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Motivation 2/37

I Large scale datasets are becoming more commonly
available across many fields. Learning complex models
from these datasets is the future

I While many modern MCMC methods have been proposed
in recent years, they usually require expensive computation
when the data size is large

I In this lecture, we will discuss recent development on
Markov chain Monte Carlo methods that are applicable to
large scale datasets
I Best of both worlds: scalability, and Bayesian protection

against overfitting



Stochastic Differential Equations 3/37

I Stochastic differential equations are widely used to model
dynamical systems with noise

dXt = µ(Xt, t)dt+ σ(Xt, t)dBt

where B denotes a Wiener process/Brownian motion

I Now suppose the probability density for Xt is p(x, t), we
are interested in how p(x, t) evolves along time

I For example, does it converge to some distribution? If it
does, how can we find it out?



Fokker-Planck Equation 4/37

I It turns out the p(x, t) satisfies the Fokker-Planck equation
(also known as the Kolmogorov forward equation)

∂p(x, t)

∂t
= −

∑
i

∂

∂xi
(µi(x, t)p(x, t))+

∑
i,j

∂2
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where D = 1
2σσ

T is the diffuse tensor

I Example: Weiner process dXt = dBt
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2t



Challenges From Massive Datasets 5/37

I Suppose that we have a large number of data items

D = {x1, x2, . . . , xN}

where N � 1

I The log-posterior (up to a constant) is

log p(θ|X) = log p(θ) +

N∑
i=1

log p(xi|θ) ∼ O(N)

I How to reduce this computation in MCMC without
damaging the convergence to the target distribution?



Stochastic Gradient Ascent 6/37

I Also known as stochastic approximation

I At each iteration
I Get a subset (minibatch) xt1 , . . . , xtn of data items where

n� N
I Approximate gradient of log-posterior using the subset

∇ log p(θt|X) ≈ ∇ log p(θt) +
N

n

n∑
i=1

∇ log p(xti |θt)

I Take a gradient step

θt+1 = θt +
εt
2

(
∇ log p(θt) +

N

n

n∑
i=1

∇ log p(xti |θt)

)



Stochastic Gradient Ascent 7/37

I Major requirement for convergence on step-sizes

∞∑
t=1

εt =∞,
∞∑
t=1

ε2t <∞

I Intuition
I Step sizes cannot decrease too fast, otherwise will not be

able to explore parameter space
I Step sizes must decrease to zero, otherwise will not converge

to a local mode



First Order Langevin Dynamics 8/37

I First order Langevin dynamics can be described by
the following stochastic differential equation

dθt =
1

2
∇ log p(θt|X)dt+ dBt

I The above dynamical system converges to the target
distribution p(θ|X) (easy to verify via the Fokker-Planck
equation)

I Intuition
I Gradient term encourages dynamics to spend more time in

high probability areas
I Brownian motion provides noise so that dynamics will

explore the whole parameter space



Numerical Approximation 9/37

I First order Euler discretization

θt+1 = θt +
ε

2
∇ log p(θt|X) + ηt, ηt = N (0, ε)

I Amount of noise is balanced to gradient step size

I With finite step size, there will be discretization errors. We
can add MH correction step to fix it, and this is MALA!

I As step size ε→ 0, acceptance rate goes to 1



Stochastic Gradient Langevin Dynamics 10/37

I Introduced by Welling and Teh (2011)

I Idea: use stochastic gradients in Langevin dynamics

θt+1 = θt +
εt
2
g(θt) + ηt, ηt = N (0, εt)

g(θt) = ∇ log p(θt) +
N

n

n∑
i=1

∇ log p(xti |θt)

I Update is just stochastic gradient ascent plus Gaussian
noise

I Noise variance is balanced with gradient step sizes

I require step size εt decrease to 0 slowly



Why SGLD Works? 11/37

I Controllable stochastic gradient noise. The stochastic
gradient estimate g(θt) is unbiased, but it introduces noise

g(θt) = ∇ log p(θ|X) +N (0, V (θt))

I Stochastic gradient noise ∼ N (0,O(ε2t ))
I Injected noise ηt ∼ N (0, εt)

I When εt → 0
I Stochastic gradient noise will be dominated by injected

noise ηt, so can be ignored. SGLD then recovers Langevin
dynamics updates with decreasing step sizes

I MH acceptance probability approaches 1, so we can ignore
the expensive MH correction step

I If εt approaches 0 slowly enough, the discretized Langevin
dynamics is still able to explore the whole parameter space



