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Limitations of Monte Carlo 2/62

I Direct sampling in high-dimensional spaces is often
infeasible, very hard to get rare events

I Rejection sampling, Importance sampling
I Do not work well if the proposal q(x) is very different from

f(x) or h(x)f(x).
I Moreover, constructing appropriate q(x) can be difficult.

Making a good proposal usually requires knowledge of the
analytic form of the target distribution - but if we had that,
we wouldn’t even need to sample

I Intuition: instead of a fixed proposal q(x), what if we use
an adaptive proposal?

I In this lecture, we are going to talk about one of the most
popular sampling methods, Markov chain Monte Carlo.



Stochastic Processes & Random Walks 3/62

I Stochastic processes is a family of random variables,
usually indexed by a set of numbers (time). A discrete time
stochastic process is simply a sequence of random variables,
X0, X1, . . . , Xn defined on the same probability space

I One of the simplest stochastic processes (and one of the
most useful) is the simple random walk

I Consider a simple random walk on a graph G = (Ω, E).
The stochastic process starts from an initial position
X0 = x0 ∈ Ω, and proceeds following a simple rule:

p(Xn+1|Xn = xn) ∼ Discrete(N (xn)), ∀n ≥ 0

where N (xn) denotes the neighborhood of xn



Example 4/62

Two random walks on a 10× 10 grid graph



Discrete Time, Discrete Space Markov Chains 5/62

I The above simple random walk is a special case of another
well-known stochastic process called Markov chains

I A Markov chain represents the stochastic movement of
some particle in the state space over time. The particle

initially starts from state i with probability π
(0)
i , and after

that moves from the current state i at time t to the next
state j with probability pij(t)

I A Markov chain has three main elements:

1. A state space S
2. An initial distribution π(0) over S
3. Transition probabilities pij(t) which are non-negative

numbers representing the probability of going from state i
to j, and

∑
j pij(t) = 1.

I When pij(t) does not depend on time t, we say the Markov
chain is time-homegenous



Markov Property 6/62

I Chain rule (in probability)

p(Xn = xn, . . . , X0 = x0) =

n∏
i=1

p(Xi = xi|X<i = x<i)

I Markov property

p(Xi+1 = xi+1|Xi = xi, . . . , X0 = x0) = p(Xi+1 = xi+1|Xi = xi)

I Joint probability with Markov property

p(Xn = xn, . . . , X0 = x0) =
n∏
i=1

p(Xi = xi|Xi−1 = xi−1)

fully determined by the transition probabilities



Example 7/62

I Consider the 2000 US presidential election with three
candidates: Gore, Bush and Nader (just an illustrative
example and does not reflect the reality of that election)

I We assume that the initial distribution of votes (i.e.,
probability of winning) was π = (0.49, 0.45, 0.06) for Gore,
Bush and Nader respectively

I Further, we assume the following transition probability
matrix



Example 8/62

A probabilistic graph presentation of the Markov chain



Stationary Distribution 9/62

I If we represent the transition probability a square matrix P
such that Pij = pij , we can obtain the distribution of states
in step n, π(n), as follows

π(n) = π(n−1)P = . . . = π(0)Pn

I For the above example, we have

π(0) = (0.4900, 0.4500, 0.0600)

π(10) = (0.4656, 0.4655, 0.0689)

π(100) = (0.4545, 0.4697, 0.0758)

π(200) = (0.4545, 0.4697, 0.0758)



Stationary Distribution 10/62

I As we can see last, after several iterations, the above
Markov chain converges to a distribution,
(0.4545, 0.4697, 0.0758)

I In this example, the chain would have reached this
distribution regardless of what initial distribution π(0) we
chose. Therefore, π = (0.4545, 0.4697, 0.0758) is the
stationary distribution for the above Markov chain

I Stationary distribution. A distribution of Markov chain
states is called to be stationary if it remains the same in
the next time step, i.e.,

π = πP



Stationary Distribution 11/62

I How can we find out whether such distribution exists?

I Even if such distribution exists, is it unique or not?

I Also, how do we know whether the chain would converge to
this distribution?

I To find out the answer, we briefly discuss some properties
of Markov chains



Irreducibility 12/62

I Irreducible: A Markov chain is irreducible if the chain can
move from any state to another state.

