Statistical Models & Computing Methods

Lecture 3: Numerical Integration

Cheng Zhang

School of Mathematical Sciences, Peking University

October 22, 2020

Ω overview 2/58

- \triangleright Statistical inference often depends on intractable integrals $I(f) = \int_{\Omega} f(x) dx$
- \blacktriangleright This is especially true in Bayesian statistics, where a posterior distribution is usually non-trivial.
- \blacktriangleright In some situations, the likelihood itself may depend on intractable integrals so frequentist methods would also require numerical integration
- \blacktriangleright In this lecture, we start by discussing some simple numerical methods that can be easily used in low dimensional problems
- \triangleright Next, we will discuss several Monte Carlo strategies that could be implemented even when the dimension is high

Newton-Côtes Quadrature 3/58

- ► Consider a one-dimensional integral of the form $I(f) = \int_a^b f(x) dx$
- \blacktriangleright A common strategy for approximating this integral is to use a tractable approximating function $\tilde{f}(x)$ that can be integrated easily
- \triangleright We typically constrain the approximating function to agree with f on a grid of points: x_1, x_2, \ldots, x_n

Newton-Côtes Quadrature 4/58

- \triangleright Newton-Côtes methods use equally-spaced grids
- \blacktriangleright The approximating function is a polynomial
- \blacktriangleright The integral then is approximated with a weighted sum as follows

$$
\hat{I} = \sum_{i=1}^{n} w_i f(x_i)
$$

 \blacktriangleright In its simplest case, we can use the Riemann rule by partitioning the interval $[a, b]$ into n subintervals of length $h=\frac{b-a}{n}$ $\frac{-a}{n}$; then

$$
\hat{I}_L = h \sum_{i=0}^{n-1} f(a+ih)
$$

This is obtained using a piecewise constant function f that matches f at the left points of each subinterval

Newton-Côtes Quadrature 5/58

 \blacktriangleright Alternatively, the approximating function could agree with the integrand at the right or middle point of each subinterval

$$
\hat{I}_R = h \sum_{i=1}^n f(a+ih), \quad \hat{I}_M = h \sum_{i=0}^{n-1} f(a+(i+\frac{1}{2})h)
$$

- \blacktriangleright In either case, the approximating function is a zero-order polynomial
- \triangleright To improve the approximation, we can use the trapzoidal rule by using a piecewise linear function that agrees with $f(x)$ at both ends of subintervals

$$
\hat{I} = \frac{h}{2}f(a) + h \sum_{i=1}^{n-1} f(x_i) + \frac{h}{2}f(b)
$$

-
- \triangleright We would further improve the approximation by using higher order polynomials
- ► Simpson's rule uses a quadratic approximation over each subinterval

$$
\int_{x_i}^{x_{i+1}} f(x)dx \approx \frac{x_{i+1} - x_i}{6} \left(f(x_i) + 4f(\frac{x_i + x_{i+1}}{2}) + f(x_{i+1}) \right)
$$

 \blacktriangleright In general, we can use any polynomial of degree k

Gaussian Quadrature 7/58

 \triangleright Newton-Côtes rules require equally spaced grids

 \blacktriangleright With a suitably flexible choice of $n+1$ nodes, x_0, x_1, \ldots, x_n , and corresponding weights, A_0, A_1, \ldots, A_n ,

$$
\sum_{i=0}^{n} A_i f(x_i)
$$

gives the exact integration for all polynomials with degree less than or equal to $2n + 1$

 \triangleright This is called Gaussian quadrature, which is especially useful for the following type of integrals $\int_a^b f(x)w(x)dx$ where $w(x)$ is a nonnegative function and $\int_a^b x^k w(x) dx < \infty$ for all $k \ge 0$

Orthogonal Functions 8/58

 \blacktriangleright In general, for squared integrable functions,

$$
\int_{a}^{b} f(x)^{2}w(x)dx \leq \infty
$$

denoted as $f \in \mathcal{L}^2_{w,[a,b]},$ we define the inner product as

$$
\langle f, g \rangle_{w, [a,b]} = \int_a^b f(x)g(x)w(x)dx
$$

where $f, g \in \mathcal{L}^2_{w, [a, b]}$

 \blacktriangleright We said two functions to be *orthogonal* if $\langle f, g \rangle_{w,[a,b]} = 0$. If f and g are also scaled so that $\langle f, f \rangle_{w,[a,b]} = 1$, $\langle g, g \rangle_{w,[a,b]} = 1$, then f and g are orthonormal

Orthogonal Polynomials 9/58

 \triangleright We can define a sequence of orthogonal polynomials by a recursive rule

$$
T_{k+1}(x) = (\alpha_{k+1} + \beta_{k+1}x)T_k(x) - \gamma_{k+1}T_{k-1}(x)
$$

 \blacktriangleright Example: Chebyshev polynomials (first kind).

