
Statistical Models & Computing Methods

Lecture 2: Gradient Methods

Cheng Zhang

School of Mathematical Sciences, Peking University

October 15, 2020

Descent Methods 2/60

I We now focus on numerical solutions for unconstrained
optimization problems

minimize f(x)

where f : Rn → R is twice differentiable

I Descent method. We can set up a sequence

x(k+1) = x(k) + t(k)∆x(k), t(k) > 0

such that f(x(k+1)) < f(x(k)), k = 0, 1, . . . ,

I ∆x(k) is called the search direction; t(k) is called the step
size or learning rate in machine learning.

Gradient Descent 3/60

A reasonable choice for the search direction is the negative
gradient, which leads to gradient descent methods

x(k+1) = x(k) − t(k)∇f(x(k)), k = 0, 1, . . .

I step size t(k) can be constant or
determined by line search

I every iteration is cheap, does not
require second derivatives

Steepest Descent Direction 4/60

I First-order Taylor expansion

f(x+ v) ≈ f(x) +∇f(x)T v

I v is a descent direction iff ∇f(x)T v < 0

I Negative gradient is the steepest descent direction with
respect to the Euclidean norm.

−∇f(x)

‖∇f(x)‖2
= arg min

v
{∇f(x)T v | ‖v‖2 = 1}

Newton’s Method 5/60

I Consider the second-order Taylor expansion of f at x,

f(x+ v) ≈ f(x) +∇f(x)T v +
1

2
vT∇2f(x)v

, f̃(x)

I We find the optimal direction v by minimizing f̃(x) with
respect to v

v = −[∇2f(x)]−1∇f(x)

I If ∇2f(x) � 0 (e.g., convex functions)

∇f(x)T v = −∇f(x)T [∇2f(x)]−1∇f(x) < 0

when ∇f(x) 6= 0

Newton’s Method 6/60

I The search direction in Newton’s method can also be
viewed as a steepest descent direction, but with a different
metric

I In general, given a positive definite matrix P , we can define
a quadratic norm

‖v‖P = (vTPv)1/2

I Similarly, we can show that −P−1∇f(x) is the steepest
descent direction w.r.t. the quadratic norm ‖ · ‖P

minimize ∇f(x)T v, subject to ‖v‖P = 1

I When P is the Hessian ∇2f(x), we get Newton’s method

Quasi-Newton Method 7/60

I Computing the Hessian and its inverse could be expensive,
we can approximate it with another positive definite matrix
M � 0 which is easier to use

I Update M (k) to learn about the curvature of f in the
search direction and maintain a secant condition

∇f(x(k+1))−∇f(x(k)) = M (k+1)(x(k+1) − x(k))

I Rank-one update

∆x(k) = x(k+1) − x(k)

y(k) = ∇f(x(k+1))−∇f(x(k))

v(k) = y(k) −M (k)∆x(k)

M (k+1) = M (k) +
v(k)(v(k))T

(v(k))T∆x(k)

Quasi-Newton Method 8/60

I Easy to compute the inverse of matrices for low rank
updates by Sherman-Morrison-Woodbury formula

(A+ UCV)−1 = A−1 −A−1U(C−1 + V A−1U)−1V A−1

where A ∈ Rn×n, U ∈ Rn×d, C ∈ Rd×d, V ∈ Rd×n

I Another popular rank-two update method: the BFGS
(Broyden-Fletcher-Goldfarb-Shanno) method

M (k+1) = M (k) +
y(k)(y(k))T

(y(k))T∆x(k)
− M (k)∆x(k)(M (k)∆x(k))T

(∆x(k))TM (k)∆x(k)

Maximum Likelihood Estimation 9/60

I In the frequentist framework, we typically perform
statistical inference by maximizing the log-likelihood L(θ),
or equivalently minimizing negative log-likelihood, which is
also known as the energy function

I Some notations we introduced before
I Score function: s(θ) = ∇θL(θ)

I Observed Fisher information: J(θ) = −∇2
θL(θ)

I Fisher information: I(θ) = E(−∇2
θL(θ))

I Newton’s method for MLE:

θ(k+1) = θ(k) + (J(θ(k)))−1s(θ(k))

Fisher Scoring Algorithm 10/60

I If we use the Fisher information instead of the observed
information, the resulting method is called the Fisher
scoring algorithm

θ(k+1) = θ(k) + (I(θ(k)))−1s(θ(k))

I It seems that the Fisher scoring algorithm is less sensitive
to the initial guess. On the other hand, the Newton’s
method tends to converge faster

I For exponential family models with natural parameters and
generalized linear models (GLMs) with canonical links, the
two methods are identical

Generalized Linear Model 11/60

I A generalized linear model (GLM) assumes a set of
independent random variables Y1, . . . , Yn that follow
exponential family distributions of the same form

p(yi|θi) = exp (yib(θi) + c(θi) + d(yi))

I The parameters θi are typically not of direct interest.
Instead, we usually assume that the expectation of Yi can
be related to a vector of parameters β via a transformation
(link function)

E(Yi) = µi, g(µi) = xTi β

where xi is the observed covariates for yi.