I Examples
I The simple random walk is irreducible
I The following chain, however, is reducible since Nader does

not communicate with the other two states (Gore and Bush)



Aperiodicity 13/62

I Period: the period of a state i is the greatest common
divisor of the times at which it is possible to move from i
to i.

I For example, all the states in the following Markov chain
have period 3. 0 1 0

0 0 1
1 0 0


I Aperiodic: a Markov chain is said to be aperiodic if the

period of each state is 1, otherwise the chain is periodic.



Recurrent vs. Transient 14/62

I Recurrent states: a state i is called recurrent if with
probability 1, the chain would ever return to state i given
that it started in state i.

I Positive recurrent: a recurrent state j is called positive
recurrent if the expected amount of time to return to state
j given that the chain started in state j is finite

I For a positive recurrent Markov chain, the stationary
distribution exists and is unique



Reversibility 15/62

I Reversibility: a Markov chain is said to be reversible
with respect to a probability distribution π if πipij = πjpji

I In fact, if a Markov chain is reversible with respect to π,
then π is also a stationary distribution∑

i

πipij =
∑
i

πjpji

= πj
∑
i

pji

= πj

since
∑

i pji = 1 for all transition probability matrices

I This is also known as detailed balance condition



Discrete Time, General Space Markov Chains 16/62

I We can define a Markov chain on a general state space X
with initial distribution π(0) and transition probabilities
p(x,A) defined as the probability of jumping to the subset
A from point x ∈ X

I Similarly, with Markov property, we have the joint
probability

p(X0 ∈ A0, . . . , Xn ∈ An) =

∫
A0

π(0)(dx0) . . .

∫
An

p(xn−1, dxn)

I Example. Consider a Markov chain with the real line as its
state space. The initial distribution is N (0, 1), and the
transition probability is p(x, ·) = N (x, 1). This is just a
Brownian motion (observed at discrete time)



φ-irreducibility and φ-aperiodicity 17/62

I Unlike the discrete space, we now need to talk about the
property of Markov chains with a continuous non-zero
measure φ, on X , and use sets A instead of points

I A chain is φ-irreducible if for all A ⊆ X with φ(A) > 0 and
for all x ∈ X , there exists a positive integer n such that

pn(x,A) = p(Xn ∈ A|X0 = x) > 0

I Similarly, we need to modify our definition of period



Stationary Distribution 18/62

I A distribution π is a stationary distribution if

π(A) =

∫
X
π(dx)p(x,A), ∀A ⊆ X

I As for the discrete case, a continuous space Markov chain
is reversible with respect to π if

π(dx)p(x, dy) = π(dy)p(y, dx)

I Similarly, if the chain is reversible with respect to π, then π
is a stationary distribution

I Example. Consider a Markov chain on the real line with
initial distribution N (1, 1) and transition probability
p(x, ·) = N (x2 ,

3
4). It is easy to show that the chain

converges to N (0, 1) (Exercise)



Ergodicity 19/62

I Ergodic: a Markov chain is ergodic if it is both irreducible
and aperiodic, with stationary distribution π

I Ergodic Theorem. For an ergodic Markov chain on the
state space X having stationary distribution π, we have: (i)
for all measurable A ⊆ X and π-a.e. x ∈ X ,

lim
t→∞

pt(x,A) = π(A)

(ii) ∀f with Eπ|f(x)| <∞,

lim
T→∞

1

T

T∑
t=1

f(Xt) =

∫
X
f(x)π(x)dx, a.s.

In particular, π is the unique stationary probability density
function for the chain



Markov chain Monte Carlo 20/62

I Now suppose we are interested in sampling from a
distribution π (e.g., the unnormalized posterior)

I Markov chain Monte Carlo (MCMC) is a method that
samples from a Markov chain whose stationary distribution
is the target distribution π. It does this by constructing an
appropriate transition probability for π

I MCMC, therefore, can be viewed as an inverse process of
Markov chains



Markov chain Monte Carlo 21/62

I The transition probability in MCMC resembles the
proposal distribution we used in previous Monte Carlo
methods.