$$
T_0(x) = 1, T_1(x) = x
$$

$$
T_{n+1}(x) = 2xT_n(x) - T_{n-1}(x)
$$

 \blacktriangleright $T_n(x)$ are orthogonal with respect to $w(x) = \frac{1}{\sqrt{1-x^2}}$ $\frac{1}{1-x^2}$ and $[-1, 1]$

$$
\int_{-1}^{1} T_n(x) T_m(x) \frac{1}{\sqrt{1 - x^2}} dx = 0, \quad \forall n \neq m
$$

Orthogonal Polynomials 10/58

- \blacktriangleright In general orthogonal polynomials are note unique since $\langle f, g \rangle = 0$ implies $\langle cf, dq \rangle = 0$
- \triangleright To make the orthogonal polynomial unique, we can use the following standarizations
	- \blacktriangleright make the polynomial orthonormal: $\langle f, f \rangle = 1$
	- ightharpoonup set the leading coefficient of $T_i(x)$ to 1
- \triangleright Orthogonal polynomials form a basis for $\mathcal{L}^2_{w,[a,b]}$ so any function in this space can be written as

$$
f(x) = \sum_{n=0}^{\infty} a_n T_n(x)
$$

where
$$
a_n = \frac{\langle f, T_n \rangle}{\langle T_n, T_n \rangle}
$$

Gaussian Quadrature 11/58

► Let ${T_n(x)}_{n=0}^{\infty}$ be a sequence of orthogonal polynomials with respect to w on $[a, b]$.

 \blacktriangleright Denote the $n+1$ roots of $T_{n+1}(x)$ by

$$
a < x_0 < x_1 < \ldots < x_n < b.
$$

 \blacktriangleright We can find weights $A_1, A_2, \ldots, A_{n+1}$ such that

$$
\int_{a}^{b} P(x)w(x)dx = \sum_{i=0}^{n} A_i P(x_i), \quad \forall \deg(P) \le 2n + 1
$$

 \triangleright To do that, we first show: there exists weights $A_1, A_2, \ldots, A_{n+1}$ such that

$$
\int_{a}^{b} P(x)w(x)dx = \sum_{i=0}^{n} A_{i}P(x_{i}), \quad \forall \deg(P) < n+1
$$

Gaussian Quadrature 12/58

 \triangleright Sketch of proof. We only need to satisfy

$$
\int_{a}^{b} x^{k} w(x) dx = \sum_{i=0}^{n} A_{i} x_{i}^{k}, \quad \forall k = 0, 1, ..., n
$$

This leads to a system of linear equations

$$
\begin{bmatrix} 1 & 1 & \dots & 1 \\ x_0 & x_1 & \dots & x_n \\ \vdots & \vdots & \vdots & \vdots \\ x_0^n & x_1^n & \dots & x_n^n \end{bmatrix} \begin{bmatrix} A_0 \\ A_1 \\ \vdots \\ A_n \end{bmatrix} = \begin{bmatrix} I_0 \\ I_1 \\ \vdots \\ I_n \end{bmatrix}
$$

where $I_k = \int_a^b x^k w(x) dx$. The determinant of the coefficient matrix is a Vandermonde determinant, and is non-zero since $x_i \neq x_j, \forall i \neq j$

Gaussian Quadrature 13/58

- \triangleright Now we show that the above Gaussian Quadrature can be exact for polynomials of degree $\leq 2n + 1$
- In Let $P(x)$ be a polynomial with $\deg(P) \leq 2n+1$, there exist polynomials $g(x)$ and $r(x)$ such that

$$
P(x) = g(x)T_{n+1}(x) + r(x)
$$

with $\deg(q) \leq n, \deg(r) \leq n$, Therefore,

$$
\int_a^b P(x)w(x)dx = \int_a^b r(x)w(x)dx = \sum_{i=0}^n A_i r(x_i)
$$

$$
= \sum_{i=0}^n A_i P(x_i)
$$

Monte Carlo Method 14/58

- \triangleright We now discuss the Monte Carlo method mainly in the context of statistical inference
- \triangleright As before, suppose we are interested in estimating $I(h) = \int_a^b h(x) dx$
- If we can draw iid samples, $x^{(1)}, x^{(2)}, \ldots, x^{(n)}$ uniformly from (a, b) , we can approximate the integral as

$$
\hat{I}_n = (b - a) \frac{1}{n} \sum_{i=1}^n h(x^{(i)})
$$

 \triangleright Note that we can think about the integral as

$$
(b-a)\int_{a}^{b}h(x)\cdot \frac{1}{b-a}dx
$$

where $\frac{1}{b-a}$ is the density of Uniform (a, b)