Generalized Linear Model 12/60

I Using the link function, we can now write the score
function in terms of β

I Let g(µi) = ηi, we can show that for jth parameter

s(βj) =

n∑
i=1

(yi − µi)xij
Var(Yi)

∂µi
∂ηi

where ∂µi/∂ηi depends on the link function we choose

I It is also easy to show that the Fisher information matrix is

I(βj , βk) = E(s(βj)s(βk))

=

n∑
i=1

xijxik
Var(Yi)

(
∂µi
∂ηi

)2

Iterative Reweighted Least Squares 13/60

I Note that the Fisher information matrix can be written as

I(β) = XTWX

where W is the n× n diagonal matrix with elements

wii =
1

Var(Yi)

(
∂µi
∂ηi

)2

I Rewriting Fisher scoring algorithm for updating β as

I(β(k))β(k+1) = I(β(k))β(k) + s(β(k))

Iterative Reweighted Least Squares 14/60

I After few simple steps, we have

XTW (k)Xβ(k+1) = XTW (k)Z(k)

where

z
(k)
i = η

(k)
i + (yi − µ(k)i)

∂η
(k)
i

∂µ
(k)
i

I Therefore, we can find the next estimate as follows

β(k+1) = (XTW (k)X)−1XTW (k)Z(k)

I The above estimate is similar to the weighted least square
estimate, except that the weights W and the response
variable Z change from one iteration to another

I We iteratively estimate β until the algorithm converges

Example: Logistic Regression 15/60

I Recall that the Log-likelihood for logistic regression is

L(Y |p) =

n∑
i=1

yi log
pi

1− pi
+ log(1− pi)

I The natural parameters are θi = log pi
1−pi . We use

g(x) = log x
1−x as the link function, θi = g(pi) = xTi β

I We now write the log-likelihood as follows

L(β) = Y TXβ −
n∑
i=1

log(1 + exp(xTi β))

I The score function is

s(β) = XT (Y − p), p =
1

1 + exp(−Xβ)

Example: Logistic Regression 16/60

I The observed Fisher information matrix is

J(β) = XTWX

where W is a diagonal matrix with elements

wii = pi(1− pi)

I Note that J(β) does not depend on Y , meaning that it is
also the Fisher information matrix I(β) = J(β)

I Newton’s update

β(k+1) = β(k) +
(
XTW (k)X

)−1 (
XT (Y − p(k))

)

Advanced Gradient Descent Methods 17/60

I While gradient descent is simple and intuitive, it has many
problems as well.
I Saddle-point problem
I Not applicable to non-differential objectives
I Could be slow
I How to scale to big data problems

I In what follows, we will discuss some advanced techniques
that can alleviate these problems

Momentum Method 18/60

I Introduced in 1964 by Polyak, momentum method is a
technique that can accelerate gradient descent by taking
accounts of previous gradients in the update rule at each
iteration.

m(k) = µm(k−1) + (1− µ)∇f(x(k))

x(k+1) = x(k) − αm(k)

where 0 ≤ µ < 1

I When µ = 0, gradient descent is recovered.

How Does Momentum Work? 19/60

I The vanilla gradient descent may suffer from oscillations
when the magnitudes of gradient varies a lot across
different directions.

I Using the exponential weighted gradient (momentum),
those oscillations are more likely to be damped out,
resulting in faster rate of convergence.

Nesterov’s Acceleration 20/60

I Choose any initial x(0) = x(−1), ∀ k = 1, 2, 3, . . .

y = x(k−1) +
k − 2

k + 1
(x(k−1) − x(k−2))

x(k) = y − tk∇f(y)

I The first two steps are the usually gradient updates

I After that, y = x(k−1) + k−2
k+1(x(k−1) − x(k−2)) carries some

“momentum” from previous iterations, and
x(k) = y − tk∇f(y) uses lookahead gradient at y.

Example 21/60

Logistic regression

Convergence Rate of Gradient Methods 22/60

Assumptions

I f is convex and continuously differentiable on Rn

I ∇f(x) is L-Lipschitz continuous w.r.t Euclidean norm: for
any x, y ∈ Rn

‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖

I optimal value f∗ = infx f(x) is finite and attained at x∗.

