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I Statistical inference often depends on intractable integrals
I(f) =

∫
Ω f(x)dx

I This is especially true in Bayesian statistics, where a
posterior distribution is usually non-trivial.

I In some situations, the likelihood itself may depend on
intractable integrals so frequentist methods would also
require numerical integration

I In this lecture, we start by discussing some simple
numerical methods that can be easily used in low
dimensional problems

I Next, we will discuss several Monte Carlo strategies that
could be implemented even when the dimension is high



Newton-Côtes Quadrature 3/58

I Consider a one-dimensional integral of the form
I(f) =

∫ b
a f(x)dx

I A common strategy for approximating this integral is to
use a tractable approximating function f̃(x) that can be
integrated easily

I We typically constrain the approximating function to agree
with f on a grid of points: x1, x2, . . . , xn
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I Newton-Côtes methods use equally-spaced grids

I The approximating function is a polynomial

I The integral then is approximated with a weighted sum as
follows

Î =

n∑
i=1

wif(xi)

I In its simplest case, we can use the Riemann rule by
partitioning the interval [a, b] into n subintervals of length
h = b−a

n ; then

ÎL = h

n−1∑
i=0

f(a+ ih)

This is obtained using a piecewise constant function f̃ that
matches f at the left points of each subinterval



Newton-Côtes Quadrature 5/58

I Alternatively, the approximating function could agree with
the integrand at the right or middle point of each
subinterval

ÎR = h

n∑
i=1

f(a+ ih), ÎM = h

n−1∑
i=0

f(a+ (i+
1

2
)h)

I In either case, the approximating function is a zero-order
polynomial

I To improve the approximation, we can use the trapzoidal
rule by using a piecewise linear function that agrees with
f(x) at both ends of subintervals

Î =
h

2
f(a) + h

n−1∑
i=1

f(xi) +
h

2
f(b)
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I We would further improve the approximation by using
higher order polynomials

I Simpson’s rule uses a quadratic approximation over each
subinterval∫ xi+1

xi

f(x)dx ≈ xi+1 − xi
6

(
f(xi) + 4f(

xi + xi+1

2
) + f(xi+1)

)
I In general, we can use any polynomial of degree k
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I Newton-Côtes rules require equally spaced grids

I With a suitably flexible choice of n+ 1 nodes,
x0, x1, . . . , xn, and corresponding weights, A0, A1, . . . , An,

n∑
i=0

Aif(xi)

gives the exact integration for all polynomials with degree
less than or equal to 2n+ 1

I This is called Gaussian quadrature, which is especially
useful for the following type of integrals

∫ b
a f(x)w(x)dx

where w(x) is a nonnegative function and∫ b
a x

kw(x)dx <∞ for all k ≥ 0



Orthogonal Functions 8/58

I In general, for squared integrable functions,∫ b

a
f(x)2w(x)dx ≤ ∞

denoted as f ∈ L2
w,[a,b], we define the inner product as

〈f, g〉w,[a,b] =

∫ b

a
f(x)g(x)w(x)dx

where f, g ∈ L2
w,[a,b]

I We said two functions to be orthogonal if 〈f, g〉w,[a,b] = 0. If
f and g are also scaled so that 〈f, f〉w,[a,b] = 1,
〈g, g〉w,[a,b] = 1, then f and g are orthonormal
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I We can define a sequence of orthogonal polynomials by a
recursive rule

Tk+1(x) = (αk+1 + βk+1x)Tk(x)− γk+1Tk−1(x)

I Example: Chebyshev polynomials (first kind).

T0(x) = 1, T1(x) = x

Tn+1(x) = 2xTn(x)− Tn−1(x)

I Tn(x) are orthogonal with respect to w(x) = 1√
1−x2 and

[−1, 1] ∫ 1

−1
Tn(x)Tm(x)

1√
1− x2

dx = 0, ∀n 6= m
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I In general orthogonal polynomials are note unique since
〈f, g〉 = 0 implies 〈cf, dg〉 = 0

I To make the orthogonal polynomial unique, we can use the
following standarizations
I make the polynomial orthonormal: 〈f, f〉 = 1
I set the leading coefficient of Tj(x) to 1

I Orthogonal polynomials form a basis for L2
w,[a,b] so any

function in this space can be written as

f(x) =

∞∑
n=0

anTn(x)

where an = 〈f,Tn〉
〈Tn,Tn〉
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I Let {Tn(x)}∞n=0 be a sequence of orthogonal polynomials
with respect to w on [a, b].