Monte Carlo Method 15/58

- \blacktriangleright In general, we are interested in integrals of the form $\int_{\mathcal{X}} h(x) f(x) dx$, where $f(x)$ is a probability density function
- ▶ Analogous to the above argument, we can approximate this integral (or expectation) by drawing iid samples $x^{(1)}, x^{(2)}, \ldots, x^{(n)}$ from the density $f(x)$ and then

$$
\hat{I} = \frac{1}{n} \sum_{i=1}^{n} h(x^{(i)})
$$

▶ Based on the law of large numbers, we know that

$$
\lim_{n\to\infty}\hat{I}_n\xrightarrow{p}I
$$

 \triangleright And based on the central limit theorem

$$
\sqrt{n}(\hat{I}_n - I) \to \mathcal{N}(0, \sigma^2), \quad \sigma^2 = \mathbb{V}\text{ar}(h(X))
$$

Example: estimating π 16/58

It Let $h(x) = \mathbf{1}_{B(0,1)}(x)$, then $\pi = 4 \int_{[-1,1]^2} h(x) \cdot \frac{1}{4}$ $rac{1}{4}$ dx

 \blacktriangleright Monte Carlo estimate of π

$$
\hat{I}_n = \frac{4}{n} \sum_{i=1}^n \mathbf{1}_{B(0,1)}(x^{(i)})
$$

$$
x^{(i)} \sim \text{Uniform}([-1,1]^2)
$$

Example: estimating π 17/58

Monte Carlo estimate of π (with 90% confidence interval)

Monte Carlo vs Quadrature 18/58

► Convergence rate for Monte Carlo: $\mathcal{O}(n^{-1/2})$

$$
p\left(|\hat{I}_n - I| \le \frac{\sigma}{\sqrt{n\delta}}\right) \ge 1 - \delta, \quad \forall \delta
$$

often slower than quadrature methods $(\mathcal{O}(n^{-2})$ or better)

- ▶ However, the convergence rate of Monte Carlo does not depend on dimensionality
- \triangleright On the other hand, quadrature methods are difficult to extend to multidimensional problems, because of the curse of dimensionality. The actual convergence rate becomes $\mathcal{O}(n^{-k/d})$, for any order k method in dimension d
- \triangleright This makes Monte Carlo strategy very attractive for high dimensional problems

Exact Simulation 19/58

- \blacktriangleright Monte Carlo methods require sampling a set of points chosen randomly from a probability distribution
- \blacktriangleright For simple distribution $f(x)$ whose inverse cumulative distribution functions (CDF) exists, we can sampling x from f as follows

$$
x = F^{-1}(u), \quad u \sim \text{Uniform}(0, 1)
$$

where F^{-1} is the inverse CDF of f

 \blacktriangleright Proof.

$$
p(a \le x \le b) = p(F(a) \le u \le F(b)) = F(b) - F(a)
$$

Examples 20/58

► Exponential distribution: $f(x) = \theta \exp(-\theta x)$. The CDF is

$$
F(a) = \int_0^a \theta \exp(-\theta x) = 1 - \exp(-\theta a)
$$

therefore, $x = F^{-1}(u) = -\frac{1}{\theta}$ $\frac{1}{\theta} \log(1-u) \sim f(x)$. Since $1-u$ also follows the uniform distribution, we often use $x=-\frac{1}{\theta}$ $\frac{1}{\theta} \log(u)$ instead

▶ Normal distribution: $f(x) = \frac{1}{\sqrt{2}}$ $rac{1}{2\pi}$ exp($-\frac{x^2}{2}$ $\frac{6}{2}$). Box-Muller Transform

$$
X = \sqrt{-2\log U_1} \cos 2\pi U_2
$$

$$
Y = \sqrt{-2\log U_1} \sin 2\pi U_2
$$

where $U_1 \sim \text{Uniform}(0, 1)$, $U_2 \sim \text{Uniform}(0, 1)$ _&

Intuition for Box-Muller Transform 21/58

 \blacktriangleright Assume $Z = (X, Y)$ follows the standard bivariate normal distribution. Consider the following transform

$$
X = R\cos\Theta, \quad Y = R\sin\Theta
$$

- \triangleright From symmetry, clearly Θ follows the uniform distribution on the interval $(0, 2\pi)$ and is independent of R
- \blacktriangleright What distribution does R follow? Let's take a look at its CDF

$$
p(R \le r) = p(X^2 + Y^2 \le r^2)
$$

= $\frac{1}{2\pi} \int_0^r t \exp(-\frac{t^2}{2}) dt \int_0^{2\pi} d\theta = 1 - \exp(-\frac{r^2}{2})$

Therefore, using the inverse CDF rule, $R =$ √ $-2\log U_1$

Rejection Sampling 22/58

- \blacktriangleright If it is difficult or computationally intensive to sample directly from $f(x)$ (as described above), we need to use other strategies
- In Although it is difficult to sample from $f(x)$, suppose that we can evaluate the density at any given point up to a constant $f(x) = f^{*}(x)/Z$, where Z could be unknown (remember that this make Bayesian inference convenient since we usually know the posterior distribution only up to a constant)
- \blacktriangleright Furthermore, assume that we can easily sample from another distribution with the density $g(x) = g^*(x)/Q$, where Q is also a constant