I Instead of using a fixed proposal (as in importance
sampling and rejection sampling), MCMC algorithms
feature adaptive proposals

Figures adapted from Eric Xing (CMU)



The Metropolis Algorithm 22/62

I Suppose that we are interested in sampling from a
distribution π, whose density we know up to a constant
P (x) ∝ π(x)

I We can construct a Markov chain with a transition
probability (i.e., proposal distribution) Q(x′|x) which is
symmetric; that is, Q(x′|x) = Q(x|x′)

I Example. A normal distribution with the mean at the
current state and fixed variance σ2 is symmetric since

exp

(
−(y − x)2

2σ2

)
= exp

(
−(x− y)2

2σ2

)



The Metropolis Algorithm 23/62

In each iteration we do the following

I Draws a sample x′ from Q(x′|x), where x is the previous
sample

I Calculated the acceptance probability

a(x′|x) = min

(
1,
P (x′)

P (x)

)
Note that we only need to compute P (x′)

P (x) , the unknown
constant cancels out

I Accept the new sample with probability a(x′|x) or remain
at state x. The acceptance probability ensures that, after
sufficient many draws, our samples will come from the true
distribution π(x)



Example: Gaussian Mixture Model 24/62

Adapted from Andrieu, Freitas, Doucet, Jordan, 2003



The Metropolis Algorithm 25/62

I How do we know that the chain is going to converge to π?

I Suppose the support of the proposal distribution is X (e.g.,
Gaussian distribution), then the Markov chain is
irreducible and aperiodic.

I We only need to verify the detailed balance condition

π(dx)p(x, dx′) = π(x)dx ·Q(x′|x)a(x′|x)dx′

= π(x)Q(x′|x) min

(
1,
π(x′)

π(x)

)
dxdx′

= Q(x′|x) min(π(x), π(x′))dxdx′

= Q(x|x′) min(π(x′), π(x))dxdx′

= π(x′)dx′ ·Q(x|x′) min

(
1,
π(x)

π(x′)

)
dx

= π(dx′)p(x′, dx)



The Metropolis-Hastings Algorithm 26/62

I It turned out that symmetric proposal distribution is not
necessary. Hastings (1970) later on generalized the above
algorithm using the following acceptance probability for
general Q(x′|x)

a(x′|x) = min

(
1,
P (x′)Q(x|x′)
P (x)Q(x′|x)

)
I Similarly, we can show that detailed balanced condition is

preserved



Proposal Distribution 27/62

I Under mild assumptions on the proposal distribution Q,
the algorithm is ergodic

I However, the choice of Q is important since it determines
the speed of convergence to π and the efficiency of sampling

I Usually, the proposal distribution depend on the current
state. But it can be independent of current state, which
leads to an independent MCMC sampler that is somewhat
like a rejection/importance sampling method

I Some examples of commonly used proposal distributions
I Q(x′|x) ∼ N (x, σ2)
I Q(x′|x) ∼ Uniform(x− δ, x+ δ)

I Finding a good proposal distribution is hard in general



Examples: Gaussian Model with Known Variance 28/62

I Recall the univariate Gaussian model with known variance

yi ∼ N (θ, σ2)

p(y|θ, σ) =

n∏
i=1

1√
2πσ

exp

(
−(yi − θ)2

2σ2

)
I Note that there is a conjugate N (µ0, τ

2
0 ) prior for θ, and

the posterior has a close form normal distribution

I Now let’s pretend that we don’t know this exact posterior
distribution and use a Markov chain to sample from it.



Examples: Gaussian Model with Known Variance 29/62

I We can of course write the posterior distribution up to a
constant

p(θ|y) ∝ exp

(
(θ − µ0)2

2τ2
0

) n∏
i=1

exp

(
−(yi − θ)2

2σ2

)
= P (θ)

I We use N (θ(i), 1), a normal distribution around our current
state, to propose the next step

I Starting from an initial point θ(0) and propose the next
step θ′ ∼ N (θ(0), 1), we either accept this value with
probability a(θ′|θ(0)) or reject and stay where we are

I We continue these steps for many iterations



Examples: Gaussian Model with Known Variance 30/62

I As we can see, the posterior distribution we obtained using
the Metropolis algorithm is very similar to the exact
posterior



Example: Poisson Model with Gamma Prior 31/62

I Now suppose we want to model the number of half court
shots Stephen Curry has made in a game using Poisson
model

yi ∼ Poisson(θ)

