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Overview 2/58

> Statistical inference often depends on intractable integrals
I(f) = Jq f(z)dx

» This is especially true in Bayesian statistics, where a
posterior distribution is usually non-trivial.

» In some situations, the likelihood itself may depend on
intractable integrals so frequentist methods would also
require numerical integration

» In this lecture, we start by discussing some simple
numerical methods that can be easily used in low
dimensional problems

> Next, we will discuss several Monte Carlo strategies that
could be implemented even when the dimension is high
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Newton-Cotes Quadrature 3/58

» Consider a one-dimensional integral of the form
1(f) = [, f(x)de

» A common strategy for approximating this integral is to
use a tractable approximating function f (z) that can be
integrated easily

» We typically constrain the approximating function to agree
with f on a grid of points: x1,x9,..., Ty,
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Newton-Cotes Quadrature 4/58

v

Newton-Cotes methods use equally-spaced grids
The approximating function is a polynomial

The integral then is approximated with a weighted sum as
follows

I=> wif(x)
i=1

In its simplest case, we can use the Riemann rule by
partitioning the interval [a, b] into n subintervals of length
h = b_Ta; then

This is obtained using a piecewise constant function f that
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Newton-Cotes Quadrature 5/58

» Alternatively, the approximating function could agree with
the integrand at the right or middle point of each
subinterval

n n—1
Ip= hZf(a—H‘h), Iv=h> fla+(i+ %)h)

=1 i=0
» In either case, the approximating function is a zero-order
polynomial

» To improve the approximation, we can use the trapzoidal
rule by using a piecewise linear function that agrees with
f(x) at both ends of subintervals
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Newton-Cotes Quadrature 6/58

» We would further improve the approximation by using
higher order polynomials

> Simpson’s rule uses a quadratic approximation over each
subinterval

/Z”l fla)dz ~ w <f(1‘i) + 4f(%) * f(xiﬂ))

i

» In general, we can use any polynomial of degree k
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Gaussian Quadrature 7/58

» Newton-Cotes rules require equally spaced grids

» With a suitably flexible choice of n + 1 nodes,
0,21, ..., Ty, and corresponding weights, Ag, A1,..., Ap,

Z Aif (i)
i=0

gives the exact integration for all polynomials with degree
less than or equal to 2n + 1

» This is called Gaussian quadrature, which is especially
useful for the following type of integrals f: f(@)w(z)dx
Where w(m) is a nonnegative function and
f x)dr < oo for all k >0
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Orthogonal Functions 8/58

» In general, for squared integrable functions,

/f x)dr < oo

denoted as f € Ei} (b We define the inner product as

b
(fs 9w, fa] =/ f(2)g(x)w(z)dx

where f,g € ﬁ?u,[a,b]

> We said two functions to be orthogonal if (f, g)y (a4 = 0. If
f and g are also scaled so that (f, f>w7[a7b] =1
(9, 9)w,jap) = 1, then f and g are orthonormal
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Orthogonal Polynomials 9/58

» We can define a sequence of orthogonal polynomials by a
recursive rule

Tiot1(2) = (gt + Br12) T () — Y1 Tho—1(2)
» Example: Chebyshev polynomials (first kind).

1, Ti(x)==
Thi1(z) = 22T, (z) — Th—1(2)

» T, (x) are orthogonal with respect to w(x) = \/1%7 and
[_17 1]

! 1
/ To(x) () ——=dx =0, Vn#m
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Orthogonal Polynomials 10/58

» In general orthogonal polynomials are note unique since
(f,9) = 0 implies (cf,dg) =0

» To make the orthogonal polynomial unique, we can use the
following standarizations

» make the polynomial orthonormal: (f, f) =1
» set the leading coefficient of T (z) to 1

» Orthogonal polynomials form a basis for E?U [a,p] 5O ANy
function in this space can be written as

f(x) = ZanTn(aj)
n=0

where a,, = <§F{:7;7F1n>>
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Gaussian Quadrature 11/58

>

>

Let {7, ()}, be a sequence of orthogonal polynomials
with respect to w on [a, b].

