Statistical Models & Computing Methods

Lecture 4: Markov Chain Monte Carlo

Cheng Zhang

School of Mathematical Sciences, Peking University

October 29, 2020

Limitations of Monte Carlo 2/62

- \triangleright Direct sampling in high-dimensional spaces is often infeasible, very hard to get rare events
- \blacktriangleright Rejection sampling, Importance sampling
	- \blacktriangleright Do not work well if the proposal $q(x)$ is very different from $f(x)$ or $h(x) f(x)$.
	- \blacktriangleright Moreover, constructing appropriate $q(x)$ can be difficult. Making a good proposal usually requires knowledge of the analytic form of the target distribution - but if we had that, we wouldn't even need to sample
- Intuition: instead of a fixed proposal $q(x)$, what if we use an adaptive proposal?
- \blacktriangleright In this lecture, we are going to talk about one of the most popular sampling methods, Markov chain Monte Carlo.

Stochastic Processes & Random Walks $3/62$

- \triangleright Stochastic processes is a family of random variables, usually indexed by a set of numbers (time). A discrete time stochastic process is simply a sequence of random variables, X_0, X_1, \ldots, X_n defined on the same probability space
- ▶ One of the simplest stochastic processes (and one of the most useful) is the simple random walk
- \blacktriangleright Consider a simple random walk on a graph $G = (\Omega, E)$. The stochastic process starts from an initial position $X_0 = x_0 \in \Omega$, and proceeds following a simple rule:

$$
p(X_{n+1}|X_n = x_n) \sim \text{Discrete}(\mathcal{N}(x_n)), \ \forall n \ge 0
$$

where $\mathcal{N}(x_n)$ denotes the neighborhood of x_n

Example $4/62$

Two random walks on a 10×10 grid graph

Discrete Time, Discrete Space Markov Chains $5/62$

- \blacktriangleright The above simple random walk is a special case of another well-known stochastic process called Markov chains
- \blacktriangleright A Markov chain represents the stochastic movement of some particle in the state space over time. The particle initially starts from state *i* with probability $\pi_i^{(0)}$ $i^{(0)}$, and after that moves from the current state i at time t to the next state j with probability $p_{ij}(t)$
- \blacktriangleright A Markov chain has three main elements:
	- 1. A state space S
	- 2. An initial distribution $\pi^{(0)}$ over S
	- 3. Transition probabilities $p_{ij}(t)$ which are non-negative numbers representing the probability of going from state i to j, and $\sum_j p_{ij}(t) = 1$.
- \blacktriangleright When $p_{ij}(t)$ does not depend on time t, we say the Markov chain is time-homegenous

Markov Property 6/62

 \blacktriangleright Chain rule (in probability)

$$
p(X_n = x_n, \dots, X_0 = x_0) = \prod_{i=1}^n p(X_i = x_i | X_{< i} = x_{< i})
$$

 \blacktriangleright Markov property

$$
p(X_{i+1} = x_{i+1} | X_i = x_i, \dots, X_0 = x_0) = p(X_{i+1} = x_{i+1} | X_i = x_i)
$$

 \triangleright Joint probability with Markov property

$$
p(X_n = x_n, \dots, X_0 = x_0) = \prod_{i=1}^n p(X_i = x_i | X_{i-1} = x_{i-1})
$$

fully determined by the transition probabilities

$Example \t\t\t 7/62$

- \triangleright Consider the 2000 US presidential election with three candidates: Gore, Bush and Nader (just an illustrative example and does not reflect the reality of that election)
- \blacktriangleright We assume that the initial distribution of votes (i.e., probability of winning) was $\pi = (0.49, 0.45, 0.06)$ for Gore, Bush and Nader respectively
- \blacktriangleright Further, we assume the following transition probability matrix