Theorem: Gradient descent with 0 < t ≤ 1/L satisfies

f(x(k))− f∗ ≤ 1

2kt
‖x(0) − x∗‖2

Some Useful Lemma and Strong Convexity 23/60

I If f is L-Lipschitz, then for any x, y ∈ Rn

f(y) ≤ f(x) +∇f(x)T (y − x) +
L

2
‖y − x‖2

I If f is differentiable and m-strongly convex, then

f(y) ≥ f(x) +∇f(x)T (y − x) +
m

2
‖y − x‖2

If m = 0, we cover the standard(weak) convexity

I In other words, f is sandwiched between two quadratic
functions

Proof 24/60

I If x+ = x− t∇f(x) and 0 < t ≤ 1/L

f(x+) ≤ f(x)− t‖∇f(x)‖2 +
t2L

2
‖∇f(x)‖2

≤ f(x)− t

2
‖∇f(x)‖2

I From convexity

f(x) ≤ f∗ +∇f(x)T (x− x∗)− m

2
‖x− x∗‖2

I Add the above two inequalities

f(x+)− f∗ ≤ ∇f(x)T (x− x∗)− t

2
‖∇f(x)‖2 − m

2
‖x− x∗‖2

Proof 25/60

I Continue ...

≤ 1

2t
(‖x− x∗‖2 − ‖x+ − x∗‖2)− m

2
‖x− x∗‖2

=
1

2t

(
(1−mt)‖x− x∗‖2 − ‖x+ − x∗‖2

)
(1)

≤ 1

2t
(‖x− x∗‖2 − ‖x+ − x∗‖2) (2)

I For gradient descent updates

k∑
i=1

(f(x(i))− f∗) ≤ 1

2t

k∑
i=1

(‖x(i−1) − x∗‖2 − ‖x(i) − x∗‖2)

=
1

2t
(‖x(0) − x∗‖2 − ‖x(k) − x∗‖2)

Proof 26/60

I Since f(x(i)) is non-increasing

f(x(k))− f∗ ≤ 1

2kt
‖x(0) − x∗‖2

I If f is m-strongly convex, and m > 0, from (1)

‖x(i) − x∗‖2 ≤ (1−mt)‖x(i−1) − x∗‖2, ∀i = 1, 2, . . .

I Therefore

‖x(k) − x∗‖2 ≤ (1−mt)k‖x(0) − x∗‖2

i.e., linear convergence if f is strongly convex (m > 0)

Oracle Lower Bound of First-order Methods 27/60

I First order method: any iterative algorithm that selects
x(k+1) in the set

x(0) + span{∇f(x(0)),∇f(x(1)), . . . ,∇f(x(k))}

I Theorem (Nesterov): for every integer k ≤ (n− 1)/2 and
every x(0), there exist functions that satisfy the
assumptions such that for any first-order method

f(x(k))− f∗ ≥ 3

32

L‖x0 − x∗‖2

(k + 1)2

I Therefore, 1/k2 is the best convergence rate for all
first-order methods.

Convergence Rate of Nesterov’s Acceleration 28/60

I Accelerated gradient descent with fixed step size t ≤ 1/L
satisfies

f(x(k))− f∗ ≤ 2‖x(0) − x∗‖2

t(k + 1)2

I Nesterov’s accelerated gradient (NAG) descent achieve the
oracle convergence rate of first-order methods!

Reformulation of NAG 29/60

I Initialize x(0) = u(0), and for k = 1, 2, . . .

y = (1− θk)x(k−1) + θku
(k−1)

x(k) = y − tk∇f(y)

u(k) = x(k−1) +
1

θk
(x(k) − x(k−1))

with θk = 2/(k + 1).

I This is equivalent to the formulation of NAG presented
earlier (slide 5), and makes convergence analysis easier

Proof 30/60

I If y = (1− θ)x+ θu, x+ = y − t∇f(y), and 0 < t ≤ 1/L

f(x+) ≤ f(y) +∇f(y)T (x+ − y) +
1

2t
‖x+ − y‖2

I From convexity, ∀z ∈ Rn

f(y) ≤ f(z) +∇f(y)T (y − z)

I Add these together

f(x+) ≤ f(z) +
1

t
(x+ − y)(z − x+) +

1

2t
‖x+ − y‖2 (3)

Proof 31/60

I Let u+ = x+ 1
θ (x+ − x), using bound (3) at z = x and

z = x∗

f(x+)− f∗ − (1− θ)(f(x)− f∗)

