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Introduction 2/61

» In this lecture, we discuss Expectation-Maximization
(EM), which is an iterative optimization method dealing
with missing or latent data.

» In such cases, we may assume the observed data x are
generated from random variable X along with missing or
unobserved data z from random variable Z. We envision
complete data would have been y = (z, 2).

» Very often, the inclusion of the observed data z is a data
augmentation strategy to ease computation. In this case, Z
is often referred to as latent variable.
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Latent Variable Model 3/61

» Some of the variables in the model are not observed.

» Examples: mixture model, hidden Markov model (HMM),
latent Dirichlet allocation (LDA), etc.
» We consider the learning problem of latent variable models

Mixture Model Hidden Markov Model

X1 Xy Xy
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Marginal Likelihood 4/61

» complete data likelihood p(z, z|f), € is model parameter

» When z is missing, we need to marginalize out z and use
the marginal log-likelihood for learning

log p(z|0) = logZp (z,2]0)

» Examples: Gaussian mixture model. z ~ Discrete(n),
0= (m,p,%)

p(z|0) = sz—k|0) (z]z =k, 0)

= Z?Tk./\/ x\uk,Ek)
k

1 1 _
= ZT%W exp (_2(:3 - ,Uk)TZkl(l" - #k))
k
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Learning in Latent Variable Model 5/61

» For most of these latent variable models, when the missing
components z are observed, the complete data likelihood
often factorizes, and the maximum likelihood estimates
hence have closed-form solutions.

» When z are not observed, marginalization destroys the
factorizible structure and makes learning much more
difficult.

» How to learn in this scenario?

» Idea 1: simply take derivative and use gradient ascent
directly

» Idea 2: find appropriate estimates of z (e.g., using the
current conditional distribution p(z|z, 0)), fill them in and
do complete data learning — This is EM!
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Expectation Maximization 6/61

» At each iteration, the EM algorithm involves two steps
» based on the current ), fill in unobserved z to get
complete data (x,2’)
» Update 6 to maximize the complete data log-likelihood
L(z,2'|0) = logp(x, 2'|0)
» How to choose 2'?
» Use conditional distribution p(z|x, #®))
» Take full advantage of the current estimates §(*)

Ep(le g(t))g x, Z|9 Zp |£C e(t) ({17 Zlg)

In some sense, this is our best guess (as shown later).
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EM Algorithm 7/61

More specifically, we start from some initial 8. In each
iteration, we follow the two steps below

» Expectation (E-step): compute p(z|z, ") and form the
expectation using the current estimate o)

Q(t) (0) = Ep(z]xﬂ(t))g(xv 2’9)

» Maximization (M-step): Find 0 that maximizes the
expected complete data log-likelihood

00+ = arg max Q™ (9)
[%

In many cases, the expectation is easier to handle than the
marginal log-likelihood.
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How does EM Work? 8/61

» EM algorithm can be viewed as optimizing a lower bound
on the marginal log-likelihood £(6) = log p(x|6)

» A class of lower bounds

0)
:logZp(a:,z\Q logz p( Z|
> Z log z)\@) - Jensen’s inequality
= Z )log p(x, 210) — Y " q(2)logq(z), Vq(2)

z

» The term in the last equation is often called Free-energy

F(g,0) =Y q(z)logp(x, 210) = Y q(2)log (=)

z z
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Lower Bound Maximization 9/61

» Free-energy is a lower bound of the true log-likelihood
L(0) > F(q,0)

» EM is simply doing coordinate ascent on F(q, 6)
> E-step: Find ¢() that maximizes F(g,6®)
» M-step: Find #**1 that maximizes F(q(*), )

» Properties:
» Each iteration improves F

Flg,0040) > F(g®,60)
» Each iteration improves £ as well
E(e(t-‘rl)) > E(e(t))

will show later
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E-step 10/61

» Find ¢ that maximizes F(g, 0®")

F(g,0) =Y a(2)logp(x, 210) = Y q(z)log q(=)

z

=3 g2 log p(zlz, 0)p(x|0)

q(2)
= Yot o pi'é’)e) +logp(zl)
= L(0) — Dkuv (q(2)||p(z|z,0))
< L(0)
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E-step 11/61

F(g,0%) = £(6Y) — Drr(q(2)Ip(zz,6))

» KL divergence is non-negative and is minimized (equals to
0) iff the two distributions are identical.

