Statistical Models & Computing Methods

Lecture 6: Scalable MCMC

Cheng Zhang

School of Mathematical Sciences, Peking University

November 12, 2020

Motivation 2/37

- \blacktriangleright Large scale datasets are becoming more commonly available across many fields. Learning complex models from these datasets is the future
- ▶ While many modern MCMC methods have been proposed in recent years, they usually require expensive computation when the data size is large
- \blacktriangleright In this lecture, we will discuss recent development on Markov chain Monte Carlo methods that are applicable to large scale datasets
	- ▶ Best of both worlds: scalability, and Bayesian protection against overfitting

 \triangleright Stochastic differential equations are widely used to model dynamical systems with noise

$$
dX_t = \mu(X_t, t)dt + \sigma(X_t, t)dB_t
$$

where B denotes a Wiener process/Brownian motion

- Now suppose the probability density for X_t is $p(x, t)$, we are interested in how $p(x, t)$ evolves along time
- ▶ For example, does it converge to some distribution? If it does, how can we find it out?

Fokker-Planck Equation 4/37

It turns out the $p(x, t)$ satisfies the Fokker-Planck equation (also known as the Kolmogorov forward equation)

$$
\frac{\partial p(x,t)}{\partial t} = -\sum_{i} \frac{\partial}{\partial x_i} (\mu_i(x,t)p(x,t)) + \sum_{i,j} \frac{\partial^2}{\partial x_i \partial x_j} (D_{ij}(x,t)p(x,t))
$$

where $D=\frac{1}{2}$ $\frac{1}{2}\sigma\sigma^T$ is the diffuse tensor Example: Weiner process $dX_t = dB_t$

$$
\frac{\partial p(x,t)}{\partial t} = \frac{1}{2} \frac{\partial^2}{\partial x^2} p(x,t)
$$

If $p(x, 0) = \delta(x)$, the solution is $p(x,t) = \frac{1}{\sqrt{2}}$ $2\pi t$ $e^{-\frac{x^2}{2t}}$ 2_t

Challenges From Massive Datasets 5/37

 \triangleright Suppose that we have a large number of data items

$$
\mathcal{D} = \{x_1, x_2, \dots, x_N\}
$$

where $N \gg 1$

 \triangleright The log-posterior (up to a constant) is

$$
\log p(\theta|X) = \log p(\theta) + \sum_{i=1}^{N} \log p(x_i|\theta) \sim \mathcal{O}(N)
$$

 \blacktriangleright How to reduce this computation in MCMC without damaging the convergence to the target distribution?

Stochastic Gradient Ascent 6/37

 \triangleright Also known as stochastic approximation

- \blacktriangleright At each iteration
	- Get a subset (minibatch) x_{t_1}, \ldots, x_{t_n} of data items where $n \ll N$
	- \blacktriangleright Approximate gradient of log-posterior using the subset

$$
\nabla \log p(\theta_t | X) \approx \nabla \log p(\theta_t) + \frac{N}{n} \sum_{i=1}^n \nabla \log p(x_{t_i} | \theta_t)
$$

 \blacktriangleright Take a gradient step

$$
\theta_{t+1} = \theta_t + \frac{\epsilon_t}{2} \left(\nabla \log p(\theta_t) + \frac{N}{n} \sum_{i=1}^n \nabla \log p(x_{t_i}|\theta_t) \right)
$$

 \blacktriangleright Major requirement for convergence on step-sizes

$$
\sum_{t=1}^{\infty}\epsilon_t=\infty,\quad \sum_{t=1}^{\infty}\epsilon_t^2<\infty
$$

\blacktriangleright Intuition

- ▶ Step sizes cannot decrease too fast, otherwise will not be able to explore parameter space
- ▶ Step sizes must decrease to zero, otherwise will not converge to a local mode

First Order Langevin Dynamics 8/37

 \triangleright First order Langevin dynamics can be described by the following stochastic differential equation

$$
d\theta_t = \frac{1}{2} \nabla \log p(\theta_t|X) dt + dB_t
$$

- \blacktriangleright The above dynamical system converges to the target distribution $p(\theta|X)$ (easy to verify via the Fokker-Planck equation)
- \blacktriangleright Intuition
	- I Gradient term encourages dynamics to spend more time in high probability areas
	- \triangleright Brownian motion provides noise so that dynamics will explore the whole parameter space