I He made 0 and 1 half court shots in the first two games
respectively

I We used Gamma(1.4, 10) prior for θ, and because of
conjugacy, the posterior distribution also had a Gamma
distribution

θ|y ∼ Gamma(2.4, 12)

I Again, let’s ignore the closed form posterior and use
MCMC for sampling the posterior distribution



Examples: Poisson Model with Gamma Prior 32/62

I The prior is
p(θ) ∝ θ0.4 exp(−10θ)

I The likelihood is

p(y|θ) ∝ θy1+y2 exp(−2θ)

where y1 = 0 and y2 = 1

I Therefore, the posterior is proportional to

p(θ|y) ∝ θ0.4 exp(−10θ) · θy1+y2 exp(−2θ) = P (θ)



Examples: Poisson Model with Gamma Prior 33/62

I Symmetric proposal distributions such as

Uniform(θ(i) − δ, θ(i) + δ) or N (θ(i), σ2)

might not be efficient since they do not take the
non-negative support of the posterior into account.

I Here, we use a non-symmetric proposal distribution such as
Uniform(0, θ(i) + δ) and use the Metropolis-Hastings (MH)
algorithm instead

I We set δ = 1



Examples: Poisson Model with Gamma Prior 34/62

We start from θ0 = 1 and follow these steps in each iteration

I Sample θ′ from U(0, θ(i) + 1)

I Calculate the acceptance probability

a(θ′|θ(i)) = min

(
1,

P (θ′)Uniform(θ(i)|0, θ′ + 1)

P (θ(i))Uniform(θ′|0, θ(i) + 1)

)

I Sample u ∼ U(0, 1) and set

θ(i+1) =

{
θ′ u < a(θ′|θ(i))

θ(i) otherwise



Examples: Poisson Model with Gamma Prior 35/62



Multivartiate Distributions 36/62

I What if the distribution is multidimensional, i.e.,
x = (x1, x2, . . . , xd)

I We can still use the Metropolis algorithm (or MH), with a
multivariate proposal distribution, i.e., we now propose
x′ = (x′1, x

′
2, . . . , x

′
d)

I For example, we can use a multivariate normal Nd(x, σ2I),
or a d-dimensional uniform distribution around the current
state



Examples: Banana Shape Distribution 37/62

I Here we construct a banana-shaped posterior distribution
as follows

y|θ ∼ N (θ1 + θ2
2, σ

2
y), σy = 2

We generate data yi ∼ N (1, σ2
y)

I We use a bivariate normal prior for θ

θ = (θ1, θ2) ∼ N (0, I)

I The posterior is

p(θ|y) ∝ exp

(
−θ

2
1 + θ2

2

2

)
· exp

(
−
∑

i(yi − θ1 − θ2
2)2

2σ2
y

)
I We use the Metropolis algorithm to sample from posterior,

with a bivariate normal proposal distribution such as
N (θ(i), (0.15)2I)



Examples: Banana Shape Distribution 38/62

The first few samples from the posterior distribution of
θ = (θ1, θ2), using a bivariate normal proposal
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Examples: Banana Shape Distribution 39/62

Posterior samples for θ = (θ1, θ2)
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Examples: Banana Shape Distribution 40/62

Trace plot of posterior samples for θ = (θ1, θ2)
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Decomposing the Parameter Space 41/62

I Sometimes, it is easier to decompose the parameter space
into several components, and use the Metropolis (or MH)
algorithm for one component at a time

I At iteration i, given the current state (x
(i)
1 , . . . , x

(i)
d ), we do

the following for all components k = 1, 2, . . . , d
I Sample x′k from the univariate proposal distribution

Q(x′k| . . . , x
(i+1)
k−1 , x

(i)
k , . . .)

I Accept this new value and set x
(i+1)
k = x′k with probability

a(x′k| . . . , x
(i+1)
k−1 , x

(i)
k , . . .)) = min

(
1,
P (. . . , x

(i+1)
k−1 , x′k, . . .)

P (. . . , x
(i+1)
k−1 , x

(i)
k , . . .)