» Therefore, F(g,0") is maximized at ¢)(z) = p(z|z, 8®).

» So when we are computing p(z|z,8®)), we are actually
computing arg max, F(q, 100

» Moreover,

F(g¥,09) = £(6")

this means the lower bound matches the true log-likelihood
at 0, which is crucial for the improvement on L.
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M-step 12/61

» Find 0+ that maximizes F(q(*), 0)

9+ = arg max F(q?, 0)
6
= argmax Y _ p(z[x,0")) log p(x, 2(0) + H (p(z|,01))
9 z

= argénaX]Ep(zlmﬁ(w)@(x, 2’0)
» The expected complete data log-likelihood usually can be
solved in the same manner (closed-form solutions) as the
fully-observed model.
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Monotonicity of EM

ﬁ(e(t-i-l))

Inp(X|9)

gold grew
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EM for Exponential Families 14/61

» When the complete data follow an exponential family
distribution (in canonical form), the density is

p(z,2|0) = h(x, z)exp(d - T'(x, z) — A(0))
» E-step

Q(t) (0) = Ep(z|,7;76(t>) logp(x7 2’0)
= 0 . Ep(zlxﬂ(t))T(l’, Z) — A(Q) + COHSt

> M-step

VoQW(0) = 0= B, g0 T (7, 2) = VoA(0) = Epy 20T (2, 2)
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Examples: Censored Survival Times 15/61

» In survival analyses, we often have to terminate our study
before observing the real survival times, leading to
censored survival data.

» Suppose the observed data are Y = {(¢1,91),..., (tn,0n)},
where T ~ Exp(p) and §; is the indicator of a censored
sample. WLOG, assume §; =0,i <r, & =1,i>r

» The log-likelihood function is

logp(Y|u) = > logp(tilu) + Y logp(T; > tilu)
i=1 i>r
= —rlogpu— Y ti/n
i=1

» The MLE of pu: s =>"" t;/r
At 7 X
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Examples: Censored Survival Times 16/61

» Let us see how EM works in this simple case.

» Let t = (T1,...,T,) = (T1,...,T,,2) be the complete data
vector, where z = (T,41,...,T,) are the unobserved n — r
censored random variables.

» Natural parameter 1/, sufficient statistics > ;- ; T3, and
Eud iy Ti = np
» By the lack of memory, T;|T; > t; ~ t; + Exp(u), Vi > 7.

n T
By D Ti= tit Y ti+ (n—r)u®
=1 1=1 i>r
» Update formula

(k+1) _ 2?21 ti+ (n— T)M(k)
n

v
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Gaussian Mixture Model 17/61

» Consider clustering of data X = {z1,...,zy} using a finite
mixture of Gaussians.

z ~ Discrete(m), x|z =k ~ N (ug, k)

0 = {7k, p, T}, are model parameters
» Complete data log-likelihood

log p(x, z|0) = log H x|z = k))t==*

K
Z i (log i + log N (x| g, X))
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E-step 18/61

» Compute the conditional probability p(z,|z,,08®) via
Bayes’ theorem

P(2n, 2, |0)
n n,0 =
p(z |‘T ) Zzn p(zm xn‘g)

w,?wmm,@, =)
S TN (|, )
(t) &

> Denote v, ;. = p(zn = k|zn, 0®)), which can be viewed as a
soft clustermg of x,

p(zn = k|xp, Q(t)) =

ol
k
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E-step 19/61

» Expected complete-data log-likelihood

Zzp Zn|=75n7 Ing(xnaznle)