Rejection Sampling 23/58

▶ Now we choose the constants c such that $cg^*(x)$ becomes the envelope (blanket) function for $f^*(x)$:

$$
cg^*(x) \ge f^*(x), \quad \forall x
$$

- \blacktriangleright Then, we can use a strategy known as *rejection sampling* in order to sample from $f(x)$ indirectly
- \blacktriangleright The rejection sampling method works as follows
	- 1. draw a sample x from $g(x)$
	- 2. generate $u \sim \text{Uniform}(0, 1)$
	- 3. if $u \leq \frac{f^*(x)}{cg^*(x)}$ we accept x as the new sample, otherwise, reject x (discard it)
	- 4. return to step 1

Rejection Sampling 24/58

Rejection sampling generates samples from the target density, no approximation involved

$$
p(X^R \le y) = p(X^g \le y | U \le \frac{f^*(X^g)}{cg^*(X^g)})
$$

= $p(X^g \le y, U \le \frac{f^*(X^g)}{cg^*(X^g)})/p(U \le \frac{f^*(X^g)}{cg^*(X^g)})$
= $\frac{\int_{-\infty}^y \int_0^{\frac{f^*(z)}{cg^*(z)}} dug(z)dz}{\int_{-\infty}^{\infty} \int_0^{\frac{f^*(z)}{cg^*(z)}} dug(z)dz}$
= $\int_{-\infty}^y f(z)dz$

Example 25/58

- \blacktriangleright Assume that it is difficult to sample from the Beta(3, 10) distribution (this is not the case of course)
- \blacktriangleright We use the Uniform $(0, 1)$ distribution with $g(x) = 1, \forall x \in [0, 1]$, which has the envelop proporty: $4g(x) > f(x), \forall x \in [0,1].$ The following graph shows the result after 3000 iterations

Rejection sampling becomes challenging as the dimension of x increases. A good rejection sampling algorithm must have three properties

- \blacktriangleright It should be easy to construct envelops that exceed the target everywhere
- \blacktriangleright The envelop distributions should be easy to sample
- \blacktriangleright It should have a low rejection rate

Squeezed Rejection Sampling 27/58

- \blacktriangleright When evaluating f^* is computationally expensive, we can improve the simulation speed of rejection sampling via squeezed rejection sampling
- \triangleright Squeezed rejection sampling reduces the evaluation of f via a nonnegative squeezing function s that does not exceed f^* anywhere on the support of $f: s(x) \leq f^*(x), \forall x$
- \blacktriangleright The algorithm proceeds as follows:
	- 1. draw a sample x from $g(x)$
	- 2. generate $u \sim$ Uniform $(0, 1)$
	- 3. if $u \leq \frac{s(x)}{cg^*(x)}$, we accept x as the new sample, return to step 1
	- 4. otherwise, determine whether $u \leq \frac{f^*(x)}{cg^*(x)}$. If this inequality holds, we accept x as the new sample, otherwise, we reject it.
	- 5. return to step 1

Squeezed Rejection Sampling 28/58

Remark: The proportion of iterations in which evaluation of f is avoided is $\int s(x)dx/\int e(x)dx$

- \triangleright While Monte Carlo estimation is attractive for high dimension integration, it may suffer from lots of problems, such as rare events, and irregular integrands, etc.
- \blacktriangleright In what follows, we will discuss various methods to improve Monte Carlo approaches, with an emphasis on variance reduction techniques

What's Wrong with Simple Monte Carlo? $30/58$

 \blacktriangleright The simple Monte Carlo estimator of $\int_a^b h(x)f(x)dx$ is

$$
\hat{I}_n = \frac{1}{n} \sum_{i=1}^n h(x^{(i)})
$$

where $x^{(1)}, x^{(2)}, \ldots, x^{(n)}$ are randomly sampled from f

- \blacktriangleright A potential problem is the mismatch of the concentration of $h(x)f(x)$ and $f(x)$. More specifically, if there is a region A of relatively small probability under $f(x)$ that dominates the integral, we would not get enough data from the **important** region A by sampling from $f(x)$
- \blacktriangleright Main idea: Get more data from A, and then correct the bias

Importance Sampling 31/58

- \blacktriangleright Importance sampling (IS) uses importance distribution $q(x)$ to adapt to the true integrands $h(x)f(x)$, rather than the target distribution $f(x)$
- \triangleright By correcting for this bias, importance sampling can greatly reduce the variance in Monte Carlo estimation
- \blacktriangleright Unlike the rejection sampling, we do not need the envelop property
- \blacktriangleright The only requirement is that $q(x) > 0$ whenever

$$
h(x)f(x) \neq 0
$$

 \blacktriangleright IS also applies when $f(x)$ is not a probability density function