Denote the n + 1 roots of T,,41(x) by
a<xp<x1 <...<xy <Db.

We can find weights Ay, As, ..., Apt1 such that

To do that, we first show: there exists weights
Ay, As, ..., Apy1 such that

/ ! Py = an AP(z;), ¥ deg(P) <n+1
a i=0
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Gaussian Quadrature 12/58

» Sketch of proof. We only need to satisfy

b n
/ ka(w)dx:ZAixf, Vk=0,1,....n
@ i=0

This leads to a system of linear equations

1 1 ... 17 4 I
o T1 ... xnl| | A1 L
xg b ... ozp| [An I,

where [}, = ff 2*w(z)dz. The determinant of the
coefficient matrix is a Vandermonde determinant, and is
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Gaussian Quadrature 13/58

» Now we show that the above Gaussian Quadrature can be
exact for polynomials of degree < 2n + 1

» Let P(x) be a polynomial with deg(P) < 2n + 1, there
exist polynomials g(x) and r(z) such that

P(z) = g(2)Thya1(z) + ()

with deg(g) < n,deg(r) < n, Therefore,
b b
/ P(z)w(z)dx = / r(z)w(z)dr = ZAZT(.%'Z)

=0
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Monte Carlo Method 14/58

» We now discuss the Monte Carlo method mainly in the
context of statistical inference

» As before, suppose we are interested in estimating
I(h) = [”h(z)dz

» If we can draw iid samples, 2 2@ ) uniformly
from (a,b), we can approximate the integral as

. 1< .
In=0b-a)=> hz®
(0= 0)5 )
> Note that we can think about the integral as

b
(b—a)/ h(:n)-biadx

where ;L is the density of Uniform(a, b)
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Monte Carlo Method 15/58

> In general we are interested in integrals of the form
Sy h x)dx, where f(x) is a probability density function

> Analogous to the above argument, we can approximate this
integral (or expectation) by drawing iid samples
M, 2@ 2™ from the density f(x) and then

1 n
I== n®
» Based on the law of large numbers, we know that
lim I, & 1
n—oo

» And based on the central limit theorem

Vvn(l, —I) = N(0,6%), o*= Var(h(X))
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Example: estimating 16/58

» Let h(:l,‘) = 13(0’1)(51,‘), then m = 4]‘[_1’1]2 h(l‘) . % dx
» Monte Carlo estimate of m

. 4 < ;
i=1

2@ ~ Uniform([—1, 1]2)

5 Je 5
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Example: estimating 17/58

Monte Carlo estimate of 7 (with 90% confidence interval)

3.0

Estimate of 7

T T T T T

0 500 1000 1500 2000

Sample size
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Monte Carlo vs Quadrature 18/58

» Convergence rate for Monte Carlo: O(n~1/2)

7
vné

often slower than quadrature methods (O(n~2) or better)

p(rfn—ﬂs )21—6, v

» However, the convergence rate of Monte Carlo does not
depend on dimensionality

» On the other hand, quadrature methods are difficult to
extend to multidimensional problems, because of the curse
of dimensionality. The actual convergence rate becomes
O(n~*/4), for any order k method in dimension d

» This makes Monte Carlo strategy very attractive for high
dimensional problems
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Exact Simulation 19/58

» Monte Carlo methods require sampling a set of points
chosen randomly from a probability distribution

» For simple distribution f(z) whose inverse cumulative
distribution functions (CDF) exists, we can sampling x
from f as follows

= FY(u), wu~ Uniform(0,1)

where F~! is the inverse CDF of f
» Proof.

pla < <b) =p(F(a) <u < F(b)) = F(b) - Fa)
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Examples 20/58