=> Z%,k log 7, + log N (| x, i)

k

= Z Z'yr(f)k (log 7k + log N (| g, X))
k n
Substitute N (x| pg, ) in

d 1
®)(9) = Z Z*yﬁii(log T~ 5 log(2m) — 3 log | k|
k n

- 5(en - " m)

2
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M-step 20/61

» Maximize Q(*)(#) with respect to 7 using Lagrange

multipliers
SR
Therefore
t t) t)
ﬂ_(t-{—l) . Zn PY'SL,)]{‘ Zn Py’fL,k . Zn VT(L,k
’ =

S Sl N

» Note that ), 'ys)k can be viewed as the weighted number

of data points in mixture component k, and W,E/,tﬂ) is the

fraction of data the belongs to mixture component k.
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M-step 21/61

» Compute the derivative w.r.t ug

Q" (e - -
) S i = ) = 5 Yk -

O -
» Therefore,
()
(t+1) _ >on 2n Tngtn kan
H
Zn r)/n,k
(t+1)

JT is the weighted mean of data points assigned to
mixture component k

» Similarly, we can get

s+ _ 2on 'Vn k:( (Hl))(% - MSH))T
k
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EM algorithm for Gaussian Mixture Models 22/61

» E-step: Compute the soft clustering probabilities

L0 _ TN @l %))
n,k
S TN (@l 50

» M-step: Update parameters

t
(t+1) Zn 77(1,)k:
T = —

N
(t+1) don %(Lt}cxn
D YV
2](€t+1) . 5 %(f)k(xn B “gﬂzt))(x" _ Ml(ctJrl))T
2n Yk

ANEIE T
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Examples: Mixture of 5 Gaussians 23/61
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Examples: Mixture of 3 Gaussians 24/61
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o #
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Connection to k-means 25/61

» The k-means algorithm follows two steps
» Assignment step: assign data to the nearest cluster

[ 1, k=argming ||z, — ue|
Tnk 0, otherwise

» Update step: set pg to the mean of data points assigned to
the k-th cluster

t
- - n
Zn ’}/n,k: Nk niYn, k=1

N is the number of data points assigned to the k-th cluster.
» Therefore, k-means can be viewed as a special case of EM
for Gaussian mixture models where 3;, = I and +, j are
hard assignments instead of soft clustering probabilities
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Hidden Markov Model 26/61

» Sequence data z1,zs, ..., 2, each x, € R?

v

Hidden variables 21, 29, ..., 27, each z; € {1,2,..., K}
» Joint probability

T—1 T
p(x,2) = p(z1) [ [ p(zesalz) [ [ plailz)
t=1 t=1

» p(x¢|z:) is the emission probability, could be a Gaussian
p(wilze = k) = N (|, Zi)

» p(z4+1|2¢) is the transition probability, a K x K matrix
aij = p(zi+1 = jlze = 1), > a5 =1
» p(z1) ~ Discrete(r) is the prior for the first hidden state
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Expected Complete Data Log-likelihood 27/61

» The expected complete data log-likelihood is

Q= IEp(z|a:) Ing(.T Z)

T-1
= ZP(Z!IB) <1ng 1) + Z log p(ze41]2) + Zlogp wt\Zt))

t=1

—ZP z1|z) log p(21) +Z Z (2t, ze41lz) log p(2141]21)

t=1 z¢,2t+1
+ Z ZP(%L@ log p(x¢|2t)
t=1 2zt

» Therefore, in the E-step, we need to compute unary and
pairwise marginal probabilities p(z¢|x) and p(z, zt+1]:n).
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E-step: Forward-Backward Algorithm 28/61

» Using the sequential structure of HMM, we can compute
these marginal probabilities via dynamic programming.

