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Limitations of Monte Carlo 2/62

» Direct sampling in high-dimensional spaces is often
infeasible, very hard to get rare events
> Rejection sampling, Importance sampling
» Do not work well if the proposal ¢(z) is very different from

f(x) or h(z)f(x).

» Moreover, constructing appropriate g(z) can be difficult.
Making a good proposal usually requires knowledge of the
analytic form of the target distribution - but if we had that,
we wouldn’t even need to sample

» Intuition: instead of a fixed proposal ¢(z), what if we use
an adaptive proposal?

» In this lecture, we are going to talk about one of the most
popular sampling methods, Markov chain Monte Carlo.
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Stochastic Processes & Random Walks 3/62

» Stochastic processes is a family of random variables,
usually indexed by a set of numbers (time). A discrete time
stochastic process is simply a sequence of random variables,
Xo,X1,...,X, defined on the same probability space

» One of the simplest stochastic processes (and one of the
most useful) is the simple random walk

» Consider a simple random walk on a graph G = (Q, E).
The stochastic process starts from an initial position
Xo =z € (2, and proceeds following a simple rule:

p(Xnt1| Xy = x,) ~ Discrete(N (z,,)), Vn >0

where N (x,,) denotes the neighborhood of z,
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Example 4/62

Two random walks on a 10 x 10 grid graph
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Discrete Time, Discrete Space Markov Chains 5/62

» The above simple random walk is a special case of another
well-known stochastic process called Markov chains

» A Markov chain represents the stochastic movement of
some particle in the state space over time. The particle
initially starts from state ¢ with probability 711-(0), and after
that moves from the current state ¢ at time ¢ to the next
state j with probability p;;(t)

» A Markov chain has three main elements:

1. A state space S

2. An initial distribution 7(®) over S

3. Transition probabilities p;;(t) which are non-negative
numbers representing the probability of going from state i
to j, and >, pi;(t) = 1.

» When p;;(t) does not depend on time ¢, we say the Markov

ez x Y
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Markov Property 6/62

» Chain rule (in probability)
p(Xn = Tny-.- ,X[) = I‘o) = Hp(Xz = $1’X<z = $<i)

» Markov property
P(Xip1 = i1 | Xi = 24, ..., Xo = x0) = p(Xip1 = 21| Xs = 7))

» Joint probability with Markov property

n

P(Xn = n, ..., Xo = x0) = [ [ p(Xi = 2l Xi1 = i 1)
i=1

fully determined by the transition probabilities
At 7 X

@

PEKING UNIVERSITY




Example

7/62

» Consider the 2000 US presidential election with three
candidates: Gore, Bush and Nader (just an illustrative
example and does not reflect the reality of that election)

» We assume that the initial distribution of votes (i.e.,
probability of winning) was = = (0.49,0.45,0.06) for Gore,
Bush and Nader respectively

» Further, we assume the following transition probability

matrix

Gore

Gore 0.94

Bush  0.05

Nader 0.05

Bush  Nader
0.05 0.01
0.95 0
0.01 0.94
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Example 8/62

A probabilistic graph presentation of the Markov chain
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Stationary Distribution 9/62

» If we represent the transition probability a square matrix P
such that P;; = p;;, we can obtain the distribution of states
in step n, 7™, as follows

7 — p=Dp _ 70 pn

» For the above example, we have

70 —
710) —

0.4900, 0.4500, 0.0600)
0.4656, 0.4655, 0.0689)
0.4545,0.4697,0.0758)
0.4545,0.4697,0.0758)

(100) _

o~ o~ o~ o~

(200) _
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Stationary Distribution 10/62

» As we can see last, after several iterations, the above
Markov chain converges to a distribution,
(0.4545,0.4697,0.0758)

» In this example, the chain would have reached this
distribution regardless of what initial distribution 7(
chose. Therefore, m = (0.4545,0.4697,0.0758) is the
stationary distribution for the above Markov chain

9 we

» Stationary distribution. A distribution of Markov chain
states is called to be stationary if it remains the same in
the next time step, i.e.,

T=mP
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Stationary Distribution 11/62

v

How can we find out whether such distribution exists?
Even if such distribution exists, is it unique or not?