Example $8/62$

A probabilistic graph presentation of the Markov chain

Stationary Distribution 9/62

If we represent the transition probability a square matrix P such that $P_{ij} = p_{ij}$, we can obtain the distribution of states in step $n, \pi^{(n)}$, as follows

$$
\pi^{(n)} = \pi^{(n-1)}P = \ldots = \pi^{(0)}P^n
$$

 \blacktriangleright For the above example, we have

$$
\pi^{(0)} = (0.4900, 0.4500, 0.0600)
$$

$$
\pi^{(10)} = (0.4656, 0.4655, 0.0689)
$$

$$
\pi^{(100)} = (0.4545, 0.4697, 0.0758)
$$

$$
\pi^{(200)} = (0.4545, 0.4697, 0.0758)
$$

Stationary Distribution 10/62

- \triangleright As we can see last, after several iterations, the above Markov chain converges to a distribution, (0.4545, 0.4697, 0.0758)
- \blacktriangleright In this example, the chain would have reached this distribution regardless of what initial distribution $\pi^{(0)}$ we chose. Therefore, $\pi = (0.4545, 0.4697, 0.0758)$ is the stationary distribution for the above Markov chain
- \triangleright Stationary distribution. A distribution of Markov chain states is called to be stationary if it remains the same in the next time step, i.e.,

$$
\pi = \pi P
$$

- \blacktriangleright How can we find out whether such distribution exists?
- \triangleright Even if such distribution exists, is it unique or not?
- \blacktriangleright Also, how do we know whether the chain would converge to this distribution?
- \triangleright To find out the answer, we briefly discuss some properties of Markov chains

Irreducibility 12/62

- \blacktriangleright Irreducible: A Markov chain is irreducible if the chain can move from any state to another state.
- \blacktriangleright Examples
	- \blacktriangleright The simple random walk is irreducible
	- \blacktriangleright The following chain, however, is reducible since Nader does not communicate with the other two states (Gore and Bush)

Aperiodicity 13/62

- \blacktriangleright Period: the period of a state i is the greatest common divisor of the times at which it is possible to move from i to i.
- \triangleright For example, all the states in the following Markov chain have period 3.

$$
\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}
$$

▶ Aperiodic: a Markov chain is said to be aperiodic if the period of each state is 1, otherwise the chain is periodic.

Recurrent vs. Transient 14/62

 \blacktriangleright Recurrent states: a state i is called recurrent if with probability 1, the chain would ever return to state i given that it started in state i.

- \triangleright Positive recurrent: a recurrent state *i* is called positive recurrent if the expected amount of time to return to state j given that the chain started in state j is finite
- \triangleright For a positive recurrent Markov chain, the stationary distribution exists and is unique

Reversibility 15/62

- \triangleright Reversibility: a Markov chain is said to be reversible with respect to a probability distribution π if $\pi_i p_{ij} = \pi_j p_{ji}$
- In fact, if a Markov chain is reversible with respect to π , then π is also a stationary distribution

$$
\sum_{i} \pi_{i} p_{ij} = \sum_{i} \pi_{j} p_{ji}
$$

$$
= \pi_{j} \sum_{i} p_{ji}
$$

$$
= \pi_{j}
$$

since $\sum_i p_{ji} = 1$ for all transition probability matrices \blacktriangleright This is also known as *detailed balance condition*

Discrete Time, General Space Markov Chains 16/62

- \triangleright We can define a Markov chain on a general state space X with initial distribution $\pi^{(0)}$ and transition probabilities $p(x, A)$ defined as the probability of jumping to the subset A from point $x \in \mathcal{X}$
- \triangleright Similarly, with Markov property, we have the joint probability

$$
p(X_0 \in A_0, \dots, X_n \in A_n) = \int_{A_0} \pi^{(0)}(dx_0) \dots \int_{A_n} p(x_{n-1}, dx_n)
$$

 \triangleright Example. Consider a Markov chain with the real line as its state space. The initial distribution is $\mathcal{N}(0, 1)$, and the transition probability is $p(x, \cdot) = \mathcal{N}(x, 1)$. This is just a Brownian motion (observed at discrete time)

ϕ -irreducibility and ϕ -aperiodicity 17/62

- \blacktriangleright Unlike the discrete space, we now need to talk about the property of Markov chains with a continuous non-zero measure ϕ , on X, and use sets A instead of points
- A chain is ϕ -irreducible if for all $A \subseteq \mathcal{X}$ with $\phi(A) > 0$ and for all $x \in \mathcal{X}$, there exists a positive integer n such that

$$
p^{n}(x, A) = p(X_n \in A | X_0 = x) > 0
$$

 \triangleright Similarly, we need to modify our definition of period

Stationary Distribution 18/62

 \blacktriangleright A distribution π is a stationary distribution if

$$
\pi(A) = \int_{\mathcal{X}} \pi(dx) p(x, A), \quad \forall A \subseteq \mathcal{X}
$$