)

or reject it and set x
(i+1)
k = x

(i)
k



Decomposing the Parameter Space 42/62

I Note that in general, we can decompose the space of
random variable into blocks of components

I Also, we can update the components sequentially or
randomly

I As long as each transition probability individually leaves
the target distribution invariant, their sequence would leave
the target distribution invariant

I In Bayesian models, this is especially useful if it is easier
and computationally less intensive to evaluate the posterior
distribution when one subset of parameters change at a
time



Example: Banana Shape Distribution 43/62

I In the example of banana-shaped distribution, we can
sample θ1 and θ2 one at a time

I The first few samples from the posterior distribution of
θ = (θ1, θ2), using a univariate normal proposal sequentially
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The Gibbs Sampler 44/62

I As the dimensionality of the parameter space increases, it
becomes difficult to find an appropriate proposal
distributions (e.g., with appropriate step size) for the
Metropolis (or MH) algorithm

I If we are lucky (in some situations we are!), the conditional
distribution of one component, xj , given all other
components, x−j is tractable and has a close form so that
we can sample from it directly

I If that’s the case, we can sample from each component one
at a time using their corresponding conditional
distributions P (xj |x−j)



The Gibbs Sampler 45/62

I This is known as the Gibbs sampler (GS) or “heat bath”
(Geman and Geman, 1984)

I Note that in Bayesian analysis, we are mainly interested in
sampling from p(θ|y)

I Therefore, we use the Gibbs sampler when P (θj |y, θ−j) has
a closed form, e.g., there is a conditional conjugacy

I One example is the univariate normal model. As we will
see later, given σ, the posterior P (µ|y, σ2) has a closed
form, and given µ, the posterior distribution of P (σ2|µ, y)
also has a closed form



The Gibbs Sampler 46/62

I The Gibbs sampler works as follows

I Initialize starting value for x1, x2, . . . , xd
I At each iteration, pick an ordering of the d variables (can

be sequential or random)

1. Sample x ∼ P (xi|x1, . . . , xi−1, xi+1, . . . , xd), i.e., the
conditional distribution of xi given the current values of all
other variables

2. Update xi ← x

I When we update xi, we immediately use it new value for
sampling other variables xj



GS is A Special Case of MH 47/62

I Note that in GS, we are not proposing anymore, we are
directly sampling, which can be viewed as a proposal that
will always be accepted

I This way, the Gibbs sampler can be viewed as a special
case of MH, whose proposal is

Q(x′i, x−i|xi, x−i) = P (x′i|x−i)

I Applying MH with this proposal, we obtain

a(x′i, x−i|xi, x−i) = min

(
1,
P (x′i, x−i)Q(xi, x−i|x′i, x−i)
P (xi, x−i)Q(x′i, x−i|xi, x−i)

)
= min

(
1,
P (x′i, x−i)P (xi|x−i)
P (xi, x−i)P (x′i|x−i)

)
= min

(
1,
P (x′i, x−i)P (xi, x−i)

P (xi, x−i)P (x′i, x−i)

)
=1



Examples: Univariate Normal Model 48/62

I We can now use the Gibbs sampler to simulate samples
from the posterior distribution of the parameters of a
univariate normal y ∼ N (µ, σ2) model, with prior

µ ∼ N (µ0, τ
2
0 ), σ2 ∼ Inv-χ2(ν0, σ

2
0)

I Given (σ(i))2 at the ith iteration, we sample µ(i+1) from

µ(i+1) ∼ N

( µ0
τ20

+ nȳ
(σ(i))2

1
τ20

+ n
(σ(i))2

,
1

1
τ20

+ n
(σ(i))2

)

I Given µ(i+1), we sample a new σ2 from

(σ(i+1))2 ∼ Inv-χ2(ν0+n,
ν0σ

2
0 + νn

ν0 + n
), ν =

1

n

n∑
j=1

(yj−µ(i+1))2



Examples: Univariate Normal Model 49/62

I The following graphs show the trace plots of the posterior
samples (for both µ and σ)



Application in Probabilistic Graphical Models 50/62

Gibbs sampling algorithms have been widely used in
probabilistic graphical models

I Conditional distributions are fairly easy to derive for many
graphical models (e.g., mixture models, Latent Dirichlet
allocation)

I Have reasonable computation and memory requirements,
only needs to sample one random variable at a time

I Can be Rao-Blackwellized (integrate out some random
variable) to decrease the sampling variance. This is known
as collapsed Gibbs sampling.