 \blacktriangleright First order Euler discretization

$$
\theta_{t+1} = \theta_t + \frac{\epsilon}{2} \nabla \log p(\theta_t | X) + \eta_t, \quad \eta_t = \mathcal{N}(0, \epsilon)
$$

- \blacktriangleright Amount of noise is balanced to gradient step size
- \triangleright With finite step size, there will be discretization errors. We can add MH correction step to fix it, and this is MALA!
- \triangleright As step size $\epsilon \to 0$, acceptance rate goes to 1

Stochastic Gradient Langevin Dynamics 10/37

- \blacktriangleright Introduced by Welling and Teh (2011)
- \blacktriangleright **Idea**: use stochastic gradients in Langevin dynamics

$$
\theta_{t+1} = \theta_t + \frac{\epsilon_t}{2} g(\theta_t) + \eta_t, \quad \eta_t = \mathcal{N}(0, \epsilon_t)
$$

$$
g(\theta_t) = \nabla \log p(\theta_t) + \frac{N}{n} \sum_{i=1}^n \nabla \log p(x_{t_i} | \theta_t)
$$

- \triangleright Update is just stochastic gradient ascent plus Gaussian noise
- \triangleright Noise variance is balanced with gradient step sizes
- require step size ϵ_t decrease to 0 slowly

Why SGLD Works? 11/37

 \triangleright Controllable stochastic gradient noise. The stochastic gradient estimate $g(\theta_t)$ is unbiased, but it introduces noise

$$
g(\theta_t) = \nabla \log p(\theta|X) + \mathcal{N}(0, V(\theta_t))
$$

► Stochastic gradient noise $\sim \mathcal{N}(0, \mathcal{O}(\epsilon_t^2))$

 \triangleright Injected noise $\eta_t \sim \mathcal{N}(0, \epsilon_t)$

- \blacktriangleright When $\epsilon_t \to 0$
	- \triangleright Stochastic gradient noise will be dominated by injected noise η_t , so can be ignored. SGLD then recovers Langevin dynamics updates with decreasing step sizes
	- \blacktriangleright MH acceptance probability approaches 1, so we can ignore the expensive MH correction step
	- If ϵ_t approaches 0 slowly enough, the discretized Langevin dynamics is still able to explore the whole parameter space

Examples: Mixture of Gaussian 12/37

Examples: Mixture of Gaussian 13/37

Noise and rejection probability

Examples: Logistic Regression 14/37

Log probability vs epoches Test accuracy vs epoches

Naive Stochastic Gradient HMC 15/37

 \triangleright Now that stochastic gradient scales MALA, it seems straightforward to use stochastic gradient for HMC

$$
d\theta = M^{-1}r dt
$$

$$
dr = g(\theta)dt = -\nabla U(\theta)dt + \sqrt{\epsilon V(\theta)}dB_t
$$

- \blacktriangleright However, the resulting dynamics does not leave $p(\theta, r)$ invariant (can be verified via Fokker-Planck equation)
- \triangleright This deviation can be saved by MH correction, but that leads to a complex computation vs efficiency trade-off
	- I Short runs reduce deviation, but requires more expensive HM steps and does not full utilize the exploration of the Hamiltonian dynamics
	- \blacktriangleright Long runs lead to low acceptance rates, waste of computation

Example: Naive Stochastic Gradient HMC Fails 16/37

$$
U(\theta) = -2\theta^2 + \theta^4
$$

PEKING UNIVERSITY

Second Order Langevin Dynamics 17/37

 \triangleright We can introduce friction into the dynamical system to reduce the influence of the gradient noise, which leads to the second order Langevin dynamics

$$
d\theta = M^{-1} r dt
$$

\n
$$
dr = -\nabla U(\theta) dt - CM^{-1} r dt + \sqrt{2C} dB_t
$$
\n(1)

 \triangleright Consider the joint space $z = (\theta, r)$, rewrite [\(1\)](#page-16-0)

$$
dz = -[D + G]\nabla H(z)dt + \sqrt{2D}dB_t
$$

where

$$
G = \begin{bmatrix} 0 & -I \\ I & 0 \end{bmatrix}, \quad D = \begin{bmatrix} 0 & 0 \\ 0 & C \end{bmatrix}
$$

 \blacktriangleright $p(\theta, r) \propto \exp(-H(\theta, r))$ is the unique stationary distribution of [\(1\)](#page-16-0)