 \triangleright As for the discrete case, a continuous space Markov chain is reversible with respect to π if

$$
\pi(dx)p(x,dy) = \pi(dy)p(y,dx)
$$

- \triangleright Similarly, if the chain is reversible with respect to π , then π is a stationary distribution
- ► Example. Consider a Markov chain on the real line with initial distribution $\mathcal{N}(1, 1)$ and transition probability $p(x, \cdot) = \mathcal{N}(\frac{x}{2})$ $\frac{x}{2}, \frac{3}{4}$ $\frac{3}{4}$). It is easy to show that the chain converges to $\mathcal{N}(0,1)$ (Exercise)

Ergodicity 19/62

- \triangleright Ergodic: a Markov chain is ergodic if it is both irreducible and aperiodic, with stationary distribution π
- ► Ergodic Theorem. For an ergodic Markov chain on the state space X having stationary distribution π , we have: (i) for all measurable $A \subseteq \mathcal{X}$ and π -a.e. $x \in \mathcal{X}$,

$$
\lim_{t \to \infty} p^t(x, A) = \pi(A)
$$

(ii) $\forall f$ with $\mathbb{E}_{\pi}|f(x)| < \infty$,

$$
\lim_{T \to \infty} \frac{1}{T} \sum_{t=1}^{T} f(X_t) = \int_{\mathcal{X}} f(x) \pi(x) dx, \text{ a.s.}
$$

In particular, π is the unique stationary probability density function for the chain

Markov chain Monte Carlo 20/62

- \triangleright Now suppose we are interested in sampling from a distribution π (e.g., the unnormalized posterior)
- ▶ Markov chain Monte Carlo (MCMC) is a method that samples from a Markov chain whose stationary distribution is the target distribution π . It does this by constructing an appropriate transition probability for π
- \blacktriangleright MCMC, therefore, can be viewed as an inverse process of Markov chains

Markov chain Monte Carlo 21/62

- \triangleright The transition probability in MCMC resembles the proposal distribution we used in previous Monte Carlo methods.
- \blacktriangleright Instead of using a fixed proposal (as in importance sampling and rejection sampling), MCMC algorithms feature adaptive proposals

Figures adapted from Eric Xing (CMU)

The Metropolis Algorithm 22/62

- \triangleright Suppose that we are interested in sampling from a distribution π , whose density we know up to a constant $P(x) \propto \pi(x)$
- \triangleright We can construct a Markov chain with a transition probability (i.e., proposal distribution) $Q(x'|x)$ which is symmetric; that is, $Q(x'|x) = Q(x|x')$
- \triangleright Example. A normal distribution with the mean at the current state and fixed variance σ^2 is symmetric since

$$
\exp\left(-\frac{(y-x)^2}{2\sigma^2}\right) = \exp\left(-\frac{(x-y)^2}{2\sigma^2}\right)
$$

The Metropolis Algorithm 23/62

In each iteration we do the following

- In Draws a sample x' from $Q(x'|x)$, where x is the previous sample
- \triangleright Calculated the acceptance probability

$$
a(x'|x) = \min\left(1, \frac{P(x')}{P(x)}\right)
$$

Note that we only need to compute $\frac{P(x')}{P(x)}$ $\frac{F(x)}{P(x)}$, the unknown constant cancels out

Accept the new sample with probability $a(x'|x)$ or remain at state x. The acceptance probability ensures that, after sufficient many draws, our samples will come from the true distribution $\pi(x)$

Example: Gaussian Mixture Model 24/62

The Metropolis Algorithm 25/62

- \blacktriangleright How do we know that the chain is going to converge to π ?
- \blacktriangleright Suppose the support of the proposal distribution is X (e.g., Gaussian distribution), then the Markov chain is irreducible and aperiodic.

