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Introduction 2/61

I In this lecture, we discuss Expectation-Maximization
(EM), which is an iterative optimization method dealing
with missing or latent data.

I In such cases, we may assume the observed data x are
generated from random variable X along with missing or
unobserved data z from random variable Z. We envision
complete data would have been y = (x, z).

I Very often, the inclusion of the observed data z is a data
augmentation strategy to ease computation. In this case, Z
is often referred to as latent variable.



Latent Variable Model 3/61

I Some of the variables in the model are not observed.

I Examples: mixture model, hidden Markov model (HMM),
latent Dirichlet allocation (LDA), etc.

I We consider the learning problem of latent variable models



Marginal Likelihood 4/61

I complete data likelihood p(x, z|θ), θ is model parameter

I When z is missing, we need to marginalize out z and use
the marginal log-likelihood for learning

log p(x|θ) = log
∑
z

p(x, z|θ)

I Examples: Gaussian mixture model. z ∼ Discrete(π),
θ = (π, µ,Σ)

p(x|θ) =
∑
k

p(z = k|θ)p(x|z = k, θ)

=
∑
k

πkN (x|µk,Σk)

=
∑
k

πk
1

(2π)d/2|Σk|1/2
exp

(
−1

2
(x− µk)TΣ−1k (x− µk)

)
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I For most of these latent variable models, when the missing
components z are observed, the complete data likelihood
often factorizes, and the maximum likelihood estimates
hence have closed-form solutions.

I When z are not observed, marginalization destroys the
factorizible structure and makes learning much more
difficult.

I How to learn in this scenario?
I Idea 1: simply take derivative and use gradient ascent

directly
I Idea 2: find appropriate estimates of z (e.g., using the

current conditional distribution p(z|x, θ)), fill them in and
do complete data learning – This is EM!



Expectation Maximization 6/61

I At each iteration, the EM algorithm involves two steps
I based on the current θ(t), fill in unobserved z to get

complete data (x, z′)
I Update θ to maximize the complete data log-likelihood

`(x, z′|θ) = log p(x, z′|θ)
I How to choose z′?

I Use conditional distribution p(z|x, θ(t))
I Take full advantage of the current estimates θ(t)

Ep(z|x,θ(t))`(x, z|θ) =
∑
z

p(z|x, θ(t))`(x, z|θ)

In some sense, this is our best guess (as shown later).



EM Algorithm 7/61

More specifically, we start from some initial θ(0). In each
iteration, we follow the two steps below

I Expectation (E-step): compute p(z|x, θ(t)) and form the
expectation using the current estimate θ(t)

Q(t)(θ) = Ep(z|x,θ(t))`(x, z|θ)

I Maximization (M-step): Find θ that maximizes the
expected complete data log-likelihood

θ(t+1) = arg max
θ

Q(t)(θ)

In many cases, the expectation is easier to handle than the
marginal log-likelihood.
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I EM algorithm can be viewed as optimizing a lower bound
on the marginal log-likelihood L(θ) = log p(x|θ)

I A class of lower bounds

L(θ) = log
∑
z

p(x, z|θ) = log
∑
z

q(z)
p(x, z|θ)
q(z)

≥
∑
z

q(z) log
p(x, z|θ)
q(z)

- Jensen’s inequality

=
∑
z

q(z) log p(x, z|θ)−
∑
z

q(z) log q(z), ∀q(z)

I The term in the last equation is often called Free-energy

F(q, θ) =
∑
z

q(z) log p(x, z|θ)−
∑
z

q(z) log q(z)



Lower Bound Maximization 9/61

I Free-energy is a lower bound of the true log-likelihood

L(θ) ≥ F(q, θ)

I EM is simply doing coordinate ascent on F(q, θ)
I E-step: Find q(t) that maximizes F(q, θ(t))
I M-step: Find θ(t+1) that maximizes F(q(t), θ)

I Properties:
I Each iteration improves F

F(q(t+1), θ(t+1)) ≥ F(q(t), θ(t))

I Each iteration improves L as well

L(θ(t+1)) ≥ L(θ(t))

will show later
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I Find q that maximizes F(q, θ(t))