Also, how do we know whether the chain would converge to
this distribution?

To find out the answer, we briefly discuss some properties
of Markov chains
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Irreducibility 12/62

» Irreducible: A Markov chain is irreducible if the chain can
move from any state to another state.
» Examples

» The simple random walk is irreducible
» The following chain, however, is reducible since Nader does
not communicate with the other two states (Gore and Bush)

Gore Bush Nader
Gore 0.95 0.05 0
Bush  0.05 0.95 0
Nader 0 0 1
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Aperiodicity 13/62

» Period: the period of a state i is the greatest common
divisor of the times at which it is possible to move from i
to 1.

» For example, all the states in the following Markov chain
have period 3.

_ o O

10
0 1
0 0

» Aperiodic: a Markov chain is said to be aperiodic if the
period of each state is 1, otherwise the chain is periodic.
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Recurrent vs. Transient

14/62

» Recurrent states: a state i is called recurrent if with
probability 1, the chain would ever return to state ¢ given

that it started in state 7.

Gore

Gore 0.94
Bush  0.05
Nader 0.05

Bush
0.05
0.95
0.01

Nader
0.01
0
0.94

» Positive recurrent: a recurrent state j is called positive
recurrent if the expected amount of time to return to state
7 given that the chain started in state j is finite

» For a positive recurrent Markov chain, the stationary
distribution exists and is unique

@
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Reversibility 15/62

» Reversibility: a Markov chain is said to be reversible
with respect to a probability distribution 7 if m;p;; = 7;pj;

» In fact, if a Markov chain is reversible with respect to ,
then 7 is also a stationary distribution

Z"szw = Z"ij]z
= Ty ijz

since ), pj; = 1 for all transition probability matrices

» This is also known as detailed balance condition
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Discrete Time, General Space Markov Chains 16/62

» We can define a Markov chain on a general state space X
with initial distribution 7(®) and transition probabilities
p(z, A) defined as the probability of jumping to the subset
A from point z € X

» Similarly, with Markov property, we have the joint
probability

p(XOEAOw-';XneAn):/

ﬂ(o)(dazo) .. / p(xp—1,dxy)
Ao n

» Example. Consider a Markov chain with the real line as its
state space. The initial distribution is A/ (0,1), and the
transition probability is p(z,-) = N (x,1). This is just a
Brownian motion (observed at discrete time)
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¢-irreducibility and ¢-aperiodicity 17/62

» Unlike the discrete space, we now need to talk about the
property of Markov chains with a continuous non-zero
measure ¢, on X, and use sets A instead of points

» A chain is ¢-irreducible if for all A C X with ¢(A) > 0 and
for all x € X, there exists a positive integer n such that

pt(x,A) =p(X, € Al Xg=2) >0

» Similarly, we need to modify our definition of period
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Stationary Distribution 18/62

> A distribution 7 is a stationary distribution if
m(A) :/ m(dx)p(x,A), VACX
X

» As for the discrete case, a continuous space Markov chain
is reversible with respect to 7 if

m(dz)p(z, dy) = 7(dy)p(y, dz)

» Similarly, if the chain is reversible with respect to 7, then 7
is a stationary distribution

» Example. Consider a Markov chain on the real line with
initial distribution N(1,1) and transition probability
p(z,-) = N(5, 4) It is easy to show that the chain
converges to NV (0,1) (Exercise)
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Ergodicity 19/62

>

>

Ergodic: a Markov chain is ergodic if it is both irreducible
and aperiodic, with stationary distribution m

Ergodic Theorem. For an ergodic Markov chain on the
state space X having stationary distribution m, we have: (i)
for all measurable A C X and 7-a.e. z € X,

. t _
Jim p*(z, A) = w(A)

(i) Vf with E.|f(z)| < oo,

In particular, 7 is the unique stationary probability density

ez x Y
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Markov chain Monte Carlo 20/62

» Now suppose we are interested in sampling from a
distribution 7 (e.g., the unnormalized posterior)

» Markov chain Monte Carlo (MCMC) is a method that
samples from a Markov chain whose stationary distribution
is the target distribution 7. It does this by constructing an
appropriate transition probability for m

» MCMC, therefore, can be viewed as an inverse process of
Markov chains

Markov Chains M@rﬂ@@w Chain Monte Carlo

Transition Distribution G Probabilities

Probabilities Distribution

NFIFER
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Markov chain Monte Carlo 21/62

» The transition probability in MCMC resembles the
proposal distribution we used in previous Monte Carlo
methods.