Stochastic Gradient HMC 18/37

- \blacktriangleright Introduced by Chen et al (2014)
- \triangleright Use stochastic gradient in the second order Langevin dynamics. In each iteration
	- ► resample momentum $r^{(t)} \sim \mathcal{N}(0, M)$ (optional), $(\theta_0, r_0) = (\theta^{(t)}, r^{(t)})$

 \blacktriangleright simulate dynamics in [\(1\)](#page-16-0)

$$
\theta_i = \theta_{i-1} + \epsilon_t M^{-1} r_{i-1}
$$

$$
r_i = r_{i-1} + \epsilon_t g(\theta_i) - \epsilon_t C M^{-1} r_{i-1} + \mathcal{N}(0, 2C\epsilon_t)
$$

- \blacktriangleright update the parameter $(\theta^{(t+1)}, r^{(t+1)}) = (\theta_m, r_m)$, no MH correction step
- I Similarly, the stochastic gradient noise is controllable, and when $\epsilon_t \to 0$, **SGHMC** recovers the second order Langevin dynamics

Connection to SGD With Momentum 19/37

► Let $v = \epsilon M^{-1}r$, we can rewrite the update rule in SGHMC

$$
\Delta v = \epsilon^2 M^{-1} g(\theta) - \epsilon M^{-1} C v + \mathcal{N}(0, 2\epsilon^3 M^{-1} C M^{-1})
$$

$$
\Delta \theta = v
$$

 \blacktriangleright Define $\eta = \epsilon^2 M^{-1}, \alpha = \epsilon M^{-1} C$, the update rule becomes

$$
\Delta v = \eta g(\theta) - \alpha v + \mathcal{N}(0, 2\alpha \eta)
$$

$$
\Delta \theta = v
$$

- \blacktriangleright If we ignore the noise term, this is basically SGD with momentum where η is the learning rate and $1 - \alpha$ the momentum coefficient
- \blacktriangleright This connection can be used to guide our choices of SGHMC hyper-parameters

Examples: Univariate Standard Normal 20/37

Examples: Bivariate Gaussain With Correlation 21/37

SGHMC vs SGLD on a bivariate Gaussian with correlation

$$
U(\theta) = \frac{1}{2}\theta^T \Sigma^{-1} \theta, \quad \Sigma^{-1} = \begin{pmatrix} 1 & 0.9 \\ 0.9 & 1 \end{pmatrix}
$$

▶ Stochastic gradient in SGHMC introduces noise. With step size ϵ , the corresponding dynamics is

$$
d\theta = M^{-1}r dt
$$

$$
dr = -\nabla U(\theta)dt - CM^{-1}dt + \sqrt{2(C + \frac{1}{2}\epsilon V(\theta))}dB_t
$$

- \blacktriangleright If somehow we correct the mismatch between friction coefficient and the real noise level, we can improve the approximation accuracy for a finite ϵ
- If But how can we do that given that the noise $V(\theta)$ is unknown?

Nosé-Hoover Thermostat 24/37

 \triangleright One missing key fact is the thermal equilibrium condition:

$$
p(\theta, r) \propto \exp(-(U(\theta) + K(r))/T) \Rightarrow T = \frac{1}{d} \mathbb{E}(r^T r)
$$

- \triangleright Unfortunately, using stochastic gradients destroys the thermal equilibrium condition
- \triangleright We can introduce an additional variable ξ that adaptively controls the mean kinetic energy, and use the following dynamics

$$
d\theta = rdt, \quad dr = g(\theta)dt - \xi rdt + \sqrt{2A}dB_t
$$

$$
d\xi = (\frac{1}{d}r^T r - 1)dt
$$
 (2)

 \triangleright [\(2\)](#page-23-0) is known as the Nosé-Hoover thermostat in statistical physics.