F(q, θ) =
∑
z

q(z) log p(x, z|θ)−
∑
z

q(z) log q(z)

=
∑
z

q(z) log
p(z|x, θ)p(x|θ)

q(z)

=
∑
z

q(z) log
p(z|x, θ)
q(z)

+ log p(x|θ)

= L(θ)−DKL (q(z)‖p(z|x, θ))
≤ L(θ)
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F(q, θ(t)) = L(θ(t))−DKL(q(z)‖p(z|x, θ(t)))

I KL divergence is non-negative and is minimized (equals to
0) iff the two distributions are identical.

I Therefore, F(q, θ(t)) is maximized at q(t)(z) = p(z|x, θ(t)).
I So when we are computing p(z|x, θ(t)), we are actually

computing arg maxq F(q, θ(t))

I Moreover,
F(q(t), θ(t)) = L(θ(t))

this means the lower bound matches the true log-likelihood
at θ(t), which is crucial for the improvement on L.



M-step 12/61

I Find θ(t+1) that maximizes F(q(t), θ)

θ(t+1) = arg max
θ

F(q(t), θ)

= arg max
θ

∑
z

p(z|x, θ(t)) log p(x, z|θ) +H(p(z|x, θ(t)))

= arg max
θ

Ep(z|x,θ(t))`(x, z|θ)

I The expected complete data log-likelihood usually can be
solved in the same manner (closed-form solutions) as the
fully-observed model.



Monotonicity of EM 13/61

L(θ(t+1)) ≥ F(q(t), θ(t+1))

≥ F(q(t), θ(t)) = L(θ(t))



EM for Exponential Families 14/61

I When the complete data follow an exponential family
distribution (in canonical form), the density is

p(x, z|θ) = h(x, z) exp(θ · T (x, z)−A(θ))

I E-step

Q(t)(θ) = Ep(z|x,θ(t)) log p(x, z|θ)
= θ · Ep(z|x,θ(t))T (x, z)−A(θ) + Const

I M-step

∇θQ(t)(θ) = 0⇒ Ep(z|x,θ(t))T (x, z) = ∇θA(θ) = Ep(x,z|θ)T (x, z)



Examples: Censored Survival Times 15/61

I In survival analyses, we often have to terminate our study
before observing the real survival times, leading to
censored survival data.

I Suppose the observed data are Y = {(t1, δ1), . . . , (tn, δn)},
where Tj ∼ Exp(µ) and δj is the indicator of a censored
sample. WLOG, assume δi = 0, i ≤ r, δi = 1, i > r

I The log-likelihood function is

log p(Y |µ) =

r∑
i=1

log p(ti|µ) +
∑
i>r

log p(Ti > ti|µ)

= −r logµ−
n∑
i=1

ti/µ

I The MLE of µ: µ̂ =
∑n

i=1 ti/r



Examples: Censored Survival Times 16/61

I Let us see how EM works in this simple case.

I Let t = (T1, . . . , Tn) = (T1, . . . , Tr, z) be the complete data
vector, where z = (Tr+1, . . . , Tn) are the unobserved n− r
censored random variables.

I Natural parameter 1/µ, sufficient statistics
∑n

i=1 Ti, and
Eµ
∑n

i=1 Ti = nµ

I By the lack of memory, Ti|Ti > ti ∼ ti + Exp(µ), ∀i > r.

Ep(z|Y,µ(k))
n∑
i=1

Ti =
r∑
i=1

ti +
∑
i>r

ti + (n− r)µ(k)

I Update formula

µ(k+1) =

∑n
i=1 ti + (n− r)µ(k)

n



Gaussian Mixture Model 17/61

I Consider clustering of data X = {x1, . . . , xN} using a finite
mixture of Gaussians.

z ∼ Discrete(π), x|z = k ∼ N (µk,Σk)