I Denote the n+ 1 roots of Tn+1(x) by

a < x0 < x1 < . . . < xn < b.

I We can find weights A1, A2, . . . , An+1 such that∫ b

a
P (x)w(x)dx =

n∑
i=0

AiP (xi), ∀ deg(P ) ≤ 2n+ 1

I To do that, we first show: there exists weights
A1, A2, . . . , An+1 such that∫ b

a
P (x)w(x)dx =

n∑
i=0

AiP (xi), ∀ deg(P ) < n+ 1
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I Sketch of proof. We only need to satisfy∫ b

a
xkw(x)dx =

n∑
i=0

Aix
k
i , ∀ k = 0, 1, . . . , n

This leads to a system of linear equations
1 1 . . . 1
x0 x1 . . . xn
...

...
...

...
xn0 xn1 . . . xnn



A0

A1
...
An

 =


I0

I1
...
In


where Ik =

∫ b
a x

kw(x)dx. The determinant of the
coefficient matrix is a Vandermonde determinant, and is
non-zero since xi 6= xj , ∀i 6= j
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I Now we show that the above Gaussian Quadrature can be
exact for polynomials of degree ≤ 2n+ 1

I Let P (x) be a polynomial with deg(P ) ≤ 2n+ 1, there
exist polynomials g(x) and r(x) such that

P (x) = g(x)Tn+1(x) + r(x)

with deg(g) ≤ n, deg(r) ≤ n, Therefore,∫ b

a
P (x)w(x)dx =

∫ b

a
r(x)w(x)dx =

n∑
i=0

Air(xi)

=

n∑
i=0

AiP (xi)
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I We now discuss the Monte Carlo method mainly in the
context of statistical inference

I As before, suppose we are interested in estimating
I(h) =

∫ b
a h(x)dx

I If we can draw iid samples, x(1), x(2), . . . , x(n) uniformly
from (a, b), we can approximate the integral as

În = (b− a)
1

n

n∑
i=1

h(x(i))

I Note that we can think about the integral as

(b− a)

∫ b

a
h(x) · 1

b− a
dx

where 1
b−a is the density of Uniform(a, b)
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I In general, we are interested in integrals of the form∫
X h(x)f(x)dx, where f(x) is a probability density function

I Analogous to the above argument, we can approximate this
integral (or expectation) by drawing iid samples
x(1), x(2), . . . , x(n) from the density f(x) and then

Î =
1

n

n∑
i=1

h(x(i))

I Based on the law of large numbers, we know that

lim
n→∞

În
p−→ I

I And based on the central limit theorem

√
n(În − I)→ N (0, σ2), σ2 = Var(h(X))
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I Let h(x) = 1B(0,1)(x), then π = 4
∫

[−1,1]2 h(x) · 1
4 dx

I Monte Carlo estimate of π

În =
4

n

n∑
i=1

1B(0,1)(x
(i))

x(i) ∼ Uniform([−1, 1]2)



Example: estimating π 17/58
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I Convergence rate for Monte Carlo: O(n−1/2)

p

(
|În − I| ≤

σ√
nδ

)
≥ 1− δ, ∀δ

often slower than quadrature methods (O(n−2) or better)

I However, the convergence rate of Monte Carlo does not
depend on dimensionality

I On the other hand, quadrature methods are difficult to
extend to multidimensional problems, because of the curse
of dimensionality. The actual convergence rate becomes
O(n−k/d), for any order k method in dimension d

I This makes Monte Carlo strategy very attractive for high
dimensional problems
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I Monte Carlo methods require sampling a set of points
chosen randomly from a probability distribution

I For simple distribution f(x) whose inverse cumulative
distribution functions (CDF) exists, we can sampling x
from f as follows

x = F−1(u), u ∼ Uniform(0, 1)

where F−1 is the inverse CDF of f

I Proof.

p(a ≤ x ≤ b) = p(F (a) ≤ u ≤ F (b)) = F (b)− F (a)
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I Exponential distribution: f(x) = θ exp(−θx). The CDF is