» Exponential distribution: f(z) = 6 exp(—60x). The CDF is
F(a) = / 0 exp(—0z) =1 — exp(—ba)
0

therefore, z = F~'(u) = —$log(1 — u) ~ f(z). Since 1 —u
also follows the uniform distribution, we often use

z = —% log(u) instead
2
» Normal distribution: f(z) = \/% exp(f?). Box-Muller
Transform
X =+/—2logUj cos2wU,
Y =+/—2logU; sin 27U,

where Uy ~ Uniform(0,1), Us ~ Uniform(0,1)
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Intuition for Box-Muller Transform 21/58

» Assume Z = (X,Y) follows the standard bivariate normal
distribution. Consider the following transform

X =Rcos®, Y =Rsin®
» From symmetry, clearly © follows the uniform distribution

on the interval (0,27) and is independent of R

» What distribution does R follow? Let’s take a look at its
CDF

p(R<r)=p(X*+Y?<r?)
1 r 2

¢ (t)dt/%dﬁ 1 — exp(—")
—_ —— _—— e J— X —_—
o J, (TP Py

Therefore, using the inverse CDF rule, R = /—2logU;
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Rejection Sampling 22/58

» If it is difficult or computationally intensive to sample
directly from f(z) (as described above), we need to use
other strategies

» Although it is difficult to sample from f(x), suppose that
we can evaluate the density at any given point up to a
constant f(z) = f*(x)/Z, where Z could be unknown
(remember that this make Bayesian inference convenient
since we usually know the posterior distribution only up to
a constant)

» Furthermore, assume that we can easily sample from
another distribution with the density g(z) = ¢*(x)/Q,
where @ is also a constant
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Rejection Sampling 23/58

» Now we choose the constants ¢ such that cg*(z) becomes
the envelope (blanket) function for f*(z):

cg"(z) = f*(x), Va

» Then, we can use a strategy known as rejection sampling in
order to sample from f(z) indirectly

» The rejection sampling method works as follows

1.
2.

3.

draw a sample = from g(x)
generate u ~ Uniform(0, 1)

ifu< f **(a:) we accept x as the new sample, otherwise,
cg*(z)
reject x (discard it)

return to step 1
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Rejection Sampling 24/58

Rejection sampling generates samples from the target density,
no approximation involved

p(XT <y) =p(X9 <y|U <

=p(X9 <y, U<

f*(2)
B fi/oo focg ) dug(z)dz
- f*(z)
J250 o7 dug(2)dz

= /?; f(2)dz
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Example 25/58

» Assume that it is difficult to sample from the Beta(3, 10)
distribution (this is not the case of course)

» We use the Uniform(0, 1) distribution with
g(x) =1, Vx € [0, 1], which has the envelop proporty:
4g(x) > f(x), Vo € [0,1]. The following graph shows the
result after 3000 iterations
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Advanced Rejection Sampling 26/58

Rejection sampling becomes challenging as the dimension of x
increases. A good rejection sampling algorithm must have three
properties

» It should be easy to construct envelops that exceed the
target everywhere

» The envelop distributions should be easy to sample

» It should have a low rejection rate
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Squeezed Rejection Sampling 27/58

» When evaluating f* is computationally expensive, we can
improve the simulation speed of rejection sampling via
squeezed rejection sampling

> Squeezed rejection sampling reduces the evaluation of f via
a nonnegative squeezing function s that does not exceed f*
anywhere on the support of f: s(z) < f*(x),Vx

» The algorithm proceeds as follows:

1.
2.

3.

draw a sample = from g(x)
generate u ~ Uniform(0, 1)

if u < c;ﬁfi), we accept x as the new sample, return to step

otherwise, determine whether u < (f; **((Z)). If this inequality
holds, we accept x as the new sample, otherwise, we reject
it.

return to step 1
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Squeezed Rejection Sampling 28/58

Keep First  KeepLater

Y

Remark: The proportion of iterations in which evaluation of f
is avoided is [ s(z)dz/ [e(z




Advanced Monte Carlo 29/58

» While Monte Carlo estimation is attractive for high
dimension integration, it may suffer from lots of problems,
such as rare events, and irregular integrands, etc.