 \triangleright We only need to verify the detailed balance condition

$$
\pi(dx)p(x, dx') = \pi(x)dx \cdot Q(x'|x)a(x'|x)dx'
$$

\n
$$
= \pi(x)Q(x'|x)\min\left(1, \frac{\pi(x')}{\pi(x)}\right)dxdx'
$$

\n
$$
= Q(x'|x)\min(\pi(x), \pi(x'))dxdx'
$$

\n
$$
= Q(x|x')\min(\pi(x'), \pi(x))dxdx'
$$

\n
$$
= \pi(x')dx' \cdot Q(x|x')\min\left(1, \frac{\pi(x)}{\pi(x')}\right)dx
$$

\n
$$
= \pi(dx')p(x', dx)
$$

The Metropolis-Hastings Algorithm 26/62

 \blacktriangleright It turned out that symmetric proposal distribution is not necessary. Hastings (1970) later on generalized the above algorithm using the following acceptance probability for general $Q(x'|x)$

$$
a(x'|x) = \min\left(1, \frac{P(x')Q(x|x')}{P(x)Q(x'|x)}\right)
$$

 \triangleright Similarly, we can show that detailed balanced condition is preserved

Proposal Distribution 27/62

- \blacktriangleright Under mild assumptions on the proposal distribution Q , the algorithm is ergodic
- \blacktriangleright However, the choice of Q is important since it determines the speed of convergence to π and the efficiency of sampling
- \triangleright Usually, the proposal distribution depend on the current state. But it can be independent of current state, which leads to an independent MCMC sampler that is somewhat like a rejection/importance sampling method
- ▶ Some examples of commonly used proposal distributions

$$
\blacktriangleright \ Q(x'|x) \sim \mathcal{N}(x, \sigma^2)
$$

$$
\blacktriangleright \ \hat{Q}(x'|x) \sim \text{Uniform}(x - \delta, x + \delta)
$$

 \triangleright Finding a good proposal distribution is hard in general

Examples: Gaussian Model with Known Variance 28/62

 \triangleright Recall the univariate Gaussian model with known variance

$$
y_i \sim \mathcal{N}(\theta, \sigma^2)
$$

$$
p(y|\theta, \sigma) = \prod_{i=1}^n \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{(y_i - \theta)^2}{2\sigma^2}\right)
$$

- \blacktriangleright Note that there is a conjugate $\mathcal{N}(\mu_0, \tau_0^2)$ prior for θ , and the posterior has a close form normal distribution
- \triangleright Now let's pretend that we don't know this exact posterior distribution and use a Markov chain to sample from it.

Examples: Gaussian Model with Known Variance 29/62

 \triangleright We can of course write the posterior distribution up to a constant

$$
p(\theta|y) \propto \exp\left(\frac{(\theta - \mu_0)^2}{2\tau_0^2}\right) \prod_{i=1}^n \exp\left(-\frac{(y_i - \theta)^2}{2\sigma^2}\right) = P(\theta)
$$

- \blacktriangleright We use $\mathcal{N}(\theta^{(i)}, 1)$, a normal distribution around our current state, to propose the next step
- Starting from an initial point $\theta^{(0)}$ and propose the next step $\theta' \sim \mathcal{N}(\theta^{(0)}, 1)$, we either accept this value with probability $a(\theta'|\theta^{(0)})$ or reject and stay where we are
- \blacktriangleright We continue these steps for many iterations

Examples: Gaussian Model with Known Variance 30/62

 \triangleright As we can see, the posterior distribution we obtained using the Metropolis algorithm is very similar to the exact posterior

Example: Poisson Model with Gamma Prior $31/62$

 \triangleright Now suppose we want to model the number of half court shots Stephen Curry has made in a game using Poisson model

$$
y_i \sim \text{Poisson}(\theta)
$$

- \blacktriangleright He made 0 and 1 half court shots in the first two games respectively
- \blacktriangleright We used Gamma $(1.4, 10)$ prior for θ , and because of conjugacy, the posterior distribution also had a Gamma distribution

 $\theta|y \sim \text{Gamma}(2.4, 12)$

 \blacktriangleright Again, let's ignore the closed form posterior and use MCMC for sampling the posterior distribution