F (a) =

∫ a

0
θ exp(−θx) = 1− exp(−θa)

therefore, x = F−1(u) = −1
θ log(1− u) ∼ f(x). Since 1− u

also follows the uniform distribution, we often use
x = −1

θ log(u) instead

I Normal distribution: f(x) = 1√
2π

exp(−x
2

2
). Box-Muller

Transform

X =
√
−2 logU1 cos 2πU2

Y =
√
−2 logU1 sin 2πU2

where U1 ∼ Uniform(0, 1), U2 ∼ Uniform(0, 1)
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I Assume Z = (X,Y ) follows the standard bivariate normal
distribution. Consider the following transform

X = R cos Θ, Y = R sin Θ

I From symmetry, clearly Θ follows the uniform distribution
on the interval (0, 2π) and is independent of R

I What distribution does R follow? Let’s take a look at its
CDF

p(R ≤ r) = p(X2 + Y 2 ≤ r2)

=
1

2π

∫ r

0
t exp(− t

2

2
)dt

∫ 2π

0
dθ = 1− exp(−r

2

2
)

Therefore, using the inverse CDF rule, R =
√
−2 logU1
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I If it is difficult or computationally intensive to sample
directly from f(x) (as described above), we need to use
other strategies

I Although it is difficult to sample from f(x), suppose that
we can evaluate the density at any given point up to a
constant f(x) = f∗(x)/Z, where Z could be unknown
(remember that this make Bayesian inference convenient
since we usually know the posterior distribution only up to
a constant)

I Furthermore, assume that we can easily sample from
another distribution with the density g(x) = g∗(x)/Q,
where Q is also a constant
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I Now we choose the constants c such that cg∗(x) becomes
the envelope (blanket) function for f∗(x):

cg∗(x) ≥ f∗(x), ∀x

I Then, we can use a strategy known as rejection sampling in
order to sample from f(x) indirectly

I The rejection sampling method works as follows

1. draw a sample x from g(x)
2. generate u ∼ Uniform(0, 1)

3. if u ≤ f∗(x)
cg∗(x) we accept x as the new sample, otherwise,

reject x (discard it)
4. return to step 1



Rejection Sampling 24/58

Rejection sampling generates samples from the target density,
no approximation involved

p(XR ≤ y) = p(Xg ≤ y|U ≤ f∗(Xg)

cg∗(Xg)
)

= p(Xg ≤ y, U ≤ f∗(Xg)

cg∗(Xg)
)/p(U ≤ f∗(Xg)

cg∗(Xg)
)

=

∫ y
−∞

∫ f∗(z)
cg∗(z)

0 dug(z)dz∫∞
−∞

∫ f∗(z)
cg∗(z)

0 dug(z)dz

=

∫ y

−∞
f(z)dz
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I Assume that it is difficult to sample from the Beta(3, 10)
distribution (this is not the case of course)

I We use the Uniform(0, 1) distribution with
g(x) = 1, ∀x ∈ [0, 1], which has the envelop proporty:
4g(x) > f(x), ∀x ∈ [0, 1]. The following graph shows the
result after 3000 iterations
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Rejection sampling becomes challenging as the dimension of x
increases. A good rejection sampling algorithm must have three
properties

I It should be easy to construct envelops that exceed the
target everywhere

I The envelop distributions should be easy to sample

I It should have a low rejection rate
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I When evaluating f∗ is computationally expensive, we can
improve the simulation speed of rejection sampling via
squeezed rejection sampling

I Squeezed rejection sampling reduces the evaluation of f via
a nonnegative squeezing function s that does not exceed f∗

anywhere on the support of f : s(x) ≤ f∗(x), ∀x
I The algorithm proceeds as follows:

1. draw a sample x from g(x)
2. generate u ∼ Uniform(0, 1)

3. if u ≤ s(x)
cg∗(x) , we accept x as the new sample, return to step

1
4. otherwise, determine whether u ≤ f∗(x)

cg∗(x) . If this inequality

holds, we accept x as the new sample, otherwise, we reject
it.

5. return to step 1



Squeezed Rejection Sampling 28/58

Remark: The proportion of iterations in which evaluation of f
is avoided is

∫
s(x)dx/

∫
e(x)dx
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I While Monte Carlo estimation is attractive for high
dimension integration, it may suffer from lots of problems,
such as rare events, and irregular integrands, etc.