» In what follows, we will discuss various methods to improve
Monte Carlo approaches, with an emphasis on variance
reduction techniques
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What’s Wrong with Simple Monte Carlo? 30/58

» The simple Monte Carlo estimator of f: h(z)f(x)dx is

. 1 <& .
In==Y h(z®
nz; (™)

where 2, 2@ .. 2 are randomly sampled from f

» A potential problem is the mismatch of the concentration
of h(z)f(x) and f(z). More specifically, if there is a region
A of relatively small probability under f(z) that dominates
the integral, we would not get enough data from the
important region A by sampling from f(z)

» Main idea: Get more data from A, and then correct the
bias
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Importance Sampling 31/58

» Importance sampling (IS) uses importance distribution
q(z) to adapt to the true integrands h(z)f(x), rather than
the target distribution f(x)

» By correcting for this bias, importance sampling can
greatly reduce the variance in Monte Carlo estimation

» Unlike the rejection sampling, we do not need the envelop
property
» The only requirement is that ¢(x) > 0 whenever

h(z) f(z) # 0

» IS also applies when f(z) is not a probability density
function
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Importance Sampling 32/58

> Now we can rewrite I = Ef(h(x)) = [, h(z)f(z) dx as

f(z)

where w(z) = is the importance weight function

q(x)




Importance Sampling 33/58

We can then approximate the original expectation as follows
» Draw samples z(), ... z(") from ¢(x)

» Monte Carlo estimate
1 & . .
IS = ZN " (2@ ()
P = L M)

; (©) . .
where w(z(®) = f(xi(l)) are called importance ratios.

q(z(*)
» Note that, now we only require sampling from ¢ and do not
require sampling from f
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Examples 34/58

» We want to approximate a N(0,1) distribution with ¢(3)
distribution

N(O, 1)
—
1 n s

» We generate 500 samples and estimated I = E(z?) as 0.97,

ez x Y

which is close to the true value 1.
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Mean and Variance of IS 35/58

» Let t(x) = h(z)w(x). Then E,(t(X)) =1,X ~ ¢

E(I) = Z E(t

» Similarly, the variance is

Varg (1) = Var(1(X))
L1 e@f@)?
-1 de— I o




Variance Does Matter 36/58

» Recall the convergence rate for Monte Carlo is

g

I,—1I|< >1-4, V6
p(r Lm)_

For IS, o0 = /Var,(t(X)). A good importance distribution
q(z) would make Var,(¢(X)) small.

» What can we learn from equations (1) and (2)?
» Optimal choice: g(z) o< h(z)f(x)
» ¢(x) near 0 can be dangerous

(h(z) f(x))*
q(z)

» Bounding is useful theoretically

ez X P

@

PEKING UNIVERSITY




Examples 37/58

0.6

0.4

|

0.2

0.0

Var,(t(X)) =0
Gaussian h and f = Gaussian optimal ¢ lies between.
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Self-normalized Importance Sampling 38/58

» When f or/and ¢ are unnormalized, we can esitmate the
expectation as follows

S h@)f (@) dr Jx h( q q( ) dx
S /(@) de I f% “(x) da
where ¢*(z) = q(z)/cq
» Monte Carlo estimate
[SNIS _ dic h(x(i))w@(i)), 2O ~ (z)

Yy w(z®)

» Requires a stronger condition: ¢(z) > 0 whenever f(x) > 0
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SNIS is Consistent 39/58

» Unfortunately, I5NS is biased. However, the bias is
asymptotically negligible.

ISNIS — Z h(z®) /
5 [ |
Ah m//f ) dx

\ BM—‘
E
U
8
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SNIS Variance 40/58

» We use delta method for the variance of SNIS, which is a
ratio estimate

Var(I5N) ~ Ug,sn _ Eq(w(z)?(h(z) — 1)?)