Stochastic Gradient Nosé-Hoover Thermostat 25/37

- \blacktriangleright Introduced by Ding et al (2014)
- \blacktriangleright The algorithm
	- \blacktriangleright Initialized θ_0 , $r_0 \sim \mathcal{N}(0, I)$, and $\xi_0 = A$

$$
\blacktriangleright \ \ \text{For} \ t=1,2,\ldots
$$

$$
r_t = r_{t-1} + \epsilon_t g(\theta_{t-1}) - \epsilon_t \xi_{t-1} r_{t-1} + \sqrt{2A} \mathcal{N}(0, \epsilon)
$$

\n
$$
\theta_t = \theta_{t-1} + \epsilon_t r_t
$$

\n
$$
\xi_t = \xi_{t-1} + \epsilon_t ((r^{(t)})^T r^{(t)}/d - 1)
$$

- \triangleright The thermostat ξ helps to adjust the friction according to the real noise level, and maintains the right mean kinetic energy
	- \blacktriangleright When mean kinetic energy is high, ξ get bigger, increasing friction to cool down the system
	- \blacktriangleright When mean kinetic energy is low, ξ get smaller, reducing friction to heat up the system

Example: A Double-well Potential 26/37

$$
U(\theta) = (\theta + 4)(\theta + 1)(\theta - 1)(\theta - 3)/14 + 0.5
$$

$$
g(\theta)\epsilon = -\nabla U(\theta)\epsilon + \mathcal{N}(0, 2B\epsilon), \quad \epsilon = 0.01, B = 1
$$

For SGNHT, we set $A = 0$

Mathematical Foundation 27/37

 \triangleright Consider the following stochastic differential equation $d\Gamma = v(\Gamma)dt + \mathcal{N}(0, 2D(\theta)dt)$

where $\Gamma = (\theta, r, \xi)$.

 \triangleright p(Γ) \propto exp($-H(\Gamma)$) is the stationary distribution if

$$
\nabla \cdot (p(\Gamma)v(\Gamma)) = \nabla \nabla^T : (p(\Gamma)D)
$$

We can construct H such that the marginal distribution is $p(\theta) \propto \exp(-U(\theta)).$

For SGNHT, $H(\Gamma) = U(\theta) + \frac{1}{2}r^{T}r + \frac{d}{2}$ $\frac{d}{2}(\xi - A)^2$

$$
v(\Gamma) = \begin{bmatrix} r \\ -\nabla U(\theta) - \xi r \\ r^T r/d - 1 \end{bmatrix}, \quad D(\theta) = \begin{bmatrix} 0 & 0 & 0 \\ 0 & A & 0 \\ 0 & 0 & 0 \end{bmatrix}
$$

A Recipe for Continuous Dynamics MCMC 28/37

- Introduced by Ma et al (2015)
- \blacktriangleright Assume target distribution $p(\theta|X)$ is the marginal distribution of $p(z) \propto \exp(-H(z))$
- \triangleright We consider the following stochastic differential equation

$$
dz = -(D(z) + Q(z))\nabla H(z)dt + \Gamma(z)dt + \sqrt{2D(z)}dB_t
$$

$$
\Gamma_i(z) = \sum_{j=1}^d \frac{\partial}{\partial z_j} (D_{ij}(z) + Q_{ij}(z))
$$

 \triangleright Q(z) is a skew-symmetric curl matrix

 \blacktriangleright $D(z)$ denotes the positive semidefinite diffusion matrix

 \blacktriangleright The above dynamics leaves $p(z)$ invariant

The Recipe is Complete 29/37

All existing samplers can be written in framework

- \blacktriangleright HMC
- \blacktriangleright Riemannian HMC
- \blacktriangleright Langevin Dynamics (LD)
- \blacktriangleright Riemannian LD

Adapted from Emily Fox 2017

The Recipe is Complete 29/37

All existing samplers can be written in framework

- \blacktriangleright HMC
- \blacktriangleright Riemannian HMC
- \blacktriangleright Langevin Dynamics (LD)
- \blacktriangleright Riemannian LD

Any valid sampler has a D and Q in the framework

Adapted from Emily Fox 2017

A Practical Algorithm $30/37$

 \triangleright Consider ϵ -discretization

 $z_{t+1} = z_t - \epsilon_t((D(z_t) + Q(z_t))\nabla H(z_t) + \Gamma(z_t)) + \mathcal{N}(0, 2\epsilon_t D(z_t))$

 \blacktriangleright The gradient computation in $\nabla H(z_t)$ could be expansive, can be replaced with stochastic gradient $\nabla \tilde{H}(z_t)$

$$
z_{t+1} = z_t - \epsilon_t((D(z_t) + Q(z_t))\nabla \tilde{H}(z_t) + \Gamma(z_t)) + \mathcal{N}(0, 2\epsilon_t D(z_t))
$$