I In what follows, we will discuss various methods to improve
Monte Carlo approaches, with an emphasis on variance
reduction techniques
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I The simple Monte Carlo estimator of
∫ b
a h(x)f(x)dx is

În =
1

n

n∑
i=1

h(x(i))

where x(1), x(2), . . . , x(n) are randomly sampled from f

I A potential problem is the mismatch of the concentration
of h(x)f(x) and f(x). More specifically, if there is a region
A of relatively small probability under f(x) that dominates
the integral, we would not get enough data from the
important region A by sampling from f(x)

I Main idea: Get more data from A, and then correct the
bias
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I Importance sampling (IS) uses importance distribution
q(x) to adapt to the true integrands h(x)f(x), rather than
the target distribution f(x)

I By correcting for this bias, importance sampling can
greatly reduce the variance in Monte Carlo estimation

I Unlike the rejection sampling, we do not need the envelop
property

I The only requirement is that q(x) > 0 whenever

h(x)f(x) 6= 0

I IS also applies when f(x) is not a probability density
function
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I Now we can rewrite I = Ef (h(x)) =
∫
X h(x)f(x) dx as

I = Ef (h(x)) =

∫
X
h(x)f(x) dx

=

∫
X
h(x)

f(x)

q(x)
q(x)dx

=

∫
X

(h(x)w(x))q(x)

= Eq(h(x)w(x))

where w(x) =
f(x)

q(x)
is the importance weight function
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We can then approximate the original expectation as follows

I Draw samples x(1), . . . , x(n) from q(x)

I Monte Carlo estimate

IIS
n =

1

n

n∑
i=1

h(x(i))w(x(i))

where w(x(i)) = f(x(i))

q(x(i))
are called importance ratios.

I Note that, now we only require sampling from q and do not
require sampling from f
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I We want to approximate a N (0, 1) distribution with t(3)
distribution

I We generate 500 samples and estimated I = E(x2) as 0.97,
which is close to the true value 1.



Mean and Variance of IS 35/58

I Let t(x) = h(x)w(x). Then Eq(t(X)) = I,X ∼ q

E(IIS
n ) =

1

n

n∑
i=1

E(t(x(i)) = I

I Similarly, the variance is

Varq(I
IS
n ) =

1

n
Varq(t(X))

=
1

n

∫
X

(h(x)f(x))2

q(x)
dx− I2 (1)

=
1

n

∫
X

(h(x)f(x)− Iq(x))2

q(x)
dx (2)
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I Recall the convergence rate for Monte Carlo is

p

(
|În − I| ≤

σ√
nδ

)
≥ 1− δ, ∀δ

For IS, σ =
√

Varq(t(X)). A good importance distribution
q(x) would make Varq(t(X)) small.

I What can we learn from equations (1) and (2)?

I Optimal choice: q(x) ∝ h(x)f(x)

I q(x) near 0 can be dangerous

I Bounding
(h(x)f(x))2

q(x)
is useful theoretically
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Varq(t(X)) = 0
Gaussian h and f ⇒ Gaussian optimal q lies between.
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I When f or/and q are unnormalized, we can esitmate the
expectation as follows

I =

∫
X h(x)f(x) dx∫
X f(x) dx

=

∫
X h(x)f(x)

q(x) q
∗(x) dx∫

X
f(x)
q(x) q

∗(x) dx

where q∗(x) = q(x)/cq

I Monte Carlo estimate

ISNIS
n =

∑n
i=1 h(x(i))w(x(i))∑n

i=1w(x(i))
, x(i) ∼ q(x)

I Requires a stronger condition: q(x) > 0 whenever f(x) > 0



SNIS is Consistent 39/58

I Unfortunately, ISNIS
n is biased. However, the bias is

asymptotically negligible.