» We can rewrite the variance o2 . as

2 _ f(x)? ) — D2 dr
q,sn Py q(:):) (h( ) I) d
-/ (h(@)f(x) = I (2)*
X q(z)

> For comparison, o7 = Vary(t(X)) = [, W dx

> No ¢ can make o2 = 0 (unless h is constant)

ANEIE T
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Optimial SNIS 41/58

» The optimal density for self-normalized importance
sampling has the form (Hesterberg, 1988)

q(z) o< [h(x) = I[f(x)

» Using this formula we find that

Ogen = (Ep(|h(x) = 1))

which is zero only for constant h(z)

> Note that the simple Monte Carlo has variance
0? =E¢((h(z) — I)?), this means SNIS can not reduce the
variance by
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Importance Sampling Diagnostics 42/58

» The importance weights in IS may be problematic, we
would like to have a diagnostic to tell us when it happens.

» Unequal weighting raises variance (Kong, 1992). For IID Y;
with variance o2 and fixed weight w; > 0

» Write this as

2 32
7 where n, = 7(21 w12)
7

Ne ;W5

» 1. is the effective sample size and n. < n if the weights
are too imbalanced.
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Importance Sampling vs Rejection Sampling 43/58

v

v

Rejection Sampling requires bounded w(z) = f(z)/q(x)
We also have to know a bound for the envelop distribution

Therefore, importance sampling is generally easier to
implement

IS and SNIS require us to keep track of weights
Plain IS requires normalized ¢

Rejection sampling could be sample inefficient (due to
rejections)
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Exponential Tilting 44/58

» Consider that f(x) = p(z;6p) is from a family of
distributions py(z), 0 € ©

» A simple importance sampling distribution would be
q(z) = p(x;0) for some 0 € ©.

» Suppose f(x) belongs to an exponential family

f(z) = g(x) exp(n(60) " T(z) — A(6p))

» Use q(z) = g(z) exp(n(0)TT(x) — A(6)), the IS estimate is

1Y = exp(A( Zh ) exp((1(60)—1(6)) T (")
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Hessian and Gaussian 45/58

» Suppose that we find the mode z* of k(z) = h(x) f(x)

» We can use Taylor approximation

log(k(x)) ~ log(k(a*)) — 5 (x — ") H*(z — ")

k(z) ~ k(z") exp (—;@c — )T H (& x*))

which suggests g(z) = N (z*, (H*)™1)
» This requires positive definite H*

» Can be viewed as an IS version of the Laplace
approximation
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Mixture Distributions 46/58

» Suppose we have K importance distributions ¢, ..., qx, we
can combine them into a mixture of distributions with
probability ai,...,ax, Y, =1

K
= Z ;g ()
i=1

» IS estimate IS = 1 Ly, (w(l )Zf&

7 laﬂqj(x )

» An alternative. Suppose z(?) came from component 5(i), we

could use
Z h(x

Remark: This alternative is faster to compute, but has

(i))
qg() () (&)

higher variance : @ Je i g
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Adaptive Importance Sampling 47/58

» Designing importance distribution directly would be
challenging. A better way would be to adapt some
candidate distribution to our task through a learning
process

» To do that, we first need to pick a family Q of proposal
distributions

» We have to choose a termination criterion, e.g., maximum
steps, total number of observations, etc.

» Most importantly, we need a way to choose qi+1 € Q based
on the observed information
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Variance Minimization 48/58

» Suppose now we have a family of distributions (e.g.,
exponential family) gp(z) = q(z;0), 0 € ©

» Recall that the variance of IS estimate is

L G@i@?
/ dr 1

, therefore, we would like
n q(x)

= arg min w x
0= argmin [ ST

» Variance based update

Tk (2) (9)))2
k1) _ argmini Z (h(z) f (=)

(%)
- ) x ~ Gy(k)
o k= qo(z)?

However, the optimization may be hard.

