2πv)d/2 exp
(
m>m
2v

)
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I For the clutter problem, we have

f0(θ) = p(θ)

fi(θ) = p(xi|θ), i = 1, . . . , n

I The approxmation is of the form

f̃0(θ) = f0(θ) = p(θ)

f̃i(θ) = si exp(η>i T (θ)), i = 1, . . . , n

q(θ) ∝
n∏
i=0

f̃i(θ) = sN (θ; η)

I Initialize ηi = (0, 0) for i = 1, . . . , n
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I With natural parameters, taking out term approximation i
is trivial.

q\i(θ) ∝ q(θ)

f̃i(θ)
∝ N (θ; η\i)

where
η\i = η − ηi

I Now we put back in term i

p̂(θ) ∝ ((1− w)N (xi|θ, I) + wN (xi|0, aI))N (θ; η\i)

= (1− w)
Z(η+)

Z(ηxi)Z(η\i)
N (θ; η+) + wN (xi|0, aI)N (θ; η\i)

∝ rN (θ; η+) + (1− r)N (θ; η\i)

where η+ = η\i + ηxi , ηxi = (xi,−1
2).
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I Now we match the sufficient statistics of the Gaussian
mixture

p̂(θ) = rN (θ; η+) + (1− r)N (θ; η\i)

From Eq(T (θ)) = Ep̂(T (θ)), we have

m = rm+ + (1− r)m\i

v +m>m = r
(
v+ + (m+)>m+

)
+ (1− r)

(
v\i + (m\i)>m\i

)
I Similarly, the update of f̃i is trivial

f̃i(θ) ∝
q(θ)

q\i(θ)
∝ N (θ; ηi)

where
ηi = η − η\i
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I We can use EP to evaluate the marginal likelihood p(x)

I To do this, we include a scale on f̃i(θ)

f̃i(θ) = Zi
q∗(θ)

q\i(θ)

where q∗(θ) is a normalized version of q(θ) and

Zi =

∫
q\i(θ)fi(θ) dθ

I Use the normalizing constant of q(x) to approximate p(x)

p(x) ≈
∫ n∏

i=0

f̃i(θ) dθ
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I For the clutter problem

si exp(η>i T (θ)) = f̃i(θ) = Zi
q∗(θ)

q\i(θ)

implies

si = Zi
Z(η\i)

Z(η)

Zi = (1− w)
Z(η+)

Z(ηxi)Z(η\i)
+ wN (xi|0, aI)

I The marginal likelihood estimate is

p(x) ≈
∫ n∏

i=0

f̃i(θ) dθ =
Z(η)

Z(η0)

n∏
i=1

si
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I Other than the standard KL divergence, there are many
alternative distance measures for VI (e.g., f -divergence,
Rényi α-divergence).

I The Rényi α-divergences allow tractable lower bound and
promote different learning behaviors through the choice of
α (from mode-covering to model-seeking as α goes from
−∞ to ∞), which can be adapted to specific learning tasks.

I We also introduced another approximate inference method,
expectation propagation (EP), that uses the reversed KL.
More recent development on EP (Li et al., 2015,
Hernández-Lobato et al., 2016).

I Many other options including variational upper bounds,
adaptive variational bounds, etc.



References 58/62

I S. Amari. Natural gradient works efficiently in learning.
Neural computation, 10(2):251–276, 1998.

I Hoffman, M., Blei, D., Wang, C., and Paisley, J. (2013).
Stochastic variational inference. Journal of Machine
Learning Research, 14:1303–1347.

I D. Knowles and T. Minka. Non-conjugate variational
message passing for multinomial and binary regres- sion. In
Advances in Neural Information Processing Systems, 2011.

I J. Paisley, D. Blei, and M. Jordan. Variational Bayesian
inference with stochastic search. International Conference
in Machine Learning, 2012.



References 59/62

I Williams, R. J. (1992). Simple statistical gradient-following
algorithms for connectionist reinforcement learning. In
Machine Learning, pages 229–256.

I R. Ranganath, S. Gerrish, and D. Blei. Black box
variational inference. In Artificial Intelligence and
Statistics, 2014.

I Rezende, D. J., Mohamed, S., and Wierstra, D. (2014).
Stochastic backpropagation and approximate inference in
deep generative models. In International Conference on
Machine Learning, pages 1278–1286.

I D. P. Kingma and M. Welling. Auto-encoding variational
Bayes. In International Conference on Learning
Representations, 2014.



References 60/62

I A. Mnih and K. Gregor. Neural variational inference and
learning in belief networks. Advances in Neural
Information Processing Systems, 2014.

I F. R. Ruiz, M. Titsias, and D. Blei. The generalized
reparameterization gradient. Advances in Neural
Information Processing Systems, 2016.

I Amari, Shun-ichi. Differential-Geometrical Methods in
Statistic. Springer, New York, 1985.

I Zhu, Huaiyu and Rohwer, Richard. Information geometric
measurements of generalisation. Technical report, Tech-
nical Report NCRG/4350. Aston University., 1995.



References 61/62

I Y. Li and R. E. Turner. Rényi Divergence Variational
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