 \triangleright The gradient noise is still controllable

$$
\nabla \tilde{H}(z_t) = \nabla H(z_t) + (\mathcal{N}(0, V(\theta)), 0)^T
$$

► stochastic gradient noise $\sim \mathcal{N}(0, \epsilon_t^2 V(\theta))$ \triangleright injected noise ∼ $\mathcal{N}(0, 2\epsilon_tD(z_t))$

Stochastic Gradient Riemann HMC 31/37

- \triangleright As shown before, previous stochastic gradient MCMC algorithms all cast into this framework
- \blacktriangleright Moreover, the framework helps to develop new samplers without requiring significant physical intuition
- ► Consider $H(\theta, r) = U(\theta) + \frac{1}{2}r^T r$, modify D and Q to account for the geometry

$$
D(\theta, r) = \begin{pmatrix} 0 & 0 \\ 0 & G(\theta)^{-1} \end{pmatrix}, \quad Q(\theta, r) = \begin{pmatrix} 0 & -G(\theta)^{-1/2} \\ G(\theta)^{-1/2} & 0 \end{pmatrix}
$$

Note that this works for any positive definite $G(\theta)$, not just the fisher information metric

Streaming Wikipedia Analysis 32/37

Applied SGRHMC to online LDA - each entry was analyzed on the fly

Alternative Methods for Scalable MCMC 33/37

- ▶ Reduce the computation in MH correction step via subsets of data (Korattikara et al 2014)
- ▶ Divide and conquer: divide the entire data set into small chunks, run MCMC in parallel for these subsets of data, and merge the results for the true posterior approximation (Scott et al 2016)
- \triangleright Using deterministic approximation instead of stochastic gradients. This may introduce some bias, but remove the unknown noise for gradient estimation, allowing for better exploration efficiency
	- I Gaussian processes: Rasmussen 2003, Lan et al 2016
	- ▶ Reproducing kernel Hilbert space: Strathmann et al 2015
	- ► Random Bases: Zhang et al 2017

References 34/37

- \blacktriangleright M. Welling and Y.W. Teh. Bayesian learning via stochastic gradient Langevin dynamics. In Proceedings of the 28th International Conference on Machine Learning (ICML'11), pages 681–688, June 2011.
- I T. Chen, E.B. Fox, and C. Guestrin. Stochastic gradient Hamiltonian Monte Carlo. In Proceeding of 31st International Conference on Machine Learning (ICML'14), 2014.
- I N. Ding, Y. Fang, R. Babbush, C. Chen, R.D. Skeel, and H. Neven. Bayesian sampling using stochastic gradient thermostats. In Advances in Neural Information Processing Systems 27 (NIPS'14). 2014.

References 35/37

- \blacktriangleright Ma, Y.A., Chen, T. and Fox, E. (2015). A complete recipe for stochastic gradient MCMC. In Advances in Neural Information Processing Systems 2917–2925.
- ▶ A. Korattikara, Y. Chen, and M. Welling. Austerity in MCMC land: Cutting the Metropolis-Hastings budget. In Proceedings of the 30th International Conference on Machine Learning (ICML'14), 2014.
- ▶ Scott, S. L., Blocker, A. W., Bonassi, F. V., Chipman, H. A., George, E. I. and McCullogh, R. E. (2016). Bayes and Big Data: The Consensus Monte Carlo Algorithm. International Journal of Management Science and Engineering Management 11 78-88.

References 36/37

- Rasmussen, C. E. (2003). "Gaussian Processes to Speed up Hybrid Monte Carlo for Expensive Bayesian Integrals." Bayesian Statistics, 7: 651–659.
- ▶ Lan, S., Bui-Thanh, T., Christie, M., and Girolami, M. (2016). Emulation of higher-order tensors in manifold Monte Carlo methods for Bayesian inverse problems. J. Comput. Phys., 308:81–101.
- ▶ Strathmann, H., Sejdinovic, D., Livingstone, S., Szabo, Z., and Gretton, A. Gradient-free Hamiltonian monte carlo with efficient kernel exponential families. In Advances in Neural Information Processing Systems, pp. 955–963, 2015

References 37/37

 \blacktriangleright Zhang, C., Shahbaba, B., and Zhao, H. (2017). "Hamiltonian Monte Carlo acceleration using surrogate functions with random bases." Statistics and Computing, 1–18.