Examples: Poisson Model with Gamma Prior $32/62$

 \blacktriangleright The prior is

$$
p(\theta) \propto \theta^{0.4} \exp(-10\theta)
$$

 \blacktriangleright The likelihood is

$$
p(y|\theta) \propto \theta^{y_1+y_2} \exp(-2\theta)
$$

where $y_1 = 0$ and $y_2 = 1$

 \blacktriangleright Therefore, the posterior is proportional to

$$
p(\theta|y) \propto \theta^{0.4} \exp(-10\theta) \cdot \theta^{y_1+y_2} \exp(-2\theta) = P(\theta)
$$

 \triangleright Symmetric proposal distributions such as

Uniform
$$
(\theta^{(i)} - \delta, \theta^{(i)} + \delta)
$$
 or $\mathcal{N}(\theta^{(i)}, \sigma^2)$

might not be efficient since they do not take the non-negative support of the posterior into account.

 \blacktriangleright Here, we use a non-symmetric proposal distribution such as Uniform $(0, \theta^{(i)} + \delta)$ and use the Metropolis-Hastings (MH) algorithm instead

$$
\blacktriangleright \text{ We set } \delta = 1
$$

Examples: Poisson Model with Gamma Prior $34/62$

We start from $\theta_0 = 1$ and follow these steps in each iteration

Sample θ' from $\mathcal{U}(0, \theta^{(i)} + 1)$

 \triangleright Calculate the acceptance probability

$$
a(\theta'|\theta^{(i)}) = \min\left(1, \frac{P(\theta')\text{Uniform}(\theta^{(i)}|0, \theta' + 1)}{P(\theta^{(i)})\text{Uniform}(\theta'|0, \theta^{(i)} + 1)}\right)
$$

► Sample $u \sim \mathcal{U}(0, 1)$ and set

$$
\theta^{(i+1)} = \begin{cases} \theta' & u < a(\theta'|\theta^{(i)})\\ \theta^{(i)} & \text{otherwise} \end{cases}
$$

Examples: Poisson Model with Gamma Prior 35/62

- \blacktriangleright What if the distribution is multidimensional, *i.e.*, $x = (x_1, x_2, \ldots, x_d)$
- \triangleright We can still use the Metropolis algorithm (or MH), with a multivariate proposal distribution, i.e., we now propose $x' = (x'_1, x'_2, \ldots, x'_d)$
- For example, we can use a multivariate normal $\mathcal{N}_d(x, \sigma^2 I)$, or a d-dimensional uniform distribution around the current state

Examples: Banana Shape Distribution 37/62

▶ Here we construct a banana-shaped posterior distribution as follows

$$
y|\theta \sim \mathcal{N}(\theta_1 + \theta_2^2, \sigma_y^2), \quad \sigma_y = 2
$$

We generate data $y_i \sim \mathcal{N}(1, \sigma_y^2)$

 \triangleright We use a bivariate normal prior for θ

$$
\theta = (\theta_1, \theta_2) \sim \mathcal{N}(0, I)
$$

 \blacktriangleright The posterior is

$$
p(\theta|y) \propto \exp\left(-\frac{\theta_1^2 + \theta_2^2}{2}\right) \cdot \exp\left(-\frac{\sum_i (y_i - \theta_1 - \theta_2^2)^2}{2\sigma_y^2}\right)
$$

 \blacktriangleright We use the Metropolis algorithm to sample from posterior, with a bivariate normal proposal distribution such as $\mathcal{N}(\theta^{(i)},(0.15)^2I)$

Examples: Banana Shape Distribution 38/62

The first few samples from the posterior distribution of $\theta = (\theta_1, \theta_2)$, using a bivariate normal proposal

Examples: Banana Shape Distribution 39/62

Posterior samples for $\theta = (\theta_1, \theta_2)$

Examples: Banana Shape Distribution 40/62

Trace plot of posterior samples for $\theta = (\theta_1, \theta_2)$

Decomposing the Parameter Space 41/62

- \triangleright Sometimes, it is easier to decompose the parameter space into several components, and use the Metropolis (or MH) algorithm for one component at a time
- At iteration *i*, given the current state $(x_1^{(i)})$ $x_1^{(i)}, \ldots, x_d^{(i)}$ $\binom{v}{d}$, we do the following for all components $k = 1, 2, \ldots, d$
	- Sample x'_k from the univariate proposal distribution $Q(x'_{k} | \ldots, x_{k-1}^{(i+1)})$ $_{k-1}^{(i+1)}, x_k^{(i)}$ $\binom{v}{k}, \ldots$