Importance Sampling 32/58

Now we can rewrite $I = \mathbb{E}_f(h(x)) = \int_{\mathcal{X}} h(x)f(x) dx$ as

$$
I = \mathbb{E}_f(h(x)) = \int_{\mathcal{X}} h(x)f(x) dx
$$

$$
= \int_{\mathcal{X}} h(x) \frac{f(x)}{q(x)} q(x) dx
$$

$$
= \int_{\mathcal{X}} (h(x)w(x))q(x)
$$

$$
= \mathbb{E}_q(h(x)w(x))
$$

where $w(x) = \frac{f(x)}{q(x)}$ is the importance weight function

We can then approximate the original expectation as follows

- \blacktriangleright Draw samples $x^{(1)}, \ldots, x^{(n)}$ from $q(x)$
- \blacktriangleright Monte Carlo estimate

$$
I_n^{\rm IS} = \frac{1}{n} \sum_{i=1}^n h(x^{(i)}) w(x^{(i)})
$$

where $w(x^{(i)}) = \frac{f(x^{(i)})}{g(x^{(i)})}$ $\frac{f(x^{(i)})}{q(x^{(i)})}$ are called importance ratios.

 \blacktriangleright Note that, now we only require sampling from q and do not require sampling from f

Examples $34/58$

 \blacktriangleright We want to approximate a $\mathcal{N}(0,1)$ distribution with $t(3)$ distribution

 \blacktriangleright We generate 500 samples and estimated $I = \mathbb{E}(x^2)$ as 0.97, which is close to the true value 1.

Mean and Variance of IS 35/58

• Let
$$
t(x) = h(x)w(x)
$$
. Then $\mathbb{E}_q(t(X)) = I, X \sim q$

$$
\mathbb{E}(I_n^{\text{IS}}) = \frac{1}{n} \sum_{i=1}^n \mathbb{E}(t(x^{(i)}) = I
$$

 \blacktriangleright Similarly, the variance is

$$
\begin{aligned}\n\mathbb{V}\text{ar}_{q}(I_{n}^{\text{IS}}) &= \frac{1}{n} \mathbb{V}\text{ar}_{q}(t(X)) \\
&= \frac{1}{n} \int_{\mathcal{X}} \frac{(h(x)f(x))^{2}}{q(x)} dx - I^{2} \qquad (1) \\
&= \frac{1}{n} \int_{\mathcal{X}} \frac{(h(x)f(x) - Iq(x))^{2}}{q(x)} dx \qquad (2)\n\end{aligned}
$$

Variance Does Matter 36/58

▶ Recall the convergence rate for Monte Carlo is

$$
p\left(|\hat{I}_n - I| \le \frac{\sigma}{\sqrt{n\delta}}\right) \ge 1 - \delta, \quad \forall \delta
$$

For IS, $\sigma = \sqrt{\mathbb{V}\text{ar}_{q}(t(X))}$. A good importance distribution $q(x)$ would make $\mathbb{V}\text{ar}_{q}(t(X))$ small.

 \blacktriangleright What can we learn from equations [\(1\)](#page-34-0) and [\(2\)](#page-34-1)?

- \triangleright Optimal choice: $q(x) \propto h(x) f(x)$
- \blacktriangleright q(x) near 0 can be dangerous

Bounding $\frac{(h(x)f(x))^2}{q(x)}$ is useful theoretically

Examples 37/58

 $\mathbb{V}\mathrm{ar}_q(t(X)) = 0$ Gaussian h and $f \Rightarrow$ Gaussian optimal q lies between.

Self-normalized Importance Sampling 38/58

 \blacktriangleright When f or/and q are unnormalized, we can esitmate the expectation as follows

$$
I = \frac{\int_{\mathcal{X}} h(x)f(x) dx}{\int_{\mathcal{X}} f(x) dx} = \frac{\int_{\mathcal{X}} h(x) \frac{f(x)}{q(x)} q^*(x) dx}{\int_{\mathcal{X}} \frac{f(x)}{q(x)} q^*(x) dx}
$$

where
$$
q^*(x) = q(x)/c_q
$$

 \blacktriangleright Monte Carlo estimate

$$
I_n^{\text{SNIS}} = \frac{\sum_{i=1}^n h(x^{(i)}) w(x^{(i)})}{\sum_{i=1}^n w(x^{(i)})}, \quad x^{(i)} \sim q(x)
$$

Requires a stronger condition: $q(x) > 0$ whenever $f(x) > 0$

SNIS is Consistent 39/58

 \blacktriangleright Unfortunately, I_n^{SNS} is biased. However, the bias is asymptotically negligible.

$$
I_n^{\text{SNIS}} = \frac{1}{n} \sum_{i=1}^n h(x^{(i)}) f(x^{(i)}) / q(x^{(i)}) \Bigg/ \frac{1}{n} \sum_{i=1}^n f(x^{(i)}) / q(x^{(i)})
$$

\n
$$
\xrightarrow{p} \int_{\mathcal{X}} h(x) f(x) / q(x) q^*(x) dx \Bigg/ \int_{\mathcal{X}} f(x) / q(x) q^*(x) dx
$$