Energy-Based Models 51/62

I Energy-based models (EBMs) associate a scalar energy to
each configuration of the variables of interest

I We can modify the energy function so that its shape has
desirable properties, e.g., plausible configurations would
have lower energy

I Energy-based probabilistic models define a probability
distribution through an energy function as follows

p(x) =
1

Z
exp(−E(x)), Z =

∑
x

exp(−E(x))

I EBMs can be learnt by maximizing the log-likelihood using
stochastic gradient

−∂ log pθ(x)

∂θ
=
∂Eθ(x)

∂θ
− Ex∼pθ(x)

∂Eθ(x)

∂θ



EBMs with Hidden Units 52/62

I In many cases, we do not have full observation, or we want
to introduce latent variables to increase model capacity

p(x) =
∑
h

p(x, h) =
1

Z

∑
h

exp(−E(x, h)) (1)

I We can define free energy to turn (1) into a regular EBM

p(x) =
1

Z
exp(−F(x)), F(x) = − log

∑
h

exp(−E(x, h))

I An interesting form for the gradient

−∂ log pθ(x)

∂θ
=
∂Fθ(x)

∂θ
− Ex∼pθ(x)

∂Fθ(x)

∂θ

= Eh∼pθ(h|x)
∂Eθ(x, h)

∂θ
− Ex,h∼pθ(x,h)

∂Eθ(x, h)

∂θ



Restricted Boltzmann Machines 53/62

I Restricted Boltzmann Machines (RBMs) are a particular
form of EBMs where the energy function is a bilinear
function of the visible and hidden variables

E(v, h) = −bT v − cTh− hTWv

I The visible and hidden units are conditionally independent

p(h|v) =
∏
i

p(hi|v), p(v|h) =
∏
j

p(vj |h)



Gibbs Sampling in RBMs 54/62

I When v and h are binary variables, we have

p(hi = 1|v) = sigmoid(ci+Wiv), p(vj = 1|h) = sigmoid(bj+W
T
j h)

I Use Gibbs sampling for training and sampling

h(n+1) ∼ Bernoulli
(

sigmoid(c+Wv(n))
)

v(n+1) ∼ Bernoulli
(

sigmoid(b+W Th(n+1))
)

I Contrastive Divergence:

−∂ log pθ(v)

∂θ
≈ ∂Fθ(v)

∂θ
− ∂Fθ(ṽ)

∂θ

where ṽ is a sample from the MCMC chain after k steps
starting from the observed sample v.



Combining Metropolis with Gibbs 55/62

I For more complex models, we might only have conditional
conjugacy for one part of the parameters

I In such situations, we can combine the Gibbs sampler with
the Metropolis method

I That is, we update the components with conditional
conjugacy using Gibbs sampler and for the rest parameters,
we use the Metropolis (or MH)



MCMC Diagnostics 56/62

I MCMC would converge to the target distribution if run
sufficiently long

I However, it is often non-trivial to determine whether the
chain has converged or not in practice

I Also, how do we measure the efficiency of MCMC chains?

I In what follows, we will discuss some practical advice for
coding MCMC algorithms



Graphical Diagnostics: Mixing Rate 57/62

Monitor convergence by plotting samples from multiple MH
runs (chains)

I If the chains are well-mixed (left), they are probably
converged

I If the chains are poorly-mixed (right), we may need to
continue burn-in



Graphical Diagnostics: Autocorrelation 58/62

I An autocorrelation plot summarizes the correlation in the
sequence of a Markov chain at different iteration lags

I A chain that has poor mixing will exhibit slow decay of the
autocorrelation as the lag increases



Effective Sample Size 59/62

I Since MCMC samples are correlated, effective sample size
are often used to measure the efficiency when MCMC
samples are used for estimation instead of independent
samples

I The effective sample size (ESS) is defined as

ESS =
n

1 + 2
∑∞

k=1 ρ(k)

where ρ(k) is the autocorrelation at lag k

I ESS are commonly used to compare the efficiency of
competing MCMC samplers for a given problem. Larger
ESS usually means faster convergence



Multiple Chains 60/62

I One of the hardest problem to diagnose is whether or not
the chain has become stuck in one or more modes of the
target distribution

I In this case, all convergence diagnostics may indicate that
the chain has converged, though it does not

I A partial solution: run multiple chains and compare the
within- and between-chain behavior
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