ISNIS
n =

1

n

n∑
i=1

h(x(i))f(x(i))/q(x(i))

/
1

n

n∑
i=1

f(x(i))/q(x(i))

p−→
∫
X
h(x)f(x)/q(x)q∗(x) dx

/∫
X
f(x)/q(x)q∗(x) dx

=

∫
X
h(x)f(x) dx

/∫
X
f(x) dx

= I



SNIS Variance 40/58

I We use delta method for the variance of SNIS, which is a
ratio estimate

Var(ISNIS
n ) ≈

σ2
q,sn

n
=

Eq(w(x)2(h(x)− I)2)

n

I We can rewrite the variance σ2
q,sn as

σ2
q,sn =

∫
X

f(x)2

q(x)
(h(x)− I)2 dx

=

∫
X

(h(x)f(x)− If(x))2

q(x)
dx

I For comparison, σ2
q,is = Varq(t(X)) =

∫
X

(h(x)f(x)−Iq(x))2

q(x) dx

I No q can make σ2
q,sn = 0 (unless h is constant)
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I The optimal density for self-normalized importance
sampling has the form (Hesterberg, 1988)

q(x) ∝ |h(x)− I|f(x)

I Using this formula we find that

σ2
q,sn ≥ (Ef (|h(x)− I|))2

which is zero only for constant h(x)

I Note that the simple Monte Carlo has variance
σ2 = Ef ((h(x)− I)2), this means SNIS can not reduce the
variance by

σ2

σ2
q,sn

≤
Ef ((h(x)− I)2)

(Ef (|h(x)− I|))2
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I The importance weights in IS may be problematic, we
would like to have a diagnostic to tell us when it happens.

I Unequal weighting raises variance (Kong, 1992). For IID Yi
with variance σ2 and fixed weight wi ≥ 0

Var

(∑
iwiYi∑
iwi

)
=

∑
iw

2
i σ

2

(
∑

iwi)
2

I Write this as

σ2

ne
where ne =

(
∑

iwi)
2∑

iw
2
i

I ne is the effective sample size and ne � n if the weights
are too imbalanced.



Importance Sampling vs Rejection Sampling 43/58

I Rejection Sampling requires bounded w(x) = f(x)/q(x)

I We also have to know a bound for the envelop distribution

I Therefore, importance sampling is generally easier to
implement

I IS and SNIS require us to keep track of weights

I Plain IS requires normalized q

I Rejection sampling could be sample inefficient (due to
rejections)



Exponential Tilting 44/58

I Consider that f(x) = p(x; θ0) is from a family of
distributions pθ(x), θ ∈ Θ

I A simple importance sampling distribution would be
q(x) = p(x; θ) for some θ ∈ Θ.

I Suppose f(x) belongs to an exponential family

f(x) = g(x) exp(η(θ0)TT (x)−A(θ0))

I Use q(x) = g(x) exp(η(θ)TT (x)−A(θ)), the IS estimate is

IIS
n = exp(A(θ)−A(θ0))· 1

n

n∑
i=1

h(x(i)) exp((η(θ0)−η(θ))TT (x(i))



Hessian and Gaussian 45/58

I Suppose that we find the mode x∗ of k(x) = h(x)f(x)

I We can use Taylor approximation

log(k(x)) ≈ log(k(x∗))− 1

2
(x− x∗)TH∗(x− x∗)

k(x) ≈ k(x∗) exp

(
−1

2
(x− x∗)TH∗(x− x∗)

)
which suggests q(x) = N (x∗, (H∗)−1)

I This requires positive definite H∗

I Can be viewed as an IS version of the Laplace
approximation



Mixture Distributions 46/58

I Suppose we have K importance distributions q1, . . . , qK , we
can combine them into a mixture of distributions with
probability α1, . . . , αK ,

∑
i αi = 1

q(x) =

K∑
i=1

αiqi(x)

I IS estimate IIS
n = 1

n

∑n
i=1 h(x(i)) f(x(i))∑K

j=1 αjqj(x(i))

I An alternative. Suppose x(i) came from component j(i), we
could use

1

n

n∑
i=1

h(x(i))
f(x(i))

qj(i)(x(i))

Remark: This alternative is faster to compute, but has
higher variance
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I Designing importance distribution directly would be
challenging. A better way would be to adapt some
candidate distribution to our task through a learning
process

I To do that, we first need to pick a family Q of proposal
distributions

I We have to choose a termination criterion, e.g., maximum
steps, total number of observations, etc.