θ = {πk, µk,Σk}Kk=1 are model parameters

I Complete data log-likelihood

log p(x, z|θ) = log

K∏
k=1

(p(z = k)p(x|z = k))1z=k

=
K∑
k=1

1z=k(log πk + logN (x|µk,Σk))
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I Compute the conditional probability p(zn|xn, θ(t)) via
Bayes’ theorem

p(zn|xn, θ) =
p(zn, xn|θ)∑
zn
p(zn, xn|θ)

p(zn = k|xn, θ(t)) =
π
(t)
k N (xn|µ(t)k ,Σ

(t)
k )∑

k π
(t)
k N (xn|µ(t)k ,Σ

(t)
k )

I Denote γ
(t)
n,k , p(zn = k|xn, θ(t)), which can be viewed as a

soft clustering of xn ∑
k

γ
(t)
n,k = 1



E-step 19/61

I Expected complete-data log-likelihood

Q(t)(θ) =
∑
n

∑
zn

p(zn|xn, θ(t)) log p(xn, zn|θ)

=
∑
n

∑
k

γ
(t)
n,k (log πk + logN (xn|µk,Σk))

=
∑
k

∑
n

γ
(t)
n,k (log πk + logN (xn|µk,Σk))

Substitute N (xn|µk,Σk) in

Q(t)(θ) =
∑
k

∑
n

γ
(t)
n,k

(
log πk −

d

2
log(2π)− 1

2
log |Σk|

− 1

2
(xn − µk)TΣ−1k (xn − µk)

)



M-step 20/61

I Maximize Q(t)(θ) with respect to π using Lagrange
multipliers

π
(t+1)
k ∝

∑
n

γ
(t)
n,k

Therefore

π
(t+1)
k =

∑
n γ

(t)
n,k∑

k

∑
n γ

(t)
n,k

=

∑
n γ

(t)
n,k∑

n

∑
k γ

(t)
n,k

=

∑
n γ

(t)
n,k

N

I Note that
∑

n γ
(t)
n,k can be viewed as the weighted number

of data points in mixture component k, and π
(t+1)
k is the

fraction of data the belongs to mixture component k.



M-step 21/61

I Compute the derivative w.r.t µk

∂Q(t)(θ)

∂µk
=
∑
n

γ
(t)
n,kΣ

−1
k (xn − µk) = Σ−1k

∑
n

γ
(t)
n,k(xn − µk)

I Therefore,

µ
(t+1)
k =

∑
n γ

(t)
n,kxn∑

n γ
(t)
n,k

µ
(t+1)
k is the weighted mean of data points assigned to

mixture component k

I Similarly, we can get

Σ
(t+1)
k =

∑
n γ

(t)
n,k(xn − µ

(t+1)
k )(xn − µ(t+1)

k )T∑
n γ

(t)
n,k



EM algorithm for Gaussian Mixture Models 22/61

I E-step: Compute the soft clustering probabilities

γ
(t)
n,k =

π
(t)
k N (xn|µ(t)k ,Σ

(t)
k )∑

k π
(t)
k N (xn|µ(t)k ,Σ

(t)
k )

I M-step: Update parameters

π
(t+1)
k =

∑
n γ

(t)
n,k

N

µ
(t+1)
k =

∑
n γ

(t)
n,kxn∑

n γ
(t)
n,k

Σ
(t+1)
k =

∑
n γ

(t)
n,k(xn − µ

(t+1)
k )(xn − µ(t+1)

k )T∑
n γ

(t)
n,k



Examples: Mixture of 5 Gaussians 23/61



Examples: Mixture of 3 Gaussians 24/61



Connection to k-means 25/61

I The k-means algorithm follows two steps
I Assignment step: assign data to the nearest cluster

γn,k =

{
1, k = arg mink′ ‖xn − µk′‖
0, otherwise

I Update step: set µk to the mean of data points assigned to
the k-th cluster

µk =

∑
n γ

(t)
n,kxn∑

n γ
(t)
n,k

=
1

Nk

∑
n:γn,k=1

xn

Nk is the number of data points assigned to the k-th cluster.

I Therefore, k-means can be viewed as a special case of EM
for Gaussian mixture models where Σk = I and γn,k are
hard assignments instead of soft clustering probabilities.