» Instead of using a fixed proposal (as in importance
sampling and rejection sampling), MCMC algorithms
feature adaptive proposals

MCMC with adaptive

| rt li ith
mportance sampling wi proposal Q(x'|x)

a (bad) proposal Q(x)

P(x) P(x)

3|y 2’ 4|3
Q) Qe Q0 Qi)

Figures adapted from Eric Xing (CMU)
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The Metropolis Algorithm 22/62

> Suppose that we are interested in sampling from a
distribution 7, whose density we know up to a constant
P(z) < m(x)

» We can construct a Markov chain with a transition
probability (i.e., proposal distribution) Q(z'|z) which is
symmetric; that is, Q(2|z) = Q(z|z")

» Example. A normal distribution with the mean at the
current state and fixed variance o2 is symmetric since

ez x Y
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The Metropolis Algorithm 23/62

In each iteration we do the following

>

>

Draws a sample 2’ from Q(z'|z), where z is the previous
sample

Calculated the acceptance probability

a(a'|z) = min (1, 1;<()>>

P(z’)
P(z)°

Note that we only need to compute the unknown

constant cancels out

Accept the new sample with probability a(z’|z) or remain
at state x. The acceptance probability ensures that, after
sufficient many draws, our samples will come from the true
distribution 7 (z)
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Example: Gaussian Mixture Model

0.15

0.1 i=100

0.15

0.1

24/62

Adapted from Andrieu, Freitas, Doucet, Jordan, 2003
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The Metropolis Algorithm 25,62

» How do we know that the chain is going to converge to 77

» Suppose the support of the proposal distribution is X' (e.g.,
Gaussian distribution), then the Markov chain is
irreducible and aperiodic.

» We only need to verify the detailed balance condition

7(dz)p(x,dr') = m(x)dx - Q(2'|z)a(x|x)dx’

= x) min m(a’) zdx
= 7m(2)Q(2'|z) 1, (@) )d d
= Q(2'|z) min(n (), 7(2'))dzdz
= Q(z|2) min(w(:/v’), 7(z))drds’
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The Metropolis-Hastings Algorithm 26/62

» It turned out that symmetric proposal distribution is not
necessary. Hastings (1970) later on generalized the above
algorithm using the following acceptance probability for
general Q(2'|x)

(L PEQ)
alwle) = (1’ P(m)@(x'm)

» Similarly, we can show that detailed balanced condition is
preserved
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Proposal Distribution 27/62

» Under mild assumptions on the proposal distribution @,
the algorithm is ergodic
» However, the choice of () is important since it determines
the speed of convergence to m and the efficiency of sampling
» Usually, the proposal distribution depend on the current
state. But it can be independent of current state, which
leads to an independent MCMC sampler that is somewhat
like a rejection/importance sampling method
» Some examples of commonly used proposal distributions
> Q(a'|z) ~ N(z,0?)
» Q(z'|z) ~ Uniform(z — é,x + J)

» Finding a good proposal distribution is hard in general

ez x Y
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Examples: Gaussian Model with Known Variance 28/62

» Recall the univariate Gaussian model with known variance

'NN(Q 02)

yi — 0)*
p(416,0) = H Ao ()

» Note that there is a conjugate N (uo, Tg) prior for ¢, and
the posterior has a close form normal distribution

> Now let’s pretend that we don’t know this exact posterior
distribution and use a Markov chain to sample from it.
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Examples: Gaussian Model with Known Variance 29/62

» We can of course write the posterior distribution up to a
constant

plo) xexp (L5200 [T (- 220) = P

» We use V(A 1), a normal distribution around our current
state, to propose the next step