Examples: Mixture of Gaussian 12/37

θ1 ∼ N (0, σ21), θ2 ∼ N (0, σ22)

xi ∼
1

2
N (θ1, σ

2
x) +

1

2
N (θ1 + θ2, σ

2
x)



Examples: Mixture of Gaussian 13/37

Noise and rejection probability



Examples: Logistic Regression 14/37

Log probability vs epoches Test accuracy vs epoches



Naive Stochastic Gradient HMC 15/37

I Now that stochastic gradient scales MALA, it seems
straightforward to use stochastic gradient for HMC

dθ = M−1rdt

dr = g(θ)dt = −∇U(θ)dt+
√
εV (θ)dBt

I However, the resulting dynamics does not leave p(θ, r)
invariant (can be verified via Fokker-Planck equation)

I This deviation can be saved by MH correction, but that
leads to a complex computation vs efficiency trade-off
I Short runs reduce deviation, but requires more expensive

HM steps and does not full utilize the exploration of the
Hamiltonian dynamics

I Long runs lead to low acceptance rates, waste of
computation



Example: Naive Stochastic Gradient HMC Fails 16/37

U(θ) = −2θ2 + θ4



Second Order Langevin Dynamics 17/37

I We can introduce friction into the dynamical system to
reduce the influence of the gradient noise, which leads to
the second order Langevin dynamics

dθ = M−1rdt

dr = −∇U(θ)dt− CM−1rdt+
√

2CdBt

(1)

I Consider the joint space z = (θ, r), rewrite (1)

dz = −[D +G]∇H(z)dt+
√

2DdBt

where

G =

[
0 −I
I 0

]
, D =

[
0 0
0 C

]
I p(θ, r) ∝ exp(−H(θ, r)) is the unique stationary

distribution of (1)



Stochastic Gradient HMC 18/37

I Introduced by Chen et al (2014)

I Use stochastic gradient in the second order Langevin
dynamics. In each iteration
I resample momentum r(t) ∼ N (0,M) (optional),

(θ0, r0) = (θ(t), r(t))
I simulate dynamics in (1)

θi = θi−1 + εtM
−1ri−1

ri = ri−1 + εtg(θi) − εtCM−1ri−1 +N (0, 2Cεt)

I update the parameter (θ(t+1), r(t+1)) = (θm, rm), no MH
correction step

I Similarly, the stochastic gradient noise is controllable, and
when εt → 0, SGHMC recovers the second order Langevin
dynamics



Connection to SGD With Momentum 19/37

I Let v = εM−1r, we can rewrite the update rule in SGHMC

∆v = ε2M−1g(θ)− εM−1Cv +N (0, 2ε3M−1CM−1)

∆θ = v

I Define η = ε2M−1, α = εM−1C, the update rule becomes

∆v = ηg(θ)− αv +N (0, 2αη)

∆θ = v

I If we ignore the noise term, this is basically SGD with
momentum where η is the learning rate and 1− α the
momentum coefficient

I This connection can be used to guide our choices of
SGHMC hyper-parameters



Examples: Univariate Standard Normal 20/37



Examples: Bivariate Gaussain With Correlation 21/37

SGHMC vs SGLD on a bivariate Gaussian with correlation

U(θ) =
1

2
θTΣ−1θ, Σ−1 =

(
1 0.9

0.9 1

)



Examples: MNIST Dataset 22/37



A Recap on SGHMC 23/37

I Stochastic gradient in SGHMC introduces noise. With step
size ε, the corresponding dynamics is

dθ = M−1rdt

dr = −∇U(θ)dt− CM−1dt+

√
2(C +

1

2
εV (θ))dBt

I If somehow we correct the mismatch between friction
coefficient and the real noise level, we can improve the
approximation accuracy for a finite ε

I But how can we do that given that the noise V (θ) is
unknown?



Nosé-Hoover Thermostat 24/37

I One missing key fact is the thermal equilibrium condition:

p(θ, r) ∝ exp (−(U(θ) +K(r))/T )⇒ T =
1

d
E(rT r)

I Unfortunately, using stochastic gradients destroys the
thermal equilibrium condition

I We can introduce an additional variable ξ that adaptively
controls the mean kinetic energy, and use the following
dynamics

dθ = rdt, dr = g(θ)dt− ξrdt+
√

2AdBt

dξ = (
1

d
rT r − 1)dt (2)

I (2) is known as the Nosé-Hoover thermostat in statistical
physics.