Accept this new value and set $x_k^{(i+1)} = x_k'$ with probability

$$
a(x'_k | \ldots, x_{k-1}^{(i+1)}, x_k^{(i)}, \ldots)) = \min\left(1, \frac{P(\ldots, x_{k-1}^{(i+1)}, x'_k, \ldots)}{P(\ldots, x_{k-1}^{(i+1)}, x_k^{(i)}, \ldots)}\right)
$$

or reject it and set $x_k^{(i+1)} = x_k^{(i)}$ k

Decomposing the Parameter Space 42/62

- \triangleright Note that in general, we can decompose the space of random variable into blocks of components
- \blacktriangleright Also, we can update the components sequentially or randomly
- \triangleright As long as each transition probability individually leaves the target distribution invariant, their sequence would leave the target distribution invariant
- \triangleright In Bayesian models, this is especially useful if it is easier and computationally less intensive to evaluate the posterior distribution when one subset of parameters change at a time

Example: Banana Shape Distribution 43/62

- \blacktriangleright In the example of banana-shaped distribution, we can sample θ_1 and θ_2 one at a time
- \blacktriangleright The first few samples from the posterior distribution of $\theta = (\theta_1, \theta_2)$, using a univariate normal proposal sequentially

The Gibbs Sampler 44/62

- \triangleright As the dimensionality of the parameter space increases, it becomes difficult to find an appropriate proposal distributions (e.g., with appropriate step size) for the Metropolis (or MH) algorithm
- \blacktriangleright If we are lucky (in some situations we are!), the conditional distribution of one component, x_i , given all other components, x_{-i} is tractable and has a close form so that we can sample from it directly
- \blacktriangleright If that's the case, we can sample from each component one at a time using their corresponding conditional distributions $P(x_i | x_{-i})$

- \blacktriangleright This is known as the Gibbs sampler (GS) or "heat bath" (Geman and Geman, 1984)
- \triangleright Note that in Bayesian analysis, we are mainly interested in sampling from $p(\theta|y)$
- \blacktriangleright Therefore, we use the Gibbs sampler when $P(\theta_i | y, \theta_{-i})$ has a closed form, e.g., there is a conditional conjugacy
- \triangleright One example is the univariate normal model. As we will see later, given σ , the posterior $P(\mu|y, \sigma^2)$ has a closed form, and given μ , the posterior distribution of $P(\sigma^2|\mu, y)$ also has a closed form

- \blacktriangleright The Gibbs sampler works as follows
- Initialize starting value for x_1, x_2, \ldots, x_d
- \blacktriangleright At each iteration, pick an ordering of the d variables (can be sequential or random)
	- 1. Sample $x \sim P(x_i | x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_d)$, *i.e.*, the conditional distribution of x_i given the current values of all other variables
	- 2. Update $x_i \leftarrow x$
- \blacktriangleright When we update x_i , we immediately use it new value for sampling other variables x_i

GS is A Special Case of MH 47/62

- \blacktriangleright Note that in GS, we are not proposing anymore, we are directly sampling, which can be viewed as a proposal that will always be accepted
- \triangleright This way, the Gibbs sampler can be viewed as a special case of MH, whose proposal is

$$
Q(x'_i, x_{-i}|x_i, x_{-i}) = P(x'_i|x_{-i})
$$

 \blacktriangleright Applying MH with this proposal, we obtain

$$
a(x'_i, x_{-i}|x_i, x_{-i}) = \min\left(1, \frac{P(x'_i, x_{-i})Q(x_i, x_{-i}|x'_i, x_{-i})}{P(x_i, x_{-i})Q(x'_i, x_{-i}|x_i, x_{-i})}\right)
$$

=
$$
\min\left(1, \frac{P(x'_i, x_{-i})P(x_i|x_{-i})}{P(x_i, x_{-i})P(x'_i|x_{-i})}\right) = \min\left(1, \frac{P(x'_i, x_{-i})P(x_i, x_{-i})}{P(x_i, x_{-i})P(x'_i, x_{-i})}\right)
$$