» Starting from an initial point (%) and propose the next
step 6 ~ N(0(), 1), we either accept this value with
probability a(6'[6) or reject and stay where we are

> We continue these steps for many iterations
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Examples: Gaussian Model with Known Variance 30/62

» As we can see, the posterior distribution we obtained using
the Metropolis algorithm is very similar to the exact
posterior

75
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Example: Poisson Model with Gamma Prior 31/62

» Now suppose we want to model the number of half court
shots Stephen Curry has made in a game using Poisson
model

y; ~ Poisson(6)

» He made 0 and 1 half court shots in the first two games
respectively

» We used Gamma(1.4,10) prior for 6, and because of
conjugacy, the posterior distribution also had a Gamma
distribution

0ly ~ Gamma(2.4,12)

» Again, let’s ignore the closed form posterior and use
MCMC for sampling the posterior distribution

ez x Y
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Examples: Poisson Model with Gamma Prior 32/62

» The prior is
p(6) o< 0% exp(—106)

» The likelihood is
p(yl0) oc 6172 exp(—20)

where y; =0 and yo = 1

» Therefore, the posterior is proportional to

p(Bly) ox 694 exp(—106) - 9% exp(~26) = P(9)

ez x Y
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Examples: Poisson Model with Gamma Prior 33/62

» Symmetric proposal distributions such as
Uniform(9 — 5,09 + 6) or N'(01, 02)

might not be efficient since they do not take the
non-negative support of the posterior into account.

» Here, we use a non-symmetric proposal distribution such as
Uniform(0, 0% + §) and use the Metropolis-Hastings (MH)
algorithm instead

> Weset d =1
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Examples: Poisson Model with Gamma Prior 34/62

We start from 6y = 1 and follow these steps in each iteration
» Sample ¢ from U(0,0% + 1)
» Calculate the acceptance probability

' ") Uni ®10. ¢’
a(¢')0") = min (17 P(0)Uniform(09[0,0" + 1) )

P(0@)Uniform (6|0, 0@ + 1)
» Sample u ~ U(0,1) and set

pli+1) — 0 u<a(@0")
1 0% otherwise
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Examples: Poisson Model with Gamma Prior 35/62
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Multivartiate Distributions 36,/62

>

>

What if the distribution is multidimensional, i.e.,

x = (z1,22,...,2q)

We can still use the Metropolis algorithm (or MH), with a
multivariate proposal distribution, i.e., we now propose

o = (xf,2h,..., 7))

For example, we can use a multivariate normal Ny(z, o21),
or a d-dimensional uniform distribution around the current
state

ez x Y
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Examples: Banana Shape Distribution 37/62

>

Here we construct a banana-shaped posterior distribution
as follows

ylo ~ N (61 + 9%,03), oy =2
We generate data y; ~ N'(1,07)

We use a bivariate normal prior for 6
0 = (01,02) ~N(0,1)

The posterior is

6 +0%> o (El 0 6%)2)

p(fly) oc exp <— 5 207

We use the Metropolis algorithm to sample from posterior,
with a bivariate normal proposal distribution such as

N9, (0.15)21) Gy e X ¥
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Examples: Banana Shape Distribution 38/62

The first few samples from the posterior distribution of
0 = (01, 62), using a bivariate normal proposal
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Examples: Banana Shape Distribution 39/62

Posterior samples for 6 = (61, 62)
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Examples: Banana Shape Distribution 40/62

Trace plot of posterior samples for 6 = (61, 62)
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Decomposing the Parameter Space 41/62

> Sometimes, it is easier to decompose the parameter space
into several components, and use the Metropolis (or MH)
algorithm for one component at a time

» At iteration 4, given the current state (l'gi), . ,x((;)), we do
the following for all components k =1,2,...,d

» Sample ) from the univariate proposal distribution

1 i
Q. el e ) |
» Accept this new value and set z,(;H) = . with probability

' j P...,x(iﬂ),x’,...
“(W"'a:vﬁ_*f),x}j),...)) = min [ 1, ( k=1 2Tk )
P 0

yVk—1 2k

or reject it and set J;SH) = xg)

ez x Y

@

PEKING UNIVERSITY




Decomposing the Parameter Space 42/62

» Note that in general, we can decompose the space of
random variable into blocks of components