» The forward algorithm

a4 1(J) = p(ze41 = Jy 21, - - - Teg1)

= Zp(zt-‘rl == j7 2t = 7;7:1;17 L ,I’t+1)

(2

= P($t+1|2’t+1 = j) ZP(Z’tH = j’zt = i)p(?«’mﬂ?l, cee 9Ct)

2

= p(Tit1|zt41 = J) Z aip(ze, 1, ..., xt)

7

= p(@ipa|zep1 = 5) Y agjou(i)

1
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E-step: Forward-Backward Algorithm 29/61

» The backward algorithm
Bi(i) = p(Tis1, ... xp|2e = 1)
= ij(xtJrl» T 21 = 2 =1)
= Zj aijp(Te1lzi1 = J)Bev1(d)
» Unary marginal probability
p(ze = jlo) o< p(ze = j, ) = ae(j)Be ()
» Pairwise marginal probability

p(zt41 = J, 2t = i|lz) < p(2t41 = j, 2t = i, 7)
= ay(1)ayp(Te1|zee = 7)Ber1(d)

ANEIE T
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M-step 30/61

» From the E-step, we have
_ _ou(k)Be(k)
Ttk = (Zt = k’$) Zk Oét( ) ( )

(i) aip(Tes1|ze+1 = §)Br+1(J)

&(i,5) = p(zep1 = j, 2 = i|x) = S o (k) By (k)

» The expected complete data log—likelihood is

Q= 271k10g7rk+22& i, j)log a;;

t=1 4,5

+ Z Z%’k log N (¢ | pk, Ee)

t=1 k

» Closed form solution for M-step — just like in the Gaussian

mixture model @ ez X P
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Recap on The EM Algorithm 31/61

EM algorithm finds MLE for models with missing/latent
variables. Applicable if the following pieces are easy to solve

» Estimating missing data from observed data using current
parameters (E-step)

» Find complete data MLE (M-step)

Pros
» No need for gradients, learning rates, etc.
» Fast convergence

» Monotonicity. Guaranteed to improve L at every iteration

Cons
» Can get stuck at local optimal
» Requires conditional distribution p(z|x, ) to be tractable

ANEIE T
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Advanced EM 32/61

» While EM increases the marginal likelihood in each
iteration and often converges to a stationary point, we are
not clear about the convergence rate and how does that
relate to the missing data scenario.

» Moreover, the requirements of tractable conditional
distribution and easy complete data MLE may be too
restrictive in practice.

» In what follows, we will discuss the convergence theory for
EM and introduce some variants of it that can be applied
in more general settings.
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Example: Censored Survival Times 33/61

» Recall that in the censored survival times example, given
the observed data Y = {(t1,61),..., (tn,0n)}, where t;
follows an exponential distribution with mean p and can be
either censored or not as indicated by ¢;.

» Assume §; =0,i <7, 9; = 1,7 > r. The MLE of y is
fr="732"0ti/r

» EM update formula

(ht1) _ 2imiti+(n— r)pu®)
n

"

» Therefore,

(k+1) _ i= u(ﬂ(k) — i)
n

7

Linear convergence, rate depends on the amount of missing

information ,
ANELE RS
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EM as A Fixed Point Algorithm 34/61

We can view EM update as a map
00+ = (™),  ®(0) = argmax Q(#']0)
9/

where Q(6'|0) = E,(.|5,9) log p(z, 2|6)

Lemma 1
If for some 0%, L(6*) > L(0), VO, then for every EM algorithm

L(@(07)) = L(67), Q(P(67)|0%) = Q(67(67)
and

p(z|z, ®(0%)) = p(z|z,0%), a.s.

ez XY

@

PEKING UNIVERSITY




Local Convergence 35/61

Lemma 2
If for some 6%, L(0*) > L(#), VO # 6%, then for every EM
algorithm

o(6%) = 0"

Theorem 1
Suppose that 0, ¢ = 0,1, ... is an instance of an EM algorithm
such that

> the sequence £(6®)) is bounded
» for some A > 0 and all ¢,

QO]9 — QoM )91y > (O — 9By (et+1) — g)T

Then the sequence #(*) converges to some 6*

ANEIE T
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Local Convergence 36/61

> Since A+ = &(9®)) maximizes Q('|01), we have

Q

89/( t+1 ‘9 ) 0

» For all ¢, there exists a 0 < oz(()tH) < 1 such that

QO 9MY — Q(eM[9®)) = —(gt+1) — o).