=1

Examples: Univariate Normal Model 48/62

 \triangleright We can now use the Gibbs sampler to simulate samples from the posterior distribution of the parameters of a univariate normal $y \sim \mathcal{N}(\mu, \sigma^2)$ model, with prior

$$
\mu \sim \mathcal{N}(\mu_0, \tau_0^2), \quad \sigma^2 \sim \text{Inv-}\chi^2(\nu_0, \sigma_0^2)
$$

 \blacktriangleright Given $(\sigma^{(i)})^2$ at the *i*th iteration, we sample $\mu^{(i+1)}$ from

$$
\mu^{(i+1)} \sim \mathcal{N}\left(\frac{\frac{\mu_0}{\tau_0^2} + \frac{n\bar{y}}{(\sigma^{(i)})^2}}{\frac{1}{\tau_0^2} + \frac{n}{(\sigma^{(i)})^2}}, \frac{1}{\frac{1}{\tau_0^2} + \frac{n}{(\sigma^{(i)})^2}}\right)
$$

 \blacktriangleright Given $\mu^{(i+1)}$, we sample a new σ^2 from

$$
(\sigma^{(i+1)})^2 \sim \text{Inv-}\chi^2(\nu_0+n, \frac{\nu_0 \sigma_0^2 + \nu n}{\nu_0+n}), \quad \nu = \frac{1}{n} \sum_{j=1}^n (y_j - \mu^{(i+1)})^2
$$

Examples: Univariate Normal Model 49/62

 \blacktriangleright The following graphs show the trace plots of the posterior samples (for both μ and σ)

Application in Probabilistic Graphical Models $50/62$

Gibbs sampling algorithms have been widely used in probabilistic graphical models

- \triangleright Conditional distributions are fairly easy to derive for many graphical models (e.g., mixture models, Latent Dirichlet allocation)
- \blacktriangleright Have reasonable computation and memory requirements, only needs to sample one random variable at a time
- ► Can be Rao-Blackwellized (integrate out some random variable) to decrease the sampling variance. This is known as collapsed Gibbs sampling.

Energy-Based Models 51/62

- ▶ Energy-based models (EBMs) associate a scalar energy to each configuration of the variables of interest
- \triangleright We can modify the energy function so that its shape has desirable properties, e.g., plausible configurations would have lower energy
- \blacktriangleright Energy-based probabilistic models define a probability distribution through an energy function as follows

$$
p(x) = \frac{1}{Z} \exp(-E(x)), \quad Z = \sum_{x} \exp(-E(x))
$$

 \triangleright EBMs can be learnt by maximizing the log-likelihood using stochastic gradient

$$
-\frac{\partial \log p_{\theta}(x)}{\partial \theta} = \frac{\partial E_{\theta}(x)}{\partial \theta} - \mathbb{E}_{x \sim p_{\theta}(x)} \frac{\partial E_{\theta}(x)}{\partial \theta}
$$

EBMs with Hidden Units 52/62

 \blacktriangleright In many cases, we do not have full observation, or we want to introduce latent variables to increase model capacity

$$
p(x) = \sum_{h} p(x, h) = \frac{1}{Z} \sum_{h} \exp(-E(x, h))
$$
 (1)

 \blacktriangleright We can define free energy to turn [\(1\)](#page-51-0) into a regular EBM

$$
p(x) = \frac{1}{Z} \exp(-\mathcal{F}(x)), \quad \mathcal{F}(x) = -\log \sum_{h} \exp(-E(x, h))
$$

 \triangleright An interesting form for the gradient

$$
-\frac{\partial \log p_{\theta}(x)}{\partial \theta} = \frac{\partial \mathcal{F}_{\theta}(x)}{\partial \theta} - \mathbb{E}_{x \sim p_{\theta}(x)} \frac{\partial \mathcal{F}_{\theta}(x)}{\partial \theta}
$$

$$
= \mathbb{E}_{h \sim p_{\theta}(h|x)} \frac{\partial E_{\theta}(x, h)}{\partial \theta} - \mathbb{E}_{x, h \sim p_{\theta}(x, h)} \frac{\partial E_{\theta}(x, h)}{\partial \theta}
$$