ANEIE T
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Cross Entropy 49/58

» Consider an exponential family
qo(x) = g(z) exp(6Tz — A(0))

» Now, replace variance by KL divergence

Dgr(kxllg9) = Ei, log (S;Eg)

» We seek 0 to minimize
Dkr(k«llge) = Eg, (log(ks(x)) — log(q(z;0)))

1.e., maximize

Ex. (log(q(x;0)))

ANEIE T
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Cross Entropy 50/58

> Rewrite the negative cross entropy as

Ey, (log(q(z;0))) = E, (log(Q(z;(g)k*(x))

_ log(q(;0))h(z)f(x)
=7 ( q(x) )

» Update # to maximize the above

(k+1) — . R A S (Z)
0 = argmax ng ; 1: ( (z)’ 9(k)) IOg(q(w ,9))

Ly 0
arg;nax - ; H;log(q(z'\";0))
1 o :
= argmax — Z Hi(07 2z — A(9))
P M TET
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Cross Entropy 51/58

» The update often takes a simple moment matching form

00 > Hi
> Examples:
> qo = N(evj) )
g+ _ S Hiz®
Zi H;
> qo = N(ea Z)

gk+1) _ y— 12 Ha
> Hi
» Other exponential family updates are typically closed form
functions of sample moments
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Example

Gaussian, Pr(min(x)>6)

T T T T T
-6 -4 -2 0 2 4 6
th = (Oa O)T

-5

52/58

Gaussian, Pr(max(x)>6)

Take K = 10 steps with n = 1000 each
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Example

Gaussian, Pr(min(x)>6)

T T T T T T T
-6 -4 -2 0 2 4 6

53/58

Gaussian, Pr(max(x)>6)

T T 1T T T 1
-6 -4 -2 0 2 4 6

For min(z), #*) heads Northeast, which is OK.
For max(x),#*) heads North or East, and miss the other part
completely, leading to underestimates of I by about 1/2
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Control Variates 54/58

» The control variate strategy improves estimation of an
unknown integral by relating the estimate to some
correlated estimator with known integral

» A general class of unbiased estimators
Icy = Iuc — AMJuc — J)

where E(Jyc) = J. It is easy to show Icy is unbiased, VA

» We can choose A to minimize the variance of Icy

Cov(Imc, Jmc)

X pr—
Var(Juc)

where the related moments can be estimated using samples
from corresponding distributions
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Control Variate for Importance Sampling 55/58

» Recall that IS estimator is
1 & . .
7S = h(z® (@)
P = L)

» Note that h(z)w(z) and w(z) are correlated and

Ew(z) = 1, we can use the control variate
n

@ %wa)

i=1

and the importance sampling control variate estimator is
ISV — 15 _ \(w —1)
A can be estimated from a regression of h(x)w(z) on w(x)

ez x Y

as described before
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Rao-Blackwellization 56/58

» Consider estimation of I = E(h(X,Y)) using a random
sample (z(M), M), ... (2™, y™) drawn from f

» Suppose the conditional expectation E(h(X,Y)|Y) can be
computed. Using E(h(X,Y)) = E(E(h(X,Y)]Y)), the
Rao-Blackwellized estimator can be defined as

R Z E(h 1y )
» Rao-Blackwellized estlmator gives smaller variance than
the ordinary Monte Carlo estimator

Var(1MC) = %Var(E(h(X, Y)|Y) + %E(Var(h(X,YﬂY)
> Var(I2B)

follows from the conditional variance formula
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Rao-Blackwellization for Rejection Sampling 57/58

» Suppose rejection sampling stops at a random time M with
acceptance of the nth draw, yielding (), ..., 2™ from all
M proposals y1), ...y

» The ordinary Monte Carlo estimator can be expressed as

¢ = Zh 1y <uyo)
» Rao-Blackwellization estimator

M

LN O

IR = = 3 h(y)(Y)
=1

where
tZ(Y) = ]E(]'Uigw(y(i)) ‘M’ y(l)a v 73/(M))
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