\n
$$
= \int_{\mathcal{X}} h(x) f(x) dx \Bigg/ \int_{\mathcal{X}} f(x) dx
$$

\n
$$
= I
$$

SNIS Variance 40/58

 \triangleright We use delta method for the variance of SNIS, which is a ratio estimate

$$
\mathbb{V}\text{ar}(I_n^{\text{SNIS}}) \approx \frac{\sigma_{q,\text{sn}}^2}{n} = \frac{\mathbb{E}_q(w(x)^2(h(x)-I)^2)}{n}
$$

 \blacktriangleright We can rewrite the variance $\sigma_{q,\text{sn}}^2$ as

$$
\sigma_{q,\text{sn}}^2 = \int_{\mathcal{X}} \frac{f(x)^2}{q(x)} (h(x) - I)^2 dx
$$

$$
= \int_{\mathcal{X}} \frac{(h(x)f(x) - If(x))^2}{q(x)} dx
$$

For comparison, $\sigma_{q,\text{is}}^2 = \mathbb{V}\text{ar}_q(t(X)) = \int_{\mathcal{X}}$ $(h(x)f(x)-Iq(x))$ ² $\frac{x(-q(x))}{q(x)} dx$ \blacktriangleright No q can make $\sigma_{q,\text{sn}}^2 = 0$ (unless h is constant)

Optimial SNIS 41/58

 \blacktriangleright The optimal density for self-normalized importance sampling has the form (Hesterberg, 1988)

$$
q(x) \propto |h(x) - I| f(x)
$$

 \triangleright Using this formula we find that

$$
\sigma_{q,\mathrm{sn}}^2 \ge (\mathbb{E}_f(|h(x)-I|))^2
$$

which is zero only for constant $h(x)$

 \triangleright Note that the simple Monte Carlo has variance $\sigma^2 = \mathbb{E}_f((h(x) - I)^2)$, this means SNIS can not reduce the variance by

$$
\frac{\sigma^2}{\sigma_{q,\text{sn}}^2} \le \frac{\mathbb{E}_f((h(x)-I)^2)}{(\mathbb{E}_f(|h(x)-I|))^2}
$$

Importance Sampling Diagnostics 42/58

- \blacktriangleright The importance weights in IS may be problematic, we would like to have a diagnostic to tell us when it happens.
- \blacktriangleright Unequal weighting raises variance (Kong, 1992). For IID Y_i with variance σ^2 and fixed weight $w_i \geq 0$

$$
\mathbb{V}\text{ar}\left(\frac{\sum_i w_i Y_i}{\sum_i w_i}\right) = \frac{\sum_i w_i^2 \sigma^2}{(\sum_i w_i)^2}
$$

 \blacktriangleright Write this as

$$
\frac{\sigma^2}{n_e}
$$
 where $n_e = \frac{(\sum_i w_i)^2}{\sum_i w_i^2}$

 \blacktriangleright n_e is the effective sample size and $n_e \ll n$ if the weights are too imbalanced.

Importance Sampling vs Rejection Sampling 43/58

- \blacktriangleright Rejection Sampling requires bounded $w(x) = f(x)/g(x)$
- \triangleright We also have to know a bound for the envelop distribution
- \blacktriangleright Therefore, importance sampling is generally easier to implement
- \triangleright IS and SNIS require us to keep track of weights
- \blacktriangleright Plain IS requires normalized q
- ▶ Rejection sampling could be sample inefficient (due to rejections)

Exponential Tilting 44/58

- \blacktriangleright Consider that $f(x) = p(x; \theta_0)$ is from a family of distributions $p_{\theta}(x), \ \theta \in \Theta$
- \blacktriangleright A simple importance sampling distribution would be $q(x) = p(x; \theta)$ for some $\theta \in \Theta$.
- \blacktriangleright Suppose $f(x)$ belongs to an exponential family

$$
f(x) = g(x) \exp(\eta(\theta_0)^T T(x) - A(\theta_0))
$$

 \blacktriangleright Use $q(x) = g(x) \exp(\eta(\theta)^T T(x) - A(\theta))$, the IS estimate is

$$
I_n^{\text{IS}} = \exp(A(\theta) - A(\theta_0)) \cdot \frac{1}{n} \sum_{i=1}^n h(x^{(i)}) \exp((\eta(\theta_0) - \eta(\theta))^T T(x^{(i)})
$$

Hessian and Gaussian 45/58

- Suppose that we find the mode x^* of $k(x) = h(x)f(x)$
- \triangleright We can use Taylor approximation

$$
\log(k(x)) \approx \log(k(x^*)) - \frac{1}{2}(x - x^*)^T H^*(x - x^*)
$$

$$
k(x) \approx k(x^*) \exp\left(-\frac{1}{2}(x - x^*)^T H^*(x - x^*)\right)
$$

which suggests $q(x) = \mathcal{N}(x^*, (H^*)^{-1})$

- \triangleright This requires positive definite H^*
- ► Can be viewed as an IS version of the Laplace approximation