Stochastic Gradient Nosé-Hoover Thermostat 25/37

I Introduced by Ding et al (2014)

I The algorithm
I Initialized θ0, r0 ∼ N (0, I), and ξ0 = A
I For t = 1, 2, . . .

rt = rt−1 + εtg(θt−1)− εtξt−1rt−1 +
√

2AN (0, ε)

θt = θt−1 + εtrt

ξt = ξt−1 + εt((r
(t))T r(t)/d− 1)

I The thermostat ξ helps to adjust the friction according to
the real noise level, and maintains the right mean kinetic
energy
I When mean kinetic energy is high, ξ get bigger, increasing

friction to cool down the system
I When mean kinetic energy is low, ξ get smaller, reducing

friction to heat up the system



Example: A Double-well Potential 26/37

U(θ) = (θ + 4)(θ + 1)(θ − 1)(θ − 3)/14 + 0.5

g(θ)ε = −∇U(θ)ε+N (0, 2Bε), ε = 0.01, B = 1

For SGNHT, we set A = 0



Mathematical Foundation 27/37

I Consider the following stochastic differential equation

dΓ = v(Γ)dt+N (0, 2D(θ)dt)

where Γ = (θ, r, ξ).

I p(Γ) ∝ exp(−H(Γ)) is the stationary distribution if

∇ · (p(Γ)v(Γ)) = ∇∇T : (p(Γ)D)

We can construct H such that the marginal distribution is
p(θ) ∝ exp(−U(θ)).

I For SGNHT, H(Γ) = U(θ) + 1
2r

T r + d
2(ξ −A)2

v(Γ) =

 r
−∇U(θ)− ξr
rT r/d− 1

 , D(θ) =

0 0 0
0 A 0
0 0 0





A Recipe for Continuous Dynamics MCMC 28/37

I Introduced by Ma et al (2015)

I Assume target distribution p(θ|X) is the marginal
distribution of p(z) ∝ exp(−H(z))

I We consider the following stochastic differential equation

dz = −(D(z) +Q(z))∇H(z)dt+ Γ(z)dt+
√

2D(z)dBt

Γi(z) =

d∑
j=1

∂

∂zj
(Dij(z) +Qij(z))

I Q(z) is a skew-symmetric curl matrix
I D(z) denotes the positive semidefinite diffusion matrix

I The above dynamics leaves p(z) invariant



The Recipe is Complete 29/37

All existing samplers can
be written in framework

I HMC

I Riemannian HMC

I Langevin Dynamics
(LD)

I Riemannian LD

Any valid sampler has a
D and Q in the
framework

Adapted from Emily Fox 2017
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A Practical Algorithm 30/37

I Consider ε-discretization

zt+1 = zt−εt((D(zt)+Q(zt))∇H(zt)+Γ(zt))+N (0, 2εtD(zt))

I The gradient computation in ∇H(zt) could be expansive,
can be replaced with stochastic gradient ∇H̃(zt)

zt+1 = zt−εt((D(zt)+Q(zt))∇H̃(zt)+Γ(zt))+N (0, 2εtD(zt))

I The gradient noise is still controllable

∇H̃(zt) = ∇H(zt) + (N (0, V (θ)), 0)T

I stochastic gradient noise ∼ N (0, ε2tV (θ))
I injected noise ∼ N (0, 2εtD(zt))



Stochastic Gradient Riemann HMC 31/37

I As shown before, previous stochastic gradient MCMC
algorithms all cast into this framework

I Moreover, the framework helps to develop new samplers
without requiring significant physical intuition

I Consider H(θ, r) = U(θ) + 1
2r

T r, modify D and Q to
account for the geometry

D(θ, r) =

(
0 0
0 G(θ)−1

)
, Q(θ, r) =

(
0 −G(θ)−1/2

G(θ)−1/2 0

)
Note that this works for any positive definite G(θ), not just
the fisher information metric



Streaming Wikipedia Analysis 32/37

Applied SGRHMC to online LDA
- each entry was analyzed on the fly



Alternative Methods for Scalable MCMC 33/37

I Reduce the computation in MH correction step via subsets
of data (Korattikara et al 2014)

I Divide and conquer: divide the entire data set into small
chunks, run MCMC in parallel for these subsets of data,
and merge the results for the true posterior approximation
(Scott et al 2016)

I Using deterministic approximation instead of stochastic
gradients. This may introduce some bias, but remove the
unknown noise for gradient estimation, allowing for better
exploration efficiency
I Gaussian processes: Rasmussen 2003, Lan et al 2016
I Reproducing kernel Hilbert space: Strathmann et al 2015
I Random Bases: Zhang et al 2017
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