Hidden Markov Model 26/61

I Sequence data x1, x2, . . . , xT , each xn ∈ Rd

I Hidden variables z1, z2, . . . , zT , each zt ∈ {1, 2, . . . ,K}
I Joint probability

p(x, z) = p(z1)

T−1∏
t=1

p(zt+1|zt)
T∏
t=1

p(xt|zt)

I p(xt|zt) is the emission probability, could be a Gaussian

p(xt|zt = k) = N (xt|µk,Σk)

I p(zt+1|zt) is the transition probability, a K ×K matrix
aij = p(zt+1 = j|zt = i),

∑
j aij = 1

I p(z1) ∼ Discrete(π) is the prior for the first hidden state



Expected Complete Data Log-likelihood 27/61

I The expected complete data log-likelihood is

Q = Ep(z|x) log p(x, z)

=
∑
z

p(z|x)

(
log p(z1) +

T−1∑
t=1

log p(zt+1|zt) +

T∑
t=1

log p(xt|zt)

)

=
∑
z1

p(z1|x) log p(z1) +

T−1∑
t=1

∑
zt,zt+1

p(zt, zt+1|x) log p(zt+1|zt)

+

T∑
t=1

∑
zt

p(zt|x) log p(xt|zt)

I Therefore, in the E-step, we need to compute unary and
pairwise marginal probabilities p(zt|x) and p(zt, zt+1|x).



E-step: Forward-Backward Algorithm 28/61

I Using the sequential structure of HMM, we can compute
these marginal probabilities via dynamic programming.

I The forward algorithm

αt+1(j) = p(zt+1 = j, x1, . . . , xt+1)

=
∑
i

p(zt+1 = j, zt = i, x1, . . . , xt+1)

= p(xt+1|zt+1 = j)
∑
i

p(zt+1 = j|zt = i)p(zt, x1, . . . , xt)

= p(xt+1|zt+1 = j)
∑
i

aijp(zt, x1, . . . , xt)

= p(xt+1|zt+1 = j)
∑
i

aijαt(i)



E-step: Forward-Backward Algorithm 29/61

I The backward algorithm

βt(i) = p(xt+1, . . . , xT |zt = i)

=
∑

j
p(xt+1, . . . , xT , zt+1 = j|zt = i)

=
∑

j
aijp(xt+1|zt+1 = j)βt+1(j)

I Unary marginal probability

p(zt = j|x) ∝ p(zt = j, x) = αt(j)βt(j)

I Pairwise marginal probability

p(zt+1 = j, zt = i|x) ∝ p(zt+1 = j, zt = i, x)

= αt(i)aijp(xt+1|zt+1 = j)βt+1(j)



M-step 30/61

I From the E-step, we have

γt,k = p(zt = k|x) =
αt(k)βt(k)∑
k αt(k)βt(k)

ξt(i, j) = p(zt+1 = j, zt = i|x) =
αt(i)aijp(xt+1|zt+1 = j)βt+1(j)∑

k αt(k)βt(k)

I The expected complete data log-likelihood is

Q =
∑
k

γ1,k log πk +

T−1∑
t=1

∑
i,j

ξt(i, j) log aij

+

T∑
t=1

∑
k

γt,k logN (xt|µk,Σk)

I Closed form solution for M-step – just like in the Gaussian
mixture model



Recap on The EM Algorithm 31/61

EM algorithm finds MLE for models with missing/latent
variables. Applicable if the following pieces are easy to solve

I Estimating missing data from observed data using current
parameters (E-step)

I Find complete data MLE (M-step)

Pros

I No need for gradients, learning rates, etc.

I Fast convergence

I Monotonicity. Guaranteed to improve L at every iteration

Cons

I Can get stuck at local optimal

I Requires conditional distribution p(z|x, θ) to be tractable



Advanced EM 32/61

I While EM increases the marginal likelihood in each
iteration and often converges to a stationary point, we are
not clear about the convergence rate and how does that
relate to the missing data scenario.

I Moreover, the requirements of tractable conditional
distribution and easy complete data MLE may be too
restrictive in practice.

I In what follows, we will discuss the convergence theory for
EM and introduce some variants of it that can be applied
in more general settings.