Restricted Boltzmann Machines 53/62

▶ Restricted Boltzmann Machines (RBMs) are a particular form of EBMs where the energy function is a bilinear function of the visible and hidden variables

$$
E(v, h) = -b^T v - c^T h - h^T W v
$$

 \blacktriangleright The visible and hidden units are conditionally independent

$$
p(h|v) = \prod_i p(h_i|v), \quad p(v|h) = \prod_j p(v_j|h)
$$

Gibbs Sampling in RBMs 54/62

 \blacktriangleright When v and h are binary variables, we have

$$
p(h_i = 1|v) = \text{sigmoid}(c_i + W_i v), \ p(v_j = 1|h) = \text{sigmoid}(b_j + W_j^T h)
$$

 \triangleright Use Gibbs sampling for training and sampling

$$
h^{(n+1)} \sim \text{Bernoulli}\left(\text{sigmoid}(c + Wv^{(n)})\right)
$$

$$
v^{(n+1)} \sim \text{Bernoulli}\left(\text{sigmoid}(b + W^{T}h^{(n+1)})\right)
$$

 \triangleright Contrastive Divergence:

$$
-\frac{\partial \log p_{\theta}(v)}{\partial \theta} \approx \frac{\partial \mathcal{F}_{\theta}(v)}{\partial \theta} - \frac{\partial \mathcal{F}_{\theta}(\tilde{v})}{\partial \theta}
$$

where \tilde{v} is a sample from the MCMC chain after k steps starting from the observed sample v.

Combining Metropolis with Gibbs $55/62$

- \triangleright For more complex models, we might only have conditional conjugacy for one part of the parameters
- \blacktriangleright In such situations, we can combine the Gibbs sampler with the Metropolis method
- \blacktriangleright That is, we update the components with conditional conjugacy using Gibbs sampler and for the rest parameters, we use the Metropolis (or MH)

- \triangleright MCMC would converge to the target distribution if run sufficiently long
- \blacktriangleright However, it is often non-trivial to determine whether the chain has converged or not in practice
- ▶ Also, how do we measure the efficiency of MCMC chains?
- \blacktriangleright In what follows, we will discuss some practical advice for coding MCMC algorithms

Graphical Diagnostics: Mixing Rate 57/62

Monitor convergence by plotting samples from multiple MH runs (chains)

- \blacktriangleright If the chains are well-mixed (left), they are probably converged
- \blacktriangleright If the chains are poorly-mixed (right), we may need to continue burn-in

Graphical Diagnostics: Autocorrelation 58/62

- An autocorrelation plot summarizes the correlation in the sequence of a Markov chain at different iteration lags
- \blacktriangleright A chain that has poor mixing will exhibit slow decay of the autocorrelation as the lag increases

Effective Sample Size 59/62

- \triangleright Since MCMC samples are correlated, *effective sample size* are often used to measure the efficiency when MCMC samples are used for estimation instead of independent samples
- \triangleright The effective sample size (ESS) is defined as

$$
ESS = \frac{n}{1 + 2\sum_{k=1}^{\infty} \rho(k)}
$$

where $\rho(k)$ is the autocorrelation at lag k

► ESS are commonly used to compare the efficiency of competing MCMC samplers for a given problem. Larger ESS usually means faster convergence

- One of the hardest problem to diagnose is whether or not the chain has become stuck in one or more modes of the target distribution
- \blacktriangleright In this case, all convergence diagnostics may indicate that the chain has converged, though it does not
- \blacktriangleright A partial solution: run multiple chains and compare the within- and between-chain behavior

References 61/62

- \blacktriangleright Metropolis, N. (1953). Equation of state calculations by fast computing machines. The Journal of Chemical Physics 21, 1087–1092.
- \blacktriangleright Hastings, W.K. (1970). Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57, 97–109.
- Geman, S. and Geman, D. (1984). Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence 6, 721–741.
- ▶ Andrieu, C., De Freitas, N., Doucet, A. and Jordan, M. I. (2003). An introduction to MCMC for machine learning. Machine learning 50, 5–43.

References 62/62

I Yoshua Bengio. 2009. Learning deep architectures for AI. Foundations and Trends in Machine Learning.