» Also, we can update the components sequentially or
randomly

» As long as each transition probability individually leaves
the target distribution invariant, their sequence would leave
the target distribution invariant

» In Bayesian models, this is especially useful if it is easier
and computationally less intensive to evaluate the posterior
distribution when one subset of parameters change at a
time

ez x Y
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Example: Banana

Shape Distribution 43/62

» In the example of banana-shaped distribution, we can
sample 61 and 05 one at a time

» The first few samples from the posterior distribution of
0 = (01, 02), using a univariate normal proposal sequentially
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The Gibbs Sampler 44/62

> As the dimensionality of the parameter space increases, it
becomes difficult to find an appropriate proposal
distributions (e.g., with appropriate step size) for the
Metropolis (or MH) algorithm

» If we are lucky (in some situations we are!), the conditional
distribution of one component, x;, given all other
components, x_; is tractable and has a close form so that
we can sample from it directly

» If that’s the case, we can sample from each component one
at a time using their corresponding conditional
distributions P(xj|x_;)

ez x Y
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The Gibbs Sampler 45/62

» This is known as the Gibbs sampler (GS) or “heat bath”
(Geman and Geman, 1984)

> Note that in Bayesian analysis, we are mainly interested in
sampling from p(6|y)

» Therefore, we use the Gibbs sampler when P(6;|y, 6_;) has
a closed form, e.g., there is a conditional conjugacy

» Omne example is the univariate normal model. As we will
see later, given o, the posterior P(uly,o?) has a closed
form, and given u, the posterior distribution of P(o2|u,y)
also has a closed form

ez x Y
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The Gibbs Sampler 46/62

» The Gibbs sampler works as follows

» Initialize starting value for x1,x2,..., 24
» At each iteration, pick an ordering of the d variables (can
be sequential or random)

1. Sample © ~ P(x;|®1,...,%i—1,Tit1,-..,Tq), €., the
conditional distribution of x; given the current values of all
other variables

2. Update x; =

» When we update x;, we immediately use it new value for
sampling other variables z;

ez x Y
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GS is A Special Case of MH 47/62

» Note that in GS, we are not proposing anymore, we are
directly sampling, which can be viewed as a proposal that
will always be accepted

» This way, the Gibbs sampler can be viewed as a special
case of MH, whose proposal is

Q(}, w_i|wy, x_;) = P(xf|x_;)

» Applying MH with this proposal, we obtain

a(x, x—i|vs, ;) = min (17
. Pz, x_;)P(xi|z—;) ) Pz}, x_;)P(xi,x_;)
= 1 2 — 1 2
mm( " Plri,a_)P@lo—)) 0\ Plas, o) P2, 7_;)
=1

ez X P
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Examples: Univariate Normal Model 48/62

» We can now use the Gibbs sampler to simulate samples
from the posterior distribution of the parameters of a
univariate normal y ~ A (i, %) model, with prior

MNN(H07T()2)7 o NInV'XQ(V07O-(2))
» Given (0())? at the i*? iteration, we sample p(*+1) from

Ho ny
'u(i—&—l) ~ N <Tg + (c@)2 1 >

1, _n 1, _n
RO IO

» Given pt1), we sample a new ¢ from

2 n
(132 Ty Yoy +vn _ 1 (D)2
(o ) nv-x~(vo+n, 7o+ 1 ), vV - ngl(y] 1z )

ez x Y
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Examples: Univariate Normal Model 49/62

» The following graphs show the trace plots of the posterior
samples (for both p and o)
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Application in Probabilistic Graphical Models 50,/62

Gibbs sampling algorithms have been widely used in
probabilistic graphical models
» Conditional distributions are fairly easy to derive for many
graphical models (e.g., mixture models, Latent Dirichlet
allocation)
» Have reasonable computation and memory requirements,
only needs to sample one random variable at a time

» Can be Rao-Blackwellized (integrate out some random
variable) to decrease the sampling variance. This is known
as collapsed Gibbs sampling.