Example: Censored Survival Times 33/61

I Recall that in the censored survival times example, given
the observed data Y = {(t1, δ1), . . . , (tn, δn)}, where tj
follows an exponential distribution with mean µ and can be
either censored or not as indicated by δj .

I Assume δi = 0, i ≤ r, δi = 1, i > r. The MLE of µ is
µ̂ =

∑n
i=1 ti/r

I EM update formula

µ(k+1) =

∑n
i=1 ti + (n− r)µ(k)

n

I Therefore,

µ(k+1) − µ̂ =
n− r
n

(µ(k) − µ̂)

Linear convergence, rate depends on the amount of missing
information



EM as A Fixed Point Algorithm 34/61

We can view EM update as a map

θ(t+1) = Φ(θ(t)), Φ(θ) = arg max
θ′

Q(θ′|θ)

where Q(θ′|θ) = Ep(z|x,θ) log p(x, z|θ′)

Lemma 1
If for some θ∗, L(θ∗) ≥ L(θ), ∀θ, then for every EM algorithm

L(Φ(θ∗)) = L(θ∗), Q(Φ(θ∗)|θ∗) = Q(θ∗|θ∗)

and
p(z|x,Φ(θ∗)) = p(z|x, θ∗), a.s.



Local Convergence 35/61

Lemma 2
If for some θ∗, L(θ∗) > L(θ), ∀θ 6= θ∗, then for every EM
algorithm

Φ(θ∗) = θ∗

Theorem 1
Suppose that θ(t), t = 0, 1, . . . is an instance of an EM algorithm
such that

I the sequence L(θ(t)) is bounded

I for some λ > 0 and all t,

Q(θ(t+1)|θ(t))−Q(θ(t)|θ(t)) ≥ λ(θ(t+1) − θ(t))(θ(t+1) − θ(t))T

Then the sequence θ(t) converges to some θ∗



Local Convergence 36/61

I Since θ(t+1) = Φ(θ(t)) maximizes Q(θ′|θ(t)), we have

∂Q

∂θ′
(θ(t+1)|θ(t)) = 0

I For all t, there exists a 0 ≤ α(t+1)
0 ≤ 1 such that

Q(θ(t+1)|θ(t))−Q(θ(t)|θ(t)) = −(θ(t+1) − θ(t))·
∂2Q

∂θ′2
(θ

(t+1)
0 |θ(t))(θ(t+1) − θ(t))T

where θ
(t+1)
0 = α0θ

(t) + (1− α0)θ
(t+1)

I If the sequence ∂2Q
∂θ′2 (θ

(t+1)
0 |θ(t)) is negative definite with

eigenvalues bounded away from zero and L(θ(t)) is
bounded, by Theorem 1, θ(t) converges to some θ∗



Local Convergence 37/61

I When EM converges, it converges to a fixed point of the
map

θ∗ = Φ(θ∗)

I Taylor expansion of Φ at θ∗ yields

θ(t+1) − θ∗ = Φ(θ(t))− Φ(θ∗) ≈ ∇Φ(θ∗)(θ(t) − θ∗)

I The global rate of EM defined as

ρ = lim
t→∞

‖θ(t+1) − θ∗‖
‖θ(t) − θ∗‖

equals the largest eigenvalue of ∇Φ(θ∗) and ρ < 1 when the
observed Fisher information −∇2L(θ∗) is positive definite.



Proof 38/61

I As aforementioned, Φ(θ) maximize Q(θ′|θ), therefore

∂Q

∂θ′
(Φ(θ)|θ) = 0, ∀θ

I Differentiate w.r.t. θ

∂2Q

∂θ′2
(Φ(θ)|θ)∇Φ(θ) +

∂2Q

∂θ∂θ′
(Φ(θ)|θ) = 0

let θ = θ∗

∇Φ(θ∗) =

(
−∂

2Q

∂θ′2
(θ∗|θ∗)

)−1
∂2Q

∂θ∂θ′
(θ∗|θ∗) (1)