I Most importantly, we need a way to choose qk+1 ∈ Q based
on the observed information



Variance Minimization 48/58

I Suppose now we have a family of distributions (e.g.,
exponential family) qθ(x) = q(x; θ), θ ∈ Θ

I Recall that the variance of IS estimate is

1

n

∫
X

(h(x)f(x))2

q(x)
dx− I2, therefore, we would like

θ = arg min
θ∈Θ

∫
X

(h(x)f(x))2

qθ(x)
dx

I Variance based update

θ(k+1) = arg min
θ∈Θ

1

nk

nk∑
i=1

(h(x(i))f(x(i)))2

qθ(x(i))2
, x(i) ∼ qθ(k)

However, the optimization may be hard.
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I Consider an exponential family

qθ(x) = g(x) exp(θTx−A(θ))

I Now, replace variance by KL divergence

DKL(k∗‖qθ) = Ek∗ log

(
k∗(x)

qθ(x)

)
I We seek θ to minimize

DKL(k∗‖qθ) = Ek∗(log(k∗(x))− log(q(x; θ)))

i.e., maximize
Ek∗(log(q(x; θ)))
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I Rewrite the negative cross entropy as

Ek∗(log(q(x; θ))) = Eq
(

log(q(x; θ))k∗(x)

q(x)

)
=

1

I
· Eq

(
log(q(x; θ))h(x)f(x)

q(x)

)
I Update θ to maximize the above

θ(k+1) = arg max
θ

1

nk

nk∑
i=1

h(x(i))f(x(i))

q(x(i); θ(k))
log(q(x(i); θ))

= arg max
θ

1

nk

k∑
i=1

Hi log(q(x(i); θ))

= arg max
θ

1

nk

k∑
i=1

Hi(θ
Tx(i) −A(θ))
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I The update often takes a simple moment matching form

∂

∂θ
A(θ(k+1)) =

∑
iHi(x

(i))T∑
iHi

I Examples:
I qθ = N (θ, I)

θ(k+1) =

∑
iHix

(i)∑
iHi

I qθ = N (θ,Σ)

θ(k+1) = Σ−1

∑
iHix

(i)∑
iHi

I Other exponential family updates are typically closed form
functions of sample moments
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θ1 = (0, 0)T

Take K = 10 steps with n = 1000 each
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For min(x), θ(k) heads Northeast, which is OK.
For max(x), θ(k) heads North or East, and miss the other part
completely, leading to underestimates of I by about 1/2
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I The control variate strategy improves estimation of an
unknown integral by relating the estimate to some
correlated estimator with known integral

I A general class of unbiased estimators

ICV = IMC − λ(JMC − J)

where E(JMC) = J . It is easy to show ICV is unbiased, ∀λ
I We can choose λ to minimize the variance of ICV

λ̂ =
Cov(IMC, JMC)

Var(JMC)

where the related moments can be estimated using samples
from corresponding distributions
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I Recall that IS estimator is

IIS
n =

1

n

n∑
i=1

h(x(i))w(x(i))

I Note that h(x)w(x) and w(x) are correlated and
Ew(x) = 1, we can use the control variate

w̄ =
1

n

n∑
i=1

w(x(i))

and the importance sampling control variate estimator is

IISCV
n = IIS

n − λ(w̄ − 1)

λ can be estimated from a regression of h(x)w(x) on w(x)
as described before
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I Consider estimation of I = E(h(X,Y )) using a random
sample (x(1), y(1)), . . . , (x(n), y(n)) drawn from f

I Suppose the conditional expectation E(h(X,Y )|Y ) can be
computed. Using E(h(X,Y )) = E(E(h(X,Y )|Y )), the
Rao-Blackwellized estimator can be defined as

IRB
n =

1

n

n∑
i=1

E(h(x(i), y(i))|y(i))

I Rao-Blackwellized estimator gives smaller variance than
the ordinary Monte Carlo estimator

Var(IMC
n ) =

1

n
Var(E(h(X,Y )|Y ) +

1

n
E(Var(h(X,Y )|Y )

≥ Var(IRB
n )

follows from the conditional variance formula
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I Suppose rejection sampling stops at a random time M with
acceptance of the nth draw, yielding x(1), . . . , x(n) from all
M proposals y(1), . . . , y(M)

I The ordinary Monte Carlo estimator can be expressed as

IMC
n =

1

n

M∑
i=1

h(y(i))1Ui≤w(y(i))

I Rao-Blackwellization estimator

IRB
n =

1

n

M∑
i=1

h(y(i))ti(Y )

where
ti(Y ) = E(1Ui≤w(y(i))|M,y(1), . . . , y(M))
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