ez x Y

@

PEKING UNIVERSITY




Energy-Based Models 51/62

» Energy-based models (EBMs) associate a scalar energy to
each configuration of the variables of interest

» We can modify the energy function so that its shape has
desirable properties, e.g., plausible configurations would
have lower energy

» Energy-based probabilistic models define a probability
distribution through an energy function as follows

pe) = g ep(-B@), 2= ep(-Ew)

» EBMs can be learnt by maximizing the log-likelihood using
stochastic gradient

_Ologpp(z) _ 9Ep(z) o OEp(z)
90 90 2~po(2) 5

ez x Y
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EBMs with Hidden Units 52/62

» In many cases, we do not have full observation, or we want
to introduce latent variables to increase model capacity

me h) Zexp (1)

» We can define free energy to turn (1) into a regular EBM

p(z) = %exp(—]—"(az)), F(x) = —logZexp(—E x,h
h

» An interesting form for the gradient

_Ologpy(z) _ 9Fp(x) o OFp ()
06 o6 wpo(®) "5y
OFEy(z, h) OFEy(z, h)
= Brporln) g ~ Ewhepy (z,h)T

=~/ PEKING UNIVF ksITY




Restricted Boltzmann Machines 53/62

» Restricted Boltzmann Machines (RBMs) are a particular
form of EBMs where the energy function is a bilinear
function of the visible and hidden variables

E(v,h) = =b"v — ¢'h — KT W

» The visible and hidden units are conditionally independent

p(hlv) = Hp(hilv% p(vlh) = Hp(vjlh)

ez x Y
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Gibbs Sampling in RBMs 54/62

» When v and h are binary variables, we have
p(h; = 1|v) = sigmoid(c;+W;v), p(v; = 11h) = Sigmoid(bj—l—W]Th)
» Use Gibbs sampling for training and sampling
A"~ Bernoulli (sigmoid(c + Wv(”))>
o™+ ~ Bernoulli (sigmoid(b + WTh(”H)))

» Contrastive Divergence:

_Ologpy(v)  9Fp(v)  O0F4(0)
o0 0o o0

where v is a sample from the MCMC chain after k steps
starting from the observed sample v.
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Combining Metropolis with Gibbs 55/62

» For more complex models, we might only have conditional
conjugacy for one part of the parameters

» In such situations, we can combine the Gibbs sampler with
the Metropolis method

» That is, we update the components with conditional
conjugacy using Gibbs sampler and for the rest parameters,
we use the Metropolis (or MH)
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MCMC Diagnostics 56/62

» MCMC would converge to the target distribution if run
sufficiently long

» However, it is often non-trivial to determine whether the
chain has converged or not in practice

» Also, how do we measure the efficiency of MCMC chains?

» In what follows, we will discuss some practical advice for
coding MCMC algorithms
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Graphical Diagnostics: Mixing Rate 57/62
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Monitor convergence by plotting samples from multiple MH
runs (chains)
» If the chains are well-mixed (left), they are probably
converged
» If the chains are poorly-mixed (right), we may need to

continue burn-in
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ANELTES
risd PEKING UNIVERSITY




Graphical Diagnostics: Autocorrelation 58/62
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» An autocorrelation plot summarizes the correlation in the
sequence of a Markov chain at different iteration lags

» A chain that has poor mixing will exhibit slow decay of the
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Effective Sample Size 59/62

» Since MCMC samples are correlated, effective sample size
are often used to measure the efficiency when MCMC
samples are used for estimation instead of independent
samples

» The effective sample size (ESS) is defined as

n
1+ 22?:1 p(k)

where p(k) is the autocorrelation at lag k

ESS

> ESS are commonly used to compare the efficiency of
competing MCMC samplers for a given problem. Larger
ESS usually means faster convergence
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Multiple Chains 60/62

» One of the hardest problem to diagnose is whether or not
the chain has become stuck in one or more modes of the
target distribution

» In this case, all convergence diagnostics may indicate that
the chain has converged, though it does not

» A partial solution: run multiple chains and compare the
within- and between-chain behavior
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