Complete and Missing Information 39/61

I If ∂2Q
∂θ′2 (θ(t+1)|θ(t)) is negative definite with eigenvalues

bounded away from zero, then

−∂
2Q

∂θ′2
(θ∗|θ∗) = Ep(z|x,θ∗)

(
−∇2 log p(x, z|θ∗)

)
is positive definite, known as the complete information

I The marginal log-likelihood can be rewritten as

L(θ′) = Ep(z|x,θ) log p(x, z|θ′)− Ep(z|x,θ) log p(z|x, θ)
= Q(θ′|θ)−H(θ′|θ)

Therefore
∂2Q

∂θ∂θ′
(θ′|θ) =

∂2H

∂θ∂θ′
(θ′|θ)



Complete and Missing Information 40/61

I Some properties of H(θ|θ) = Ep(z|x,θ) log p(z|x, θ)

∂H

∂θ′
(θ|θ) = 0

∂2H

∂θ∂θ′
(θ|θ) = −∂

2H

∂θ′2
(θ|θ)

I Therefore,

∂2Q

∂θ∂θ′
(θ∗|θ∗) =

∂2H

∂θ∂θ′
(θ∗|θ∗) = −∂

2H

∂θ′2
(θ∗|θ∗)

is positive semidefinite (variance of the score
∇ log p(z|x, θ∗)), known as the missing information



Missing-Information Principle 41/61

L(θ′) = Q(θ′|θ)−H(θ′|θ)

I Differentiate both side w.r.t. θ′ twice

∇2L(θ′) =
∂2Q

∂θ′2
(θ′|θ)− ∂2H

∂θ′2
(θ′|θ)

I The missing-information principle

−∂
2Q

∂θ′2
(θ|θ)︸ ︷︷ ︸

Icomplete

= −∇2L(θ)︸ ︷︷ ︸
Iobserved

+−∂
2H

∂θ′2
(θ|θ)︸ ︷︷ ︸

Imissing

I Substitute in (1)

∇Φ(θ∗) = I−1complete(θ
∗)Imissing(θ∗)

= (Iobserved(θ∗) + Imissing(θ∗))−1 Imissing(θ∗)



Convergence Rate of EM 42/61

I When Iobserved = −∇2L(θ∗) is positive definite, the
eigenvalues of ∇Φ(θ∗) are all less than 1, EM has a linear
convergence rate.

I The rate of convergence depends on the relative size of
Iobserved(θ∗) and Imissing(θ∗). EM converges rapidly when
the missing information is small.

I The fraction of information loss may vary across different
component of θ, so some component may converge faster
than other components.

I See Wu (1983) for more detailed discussions.



EM for Maximum A Posterior 43/61

I EM can be easily modified for the Maximum A Posterior
(MAP) estimate instead of the MLE.

I Suppose the log-prior penalty term is R(θ). We only have
to maximize

Q(θ|θ(t)) +R(θ) (2)

in the M-step

I Monotonicity.

L(θ(t+1)) +R(θ(t+1)) ≥ F(θ(t+1)|θ(t)) +R(θ(t+1))

≥ F(θ(t)|θ(t)) +R(θ(t))

= L(θ(t)) +R(θ(t))

I If R(θ) corresponds to conjugate prior, (2) can be
maximized in the same manner as Q(θ|θ(t)).



Monte Carlo EM 44/61

I The E-step requires finding the expected complete data
log-likelihood Q(θ|θ(t)). When this expectation is difficult
to compute, we can approximate it via Monte Carlo
methods

I Monte Carlo EM (Wei and Tanner, 1990)

I Draw missing data z
(t)
1 , . . . , z

(t)
m from the conditional

distribution p(z|x, θ(t))
I Compute a Monte Carlo estimate of Q(θ|θ(t))

Q̂(t+1)(θ|θ(t)) =
1

m

m∑
i=1

log p(x, z
(t)
i |θ)

I Update θ(t+1) to maximize Q̂(t+1)(θ|θ(t)).
Remark: It is recommended to let m changes along
iterations (small at the beginning and increases as
iterations progress)
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I By the lack of memory, it is easy to compute the expected
complete data log-likelihood, which lead to the ordinary
EM update