Q
69/2( t+1)|9 )(9(t+1) _ e(t))T

where Hétﬂ) = g(t) +(1— ao)g(tﬂ)

» If the sequence ) is negative definite with

80’2
eigenvalues bounded away from zero and L£(6®)) is

bounded, by Theorem 1, #®) converges to some 0*
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Local Convergence 37/61

» When EM converges, it converges to a fixed point of the
map
0" = o(6%)

» Taylor expansion of ® at 6* yields
O+ —g* = ®(0W) — ®(0*) ~ VI(0) (0 — %)
» The global rate of EM defined as

i ||9(t+1) _(9*”

P 5% 100 — 67|
equals the largest eigenvalue of V®(6*) and p < 1 when the
observed Fisher information —V2L£(6*) is positive definite.

ANEIE T
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Proof 38/61

» As aforementioned, ®(0) maximize Q(#'|0), therefore

oQ _
20 (20)l6) =0, Vo
» Differentiate w.r.t. 6
8262 82Q
let 6 = 6*

2 -1 g2
Vo) = (-5 1)) @) ()

ANEIE T
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Complete and Missing Information 39/61

> If gZ—,%(e(t“)w(t)) is negative definite with eigenvalues
bounded away from zero, then

82Q *| )k 2 *
_60/2 (9 ‘9 ) - IEp(z|ac,9*) (_v 10gp(1'72|9 ))

is positive definite, known as the complete information

» The marginal log-likelihood can be rewritten as

‘c(el) = Ep(z|m,0) lng(l‘, Z|‘9,) - IE:p(z|x,0) logp(z|$, ‘9)
=Q(0'10) — H(0']0)
Therefore 82Q o
/ o H /
8989’<9 10) = 0006’ (7710)

ANEIE T
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Complete and Missing Information 40/61

» Some properties of H(0|0) = E, .|, log p(z|x,0)

OH

0’H _O*H
o (016) = =5 (016)
» Therefore,
8989’(9 07) = 0000’ (07167) = - 0072 (9 10%)

is positive semidefinite (variance of the score
Vlog p(z|z,0%)), known as the missing information
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Missing-Information Principle 41/61

L(0") = Q(6']0) — H(0']0)

» Differentiate both side w.r.t. € twice

0%Q 0’H
VL) = S (010) = S (0'16)
» The missing-information principle
_9*Q ) 0*H
Iobscrvcd
Icomplete Imissing

» Substitute in (1)
V@(e*) =71 ! (9*) missing(e*)

complete

= (Iobserved(e ) + Im1531ng(9*)) mlssmg(9*)
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Convergence Rate of EM 42/61

» When Iopserved = — V2L(0%) is positive definite, the
eigenvalues of V®(6*) are all less than 1, EM has a linear
convergence rate.

» The rate of convergence depends on the relative size of
Iobserved (0%) and Iissing (0*). EM converges rapidly when
the missing information is small.

» The fraction of information loss may vary across different
component of #, so some component may converge faster
than other components.

» See Wu (1983) for more detailed discussions.
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EM for Maximum A Posterior 43/61

» EM can be easily modified for the Maximum A Posterior
(MAP) estimate instead of the MLE.

» Suppose the log-prior penalty term is R(#). We only have
to maximize

Q10™) + R(0) (2)
in the M-step
» Monotonicity.