Mixture Distributions 46/58

 \blacktriangleright Suppose we have K importance distributions q_1, \ldots, q_K , we can combine them into a mixture of distributions with probability $\alpha_1, \ldots, \alpha_K$, $\sum_i \alpha_i = 1$

$$
q(x) = \sum_{i=1}^{K} \alpha_i q_i(x)
$$

▶ IS estimate
$$
I_n^{\text{IS}} = \frac{1}{n} \sum_{i=1}^n h(x^{(i)}) \frac{f(x^{(i)})}{\sum_{j=1}^K \alpha_j q_j(x^{(i)})}
$$

An alternative. Suppose $x^{(i)}$ came from component $j(i)$, we could use

$$
\frac{1}{n} \sum_{i=1}^{n} h(x^{(i)}) \frac{f(x^{(i)})}{q_{j(i)}(x^{(i)})}
$$

Remark: This alternative is faster to compute, but has higher variance

Adaptive Importance Sampling 47/58

- \triangleright Designing importance distribution directly would be challenging. A better way would be to adapt some candidate distribution to our task through a learning process
- \triangleright To do that, we first need to pick a family Q of proposal distributions
- \blacktriangleright We have to choose a termination criterion, e.g., maximum steps, total number of observations, etc.
- \blacktriangleright Most importantly, we need a way to choose $q_{k+1} \in \mathcal{Q}$ based on the observed information

Variance Minimization 48/58

 \blacktriangleright Suppose now we have a family of distributions (e.g., exponential family) $q_{\theta}(x) = q(x; \theta), \ \theta \in \Theta$

 \triangleright Recall that the variance of IS estimate is

$$
\frac{1}{n} \int_{\mathcal{X}} \frac{(h(x)f(x))^{2}}{q(x)} dx - I^{2},
$$
 therefore, we would like

$$
\theta = \underset{\theta \in \Theta}{\arg \min} \int_{\mathcal{X}} \frac{(h(x)f(x))^2}{q_{\theta}(x)} dx
$$

 \triangleright Variance based update

$$
\theta^{(k+1)} = \underset{\theta \in \Theta}{\arg \min} \frac{1}{n_k} \sum_{i=1}^{n_k} \frac{(h(x^{(i)}) f(x^{(i)}))^2}{q_{\theta}(x^{(i)})^2}, \quad x^{(i)} \sim q_{\theta^{(k)}}
$$

However, the optimization may be hard.

Cross Entropy 49/58

 \triangleright Consider an exponential family

$$
q_{\theta}(x) = g(x) \exp(\theta^T x - A(\theta))
$$

 \triangleright Now, replace variance by KL divergence

$$
D_{KL}(k_* \| q_\theta) = \mathbb{E}_{k_*} \log \left(\frac{k_*(x)}{q_\theta(x)} \right)
$$

$$
D_{KL}(k_* \| q_\theta) = \mathbb{E}_{k_*}(\log(k_*(x)) - \log(q(x; \theta)))
$$

i.e., maximize

$$
\mathbb{E}_{k_*}(\log(q(x;\theta)))
$$

Cross Entropy 50/58

▶ Rewrite the negative cross entropy as

$$
\mathbb{E}_{k_*}(\log(q(x; \theta))) = \mathbb{E}_q\left(\frac{\log(q(x; \theta))k_*(x)}{q(x)}\right)
$$

$$
= \frac{1}{I} \cdot \mathbb{E}_q\left(\frac{\log(q(x; \theta))h(x)f(x)}{q(x)}\right)
$$

 \blacktriangleright Update θ to maximize the above

$$
\theta^{(k+1)} = \arg \max_{\theta} \frac{1}{n_k} \sum_{i=1}^{n_k} \frac{h(x^{(i)}) f(x^{(i)})}{q(x^{(i)}; \theta^{(k)})} \log(q(x^{(i)}; \theta))
$$

$$
= \arg \max_{\theta} \frac{1}{n_k} \sum_{i=1}^{k} H_i \log(q(x^{(i)}; \theta))
$$

$$
= \arg \max_{\theta} \frac{1}{n_k} \sum_{i=1}^{k} H_i(\theta^T x^{(i)} - A(\theta))
$$

 $Cross Entropy$ 51/58

 \blacktriangleright The update often takes a simple moment matching form

$$
\frac{\partial}{\partial \theta} A(\theta^{(k+1)}) = \frac{\sum_{i} H_i(x^{(i)})^T}{\sum_{i} H_i}
$$

 \blacktriangleright Examples: \blacktriangleright $q_{\theta} = \mathcal{N} (\theta, I)$ $\theta^{(k+1)} = \frac{\sum_i H_i x^{(i)}}{\sum_i H_i}$ $\sum_i H_i$ \blacktriangleright $q_{\theta} = \mathcal{N}(\theta, \Sigma)$ $\theta^{(k+1)} = \sum_{i=1}^{n} \frac{H_i x^{(i)}}{\sum_{i=1}^{n} H_i}$ $\sum_i H_i$