µ
(k+1)
EM =

∑n
i=1 ti + (n− r)µ(k)

n

I In MCEM, we can sample from the conditional distribution

Tj = (Tj,r+1, . . . , Tj,n), Tj,l−tl ∼ Exp(µ(k)), l = r+1, . . . , n

for j = 1, . . . ,m(k), and the update formula is

µ
(k+1)
MCEM =

∑n
i=1 ti + 1

m(k)

∑m(k)

j=1 T T
j 1

n
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I One of the appeals of the EM algorithm is that Q(θ|θ(t)) is
often simpler to maximize than the marginal likelihood

I In some cases, however, the M-step cannot be carried out
easily even though the computation of Q(θ|θ(t)) is
straightforward in the E-step

I For such situations, Dempster et al (1977) defined a
generalized EM algorithm (GEM) for which the M-step
only requires θ(t+1) to improve Q(θ|θ(t))

Q(θ(t+1)|θ(t)) ≥ Q(θ(t+1)|θ(t))

I We can easily show that GEM is also monotonic in L

L(θ(t+1)) ≥ F(q(t), θ(t+1)) ≥ F(q(t), θ(t)) = L(θ(t))
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I Meng and Rubin (1993) replaces the M-step with a series
of computationally cheaper conditional maximization (CM)
steps, leading to the ECM algorithm

I The M-step in ECM contains a collection of simple CM
steps, called a CM cycle. For s = 1, . . . , S, the s-th CM
step requires the maximization of Q(θ|θ(t)) subject to a
constraint

θ(t+s/S) = arg max
θ

Q(θ|θ(t)), s.t. gs(θ) = gs(θ
(t+(s−1)/S))

I The efficiency of ECM depends on the choice of constraints.
Examples: Blockwise updates (coordinate ascent).

I One may also insert an E-step between each pair of
CM-steps, updating Q at every stage of the CM cycle.
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I Suppose we have n independent observations from the
following k-variate normal model

Yi ∼ N (Xiβ,Σ), i = 1, . . . , n

I Xi ∈ Rk×p is a known design matrix for the i-th observation
I β is a vector of p unknown parameters
I Σ is a d× d unknown variance-covariance matrix

I The complete data log-likelihood (up to a constant) is

L(β,Σ|Y ) = −n
2

log |Σ| − 1

2

n∑
i=1

(Yi −Xiβ)TΣ−1(Yi −Xiβ)

I Generally, MLE does not has closed form solution except in
special cases (e.g., Σ = σ2I)
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I Although the joint maximization of β and Σ are not
generally in closed form, a coordinate ascent algorithm
does exist

I Given Σ = Σ(t), the conditional MLE of β is simply the
weighted least-square estimate

β(t+1) =

(
n∑
i=1

XT
i (Σ(t))−1Xi

)−1( n∑
i=1

XT
i (Σ(t))−1Yi

)

I Given β = β(t+1), the conditional MLE of Σ is the
cross-product of the residuals

Σ(t+1) =
1

n

n∑
i=1

(Yi −Xiβ
(t+1))(Yi −Xiβ

(t+1))T
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I Now suppose that we also have missing data

Yi ∼ N (Xiβ,Σ), i = n+ 1, . . . ,m

for which only the design matrix Xi, i > n are known

I The complete data log-likelihood

L(β,Σ|Y ) = −m
2

log |Σ| − 1

2

m∑
i=1

(Yi −Xiβ)TΣ−1(Yi −Xiβ)

I Expected values of sufficient statistics observed data and
current parameter θ(t) = (β(t),Σ(t))

E(Yi|Yobs, θ(t)) = Xiβ
(t)

E(YiY
T
i |Yobs, θ(t)) = Σ(t) + (Xiβ

(t))(Xiβ
(t))T
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Expected complete-data log-likelihood

Q(θ|θ(t)) = −m
2

log |Σ| − 1

2

n∑
i=1

(Yi −Xiβ)TΣ−1(Yi −Xiβ)

− 1

2

m∑
i=n+1

E
(
(Yi −Xiβ)TΣ−1(Yi −Xiβ)

)
= −m

2
log |Σ| − 1

2

n∑
i=1

(Yi −Xiβ)TΣ−1(Yi −Xiβ)

− 1

2

m∑
i=n+1

(EYi −Xiβ)TΣ−1(EYi −Xiβ) + C

where C = 1
2

∑m
i=n+1 E(Yi)

TΣ−1E(Yi)− E(Y T
i Σ−1Yi) is a

constant independent of the parameter β.
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I The first CM-step, maximize Q given Σ = Σ(t).