ﬁ(e(t+1)) +R(9(t+1)) ];-(9 (t+1) |9(t)) +R(9(t+1))
> F(OW[0®) + R(6D)
LWy + R(0Y)

» If R(A) corresponds to conjugate prior, (2) can be
maximized in the same manner as Q(6|6®)).
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Monte Carlo EM 44/61

» The E-step requires finding the expected complete data
log-likelihood Q(A]6)). When this expectation is difficult
to compute, we can approximate it via Monte Carlo
methods

» Monte Carlo EM (Wei and Tanner, 1990)

» Draw missing data z(t) ceey

distribution p(z|z, H(t))
» Compute a Monte Carlo estimate of Q(0]0®))

27(,? from the conditional

Q (t+1) a‘e(t Zlogp

> Update A1) to maximize QU+ (|0™).
Remark: It is recommended to let m changes along
iterations (small at the beginning and increases as

iterations progress) : @ ST
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Example: Censored Survival Times 45/61

» By the lack of memory, it is easy to compute the expected
complete data log-likelihood, which lead to the ordinary
EM update

kt1) 2oy ti+ (n—r)u®
Hem = n

» In MCEM, we can sample from the conditional distribution

T, = (Tjrs1,---,Tjn), Tju—ti ~ Exp(,u(k)), l=r+1,...,n

for j =1,...,m® and the update formula is
nopoy Ly m® 7y
(1) _ izt w2 T

HMCEM = n
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Examples: Censored Survival Times

46/61

@

ez x Y

PEKING UNIVERSITY




Improving the M-step 47/61

» One of the appeals of the EM algorithm is that Q(#]0®) is
often simpler to maximize than the marginal likelihood

» In some cases, however, the M-step cannot be carried out
easily even though the computation of Q(0|0®) is
straightforward in the E-step

» For such situations, Dempster et al (1977) defined a
generalized EM algorithm (GEM) for which the M-step
only requires A1) to improve Q(A|6®)

Q(Q(t—l—l)w(t)) > Q(G(H_l)’@(t))
» We can easily show that GEM is also monotonic in £
£(0"Y) > F(g", 0" Y) > F(g,00) = £(60V)
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Expectation Conditional Maximization 48/61

» Meng and Rubin (1993) replaces the M-step with a series
of computationally cheaper conditional maximization (CM)
steps, leading to the ECM algorithm

» The M-step in ECM contains a collection of simple CM
steps, called a CM cycle. For s =1,...,5, the s-th CM
step requires the maximization of Q(]6()) subject to a
constraint

00/9) = argmax Q(0]0")),  s.t. ga(0) = gs(0UTTI/)
6

» The efficiency of ECM depends on the choice of constraints.
Examples: Blockwise updates (coordinate ascent).

» One may also insert an E-step between each pair of
CM-steps, updating () at every stage of the CM cycle.

ANEIE T
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Multivariate Regression 49/61

» Suppose we have n independent observations from the
following k-variate normal model

Y ~ N(XiB, %), i=1,...,n

> X; € RF*P is a known design matrix for the i-th observation
» [ is a vector of p unknown parameters
» 3 is a d x d unknown variance-covariance matrix

» The complete data log-likelihood (up to a constant) is

n

L(B,5IY) = S log ] - 3 D" (¥ - X;) 57 (% - Xif)
=1

» Generally, MLE does not has closed form solution except in
special cases (e.g., ¥ = %I)
e K P
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A Coordinate Ascent Algorithm 50/61

» Although the joint maximization of 5 and X are not
generally in closed form, a coordinate ascent algorithm
does exist

» Given ¥ = X, the conditional MLE of j is simply the
weighted least-square estimate

—1 n
t+1 (Z XT Z) (Z XiT(E(t))lYi)
i=1

» Given § = D, the conditional MLE of ¥ is the
cross-product of the residuals

n

1
(t+1) — = - _ v R(t+1) - _ v.R+INT
B = DR = X)X
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Multivariate Regression with Missing Data 51/61

» Now suppose that we also have missing data
Y, ~N(X;5,%), i=n+1,...,m
for which only the design matrix X;, ¢ > n are known

» The complete data log-likelihood

m

L(B,SIY) =~ log %] — 5 D% — Xi6) 57 (¥ - X;)
=1

» Expected values of sufficient statistics observed data and
current parameter () = () £(®)