▶ Other exponential family updates are typically closed form functions of sample moments

Example 52/58

Gaussian, Pr(min(x)>6)

Gaussian, Pr(max(x)>6)

 $\theta_1 = (0, 0)^T$ Take $K = 10$ steps with $n = 1000$ each

Example 53/58

Gaussian, Pr(min(x)>6) Gaussian, Pr(max(x)>6) Ю Б \circ \circ မှ မှ -2 2

For $\min(x)$, $\theta^{(k)}$ heads Northeast, which is OK. For $\max(x)$, $\theta^{(k)}$ heads North or East, and miss the other part completely, leading to underestimates of I by about $1/2$

Control Variates 54/58

- \blacktriangleright The control variate strategy improves estimation of an unknown integral by relating the estimate to some correlated estimator with known integral
- \triangleright A general class of unbiased estimators

$$
I_{\rm CV} = I_{\rm MC} - \lambda(J_{\rm MC} - J)
$$

where $\mathbb{E}(J_{\text{MC}}) = J$. It is easy to show I_{CV} is unbiased, $\forall \lambda$

 \blacktriangleright We can choose λ to minimize the variance of I_{CV}

$$
\hat{\lambda} = \frac{\text{Cov}(I_{\rm MC}, J_{\rm MC})}{\mathbb{V}\rm{ar}(J_{\rm MC})}
$$

where the related moments can be estimated using samples from corresponding distributions

Control Variate for Importance Sampling $55/58$

▶ Recall that IS estimator is

$$
I_n^{\text{IS}} = \frac{1}{n} \sum_{i=1}^n h(x^{(i)}) w(x^{(i)})
$$

 \blacktriangleright Note that $h(x)w(x)$ and $w(x)$ are correlated and $Ew(x) = 1$, we can use the control variate $\bar{w} = \frac{1}{\sqrt{2}}$ $\sum_{n=1}^{\infty}$ $w(x^{(i)})$

i=1 and the importance sampling control variate estimator is

n

$$
I_n^{\text{ISCV}} = I_n^{\text{IS}} - \lambda(\bar{w} - 1)
$$

 λ can be estimated from a regression of $h(x)w(x)$ on $w(x)$ as described before

Rao-Blackwellization 56/58

- \blacktriangleright Consider estimation of $I = \mathbb{E}(h(X, Y))$ using a random sample $(x^{(1)}, y^{(1)}), \ldots, (x^{(n)}, y^{(n)})$ drawn from f
- \blacktriangleright Suppose the conditional expectation $\mathbb{E}(h(X, Y)|Y)$ can be computed. Using $\mathbb{E}(h(X, Y)) = \mathbb{E}(\mathbb{E}(h(X, Y)|Y)),$ the Rao-Blackwellized estimator can be defined as

$$
I_n^{\text{RB}} = \frac{1}{n} \sum_{i=1}^n \mathbb{E}(h(x^{(i)}, y^{(i)}) | y^{(i)})
$$

 \triangleright Rao-Blackwellized estimator gives smaller variance than the ordinary Monte Carlo estimator

$$
\operatorname{Var}(I_n^{\mathrm{MC}}) = \frac{1}{n} \operatorname{Var}(\mathbb{E}(h(X, Y)|Y) + \frac{1}{n} \mathbb{E}(\operatorname{Var}(h(X, Y)|Y))
$$

$$
\geq \operatorname{Var}(I_n^{\mathrm{RB}})
$$

follows from the conditional variance formula

Rao-Blackwellization for Rejection Sampling 57/58

- \blacktriangleright Suppose rejection sampling stops at a random time M with acceptance of the *n*th draw, yielding $x^{(1)}, \ldots, x^{(n)}$ from all M proposals $y^{(1)}, \ldots, y^{(M)}$
- ▶ The ordinary Monte Carlo estimator can be expressed as

$$
I_n^{\text{MC}} = \frac{1}{n} \sum_{i=1}^{M} h(y^{(i)}) 1_{U_i \le w(y^{(i)})}
$$

 \triangleright Rao-Blackwellization estimator

$$
I_n^{\text{RB}} = \frac{1}{n} \sum_{i=1}^{M} h(y^{(i)}) t_i(Y)
$$

where

$$
t_i(Y) = \mathbb{E}(1_{U_i \leq w(y^{(i)})} | M, y^{(1)}, \dots, y^{(M)})
$$

References 58/58

- ▶ P. J. Davis and P. Rabinowitz. Methods of Numerical Integration. Academic, New York, 1984.
- \blacktriangleright Hesterberg, T. C. (1988). Advances in importance sampling. PhD thesis, Stanford University.
- \blacktriangleright Kong, A. (1992). A note on importance sampling using standardized weights. Technical Report 348, University of Chicago.