I Since C is independent of β, we can maximize

−m
2

log |Σ|−1

2

n∑
i=1

(Yi −Xiβ)TΣ−1(Yi −Xiβ)

−1

2

m∑
i=n+1

(EYi −Xiβ)TΣ−1(EYi −Xiβ)

⇒ β(t+1) =

(
m∑
i=1

XT
i Σ(t)Xi

)−1( m∑
i=1

XT
i Σ(t)Ŷi

)
where

Ŷi =

{
Yi, i ≤ n
Xiβ

(t), i > n
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I The second CM-step, maximize Q with β = β(t+1)

I Rewrite Q as

Q(θ|θ(t)) =
m

2
log |Σ−1| − 1

2

n∑
i=1

Tr
(
Σ−1(Yi −Xiβ)(Yi −Xiβ)T

)
− 1

2

m∑
i=n+1

Tr
(
Σ−1E

(
(Yi −Xiβ)(Yi −Xiβ)T

))
I Similarly as in the complete data case

Σ(t+1) =
1

m

(
n∑
i=1

(Yi −Xiβ
(t+1))(Yi −Xiβ

(t+1))T +

m∑
i=n+1

Σ(t)

+

m∑
i=n+1

Xi(β
(t) − β(t+1))(β(t) − β(t+1))TXT

i

)
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I Both the E-step and the two CM-steps can be implemented
using close form solutions, no numerical iteration required.

I Both CM-steps improves Q

Q(β(t+1),Σ(t+1)|β(t),Σ(t)) ≥ Q(β(t+1),Σ(t)|β(t),Σ(t))

≥ Q(β(t),Σ(t)|β(t),Σ(t))

I ECM in this case can be viewed as an efficient
generalization of iterative reweighted least squares, in the
presence of missing data.
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We generate 120 design matrices at random and simulate 100

observations with β =

(
2
1

)
, Σ =

(
1, 0.1
0.1 2

)
ECM estimates

β̂ =

(
2.068
1.087

)
, Σ̂ =

(
0.951 0.214
0.214 2.186

)
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I Iterative optimization can be considered when direct
maximization is not available.

I All numerical optimization can apply and that would yield
an algorithm that has nested iterative loops (e.g., ECM
inserts conditional maximization steps within each CM
cycle)

I To avoid the computational burden of nested looping,
Lange proposed to use one single step of Newton’s method

θ(t+1) = θ(t) −
(
∂2Q

∂θ′2
(θ(t)|θ(t))

)−1
∂Q

∂θ′
(θ(t)|θ(t))

= θ(t) −
(
∂2Q

∂θ′2
(θ(t)|θ(t))

)−1
∇L(θ(t))

I This EM gradient algorithm has the same rate of
convergence as the full EM algorithm.
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I When EM is slow, we can use the relatively simple analytic
setup from EM to motivate particular forms for
Newton-like steps.

I Aitken Acceleration. Newton update

θ(t+1) = θ(t) − (∇2L(θ(t)))−1∇L(θ(t)) (3)

Note that ∇L(θ(t)) = ∂Q
∂θ′ (θ

(t)|θ(t)) and

0 =
∂Q

∂θ′
(θ

(t+1)
EM |θ(t)) ≈ ∂Q

∂θ′
(θ(t)|θ(t))+∂2Q

∂θ′2
(θ(t)|θ(t))(θ(t+1)

EM −θ(t))

substitute in (3)

θ(t+1) = θ(t) + (Iobserved(θ(t)))−1Icomplete(θ
(t))(θ

(t+1)
EM − θ(t))

I Many other acceleration exists (e.g., Quasi-Newton
methods).
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