E(Y;|Yops, 01) = X;80)
E(Y;Y;" [Yobs, 0) = £ + (X,;80)(X,;80)T

ANEIE T
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E-step 52/61

Expected complete-data log-likelihood

n

By _m 1 v Ty-l(y .
Q019" = =5 log|%| 2;06 Xip)'STHY; - XiB)
- % > E((Yi— XiB)"STH(Y - XiB))
i=n+1
=~ log |5 - 1§j(¥~ — XiB)"ETHY; — XiB)
- 2 g 2i:1 K3 (2 (] K3

R _
-3 > (BY; - X;if)TSTHEY; - X;8) + C
i=n-+1
where C =13 E(YV)TSTE(Y;) —E(Y S7'Y;) is a
constant independent of the parameter 5. )
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CM-steps: Update 53/61

» The first CM-step, maximize Q given ¥ = 2(*),

» Since C is independent of £, we can maximize

n

" log 815 D%~ XiB) RNV, — Xif)

i=1
3 Y (Y- Xip)TS T (BY: - Xip)
i=n+1
m -1 m
= B+ = (Z X,L»TZ(t)XZ) <Z XiTE(t)YZ)
i=1 i=1

where
- Y; 1 <n
Yz—{ X80, i>n
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CM-steps: Update X 54/61

» The second CM-step, maximize Q with g = g¢+1)
» Rewrite Q as

Q00" = log|2 - ZTr NYi - XiB)(Yi — Xi8)")

—fZTr Y XiB)(Y; — X;8)T))

i=n+1

» Similarly as in the complete data case

w(t+1) 1 (Z(Yl — X, (y; — X, 80FINT Z »n(®)
m\i= i=n+1
+ X’L t+1))(ﬁ( ) 5(t+1))TXZT>
+1

i=n
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ECM for Multivariate Regression 55/61

» Both the E-step and the two CM-steps can be implemented
using close form solutions, no numerical iteration required.

» Both CM-steps improves Q

Q(@(Hl), E(t+1)|5(t)7 E(t)) > Q(ﬁ(tﬂ), E(t)|6(t), E(t))
> Q(8Y, x5, 5)
» ECM in this case can be viewed as an efficient

generalization of iterative reweighted least squares, in the
presence of missing data.
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Example: A Simulation Study 56/61

We generate 120 design matrices at random and simulate 100

. . 2 1, 0.1
observations with 8 = <1> , U= <().1 2 )
ECM estimates

G (2068) o _ (0951 0214
—\1087)7 ~ 7 0214 2186

-200
\

log-likelihood
-400

-600

Iteration N
Je g X ¥
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EM Gradient Algorithm 57/61

» Iterative optimization can be considered when direct
maximization is not available.

» All numerical optimization can apply and that would yield
an algorithm that has nested iterative loops (e.g., ECM
inserts conditional maximization steps within each CM
cycle)

» To avoid the computational burden of nested looping,
Lange proposed to use one single step of Newton’s method

9°Q 'oQ
0(t+1) _ H(t) _ (89,2 (e(t)‘e )> 89/( |0 )

_ g0 _ (39§2?( 0)ptt )> V(o)

» This EM gradient algorithm has the same rate of

convergence as the full EM algorithm. : @ N i XS
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Acceleration Methods 58/61

» When EM is slow, we can use the relatively simple analytic
setup from EM to motivate particular forms for
Newton-like steps.

» Aitken Acceleration. Newton update
o+ — o) _ (v2L(0W )"t L(eW) (3)
Note that VL(0®)) = 92(9®|9(t)) and
0= 294050100 ~ 29 9019101+ T 900190 55 91

o0’ 06" EM
substitute in (3)

0(t+1) - g(t) + (Iobserved(a(t)))71[complete(0(t))(Hg;/_[l) - e(t))

» Many other acceleration exists (e.g., Quasi—Newton

methods).
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