≤ 1

t
(x+ − y)T (θx∗ + (1− θ)x− x+) +

1

2t
‖x+ − y‖2

=
θ2

2t

(
‖u− x∗‖2 − ‖u+ − x∗‖2

)
I i.e., at iteration k

t

θ2k
(f(x(k))− f∗) +

1

2
‖u(k) − x∗‖2

≤ (1− θk)t
θ2k

(f(x(k−1))− f∗) +
1

2
‖u(k−1) − x∗‖2

Proof 32/60

I Using (1− θi)/θ2i ≤ 1/θ2i−1, and iterating this inequlity

t

θ2k
(f(x(k))− f∗) +

1

2
‖u(k) − x∗‖2

≤ (1− θ1)t
θ21

(f(x(0))− f∗) +
1

2
‖u(0) − x∗‖2

=
1

2
‖x(0) − x∗‖2

I Therefore

f(x(k))− f∗ ≤
θ2k
2t
‖x(0) − x∗‖2 =

2

t(k + 1)2
‖x(0) − x∗‖2

Why NAG works? 33/60

I Although the algebraic manipulations of the proof is
beautiful, the acceleration effect in NAG has been
mysterious and hard to understand

I Recent works reinterpreted the NAG algorithm from
different point of views, including Zhu et al (2017) and Su
et al (2014)

I Here we introduce the ODE explanation from Su et al
(2014)

An ODE Explanation 34/60

I Su et al (2014) proposed an ODE based explanation where
NAG can be viewed as a discretization of the following
ordinary differential equation

Ẍ +
3

t
Ẋ +∇f(X) = 0, t > 0 (4)

with initial conditions X(0) = x(0), Ẋ(0) = 0.

I Theorem (Su et al): For any f ∈ F∞ , ∩L>0FL and any
x(0) ∈ Rn, the ODE (4) with initial conditions
X(0) = x(0), Ẋ(0) = 0 has a unique global solution
X ∈ C2((0,∞);Rn) ∩ C1([0,∞);Rn).

Convergence Rate of The ODE Solution 35/60

I Theorem (Su et al): For any f ∈ F∞, let X(t) be the
unique global solution to (4) with initial conditions
X(0) = x(0), Ẋ(0) = 0. For any t > 0,

f(X(t))− f∗ ≤ 2‖x(0) − x∗‖2

t2

I Consider the energy functional defined as

E(t) , t2(f(X(t))− f∗) + 2‖X +
t

2
Ẋ − x∗‖2

I The derivative of the energy function is

Ė = 2t(f(X)−f∗) + t2〈∇f, Ẋ〉+ 4〈X+
t

2
Ẋ−x∗, 3

2
Ẋ+

t

2
Ẍ〉

Convergence Rate of The ODE Solution 36/60

I Substituting 3Ẋ/2 + tẌ/2 with −t∇f(X)/2

Ė = 2t(f(X)− f∗) + 4〈X − x∗,− t
2
∇f(X)〉

= 2t(f(X)− f∗)− 2t〈X − x∗,∇f(X)〉
≤ 0

where the last inequality follows from the convexity of f .

I Therefore,

f(X(t)− f∗) ≤ E(t)/t2 ≤ E(0)/t2 =
2‖x(0) − x∗‖2

t2

Example 37/60

f(x) = 0.02x21 + 0.005x22, x(0) = (1, 1)

Proximal Gradient Descent: Motivation 38/60

The objective in many unconstrained optimization problems
can be split in two components

minimize f(x) = g(x) + h(x)

I g is convex and differentiable on Rn

I h is convex and simple, but may be non-differentiable

Examples

I Indicator function of closed convex set C

h(x) = 1C(x) =

{
0, x ∈ C
+∞, x /∈ C

I L1 regularization (LASSO): h(x) = ‖x‖1

Proximal Mapping 39/60

The proximal mapping (or proximal-operator) of a convex
function h is defined as

proxh(x) = arg min
u

(
h(u) +

1

2
‖u− x‖22

)
Examples

I h(x) = 0: proxh(x) = x

I h(x) = 1C(x): proxh is projection on C

proxh(x) = arg min
u∈C

‖u− x‖22 = PC(x)

I h(x) = ‖x‖1: proxh is the “soft-threshold” (shrinkage)
operation

proxh(x)i =


xi − 1 xi ≥ 1
0 |xi| ≤ 1
xi + 1 xi ≤ −1

Proximal Gradient Descent 40/60

I Proximal gradient algorithm

x(k+1) = proxtkh(x(k) − tk∇g(x(k))), k = 0, 1, . . .

I Interpretation. If x+ = proxth(x− t∇g(x)), from the
definition of proximal mapping

x+ = arg min
u

(
h(u) +

1

2t
‖u− x+ t∇g(x)‖22

)
= arg min

u

(
h(u) + g(x) +∇g(x)T (u− x) +

1

2t
‖u− x‖22

)
I x+ minimizes h(u) plus a simple quadratic local

approximation of g(u) around x

Examples 41/60

I Gradient Descent: special case with h(x) = 0

x+ = x− t∇g(x)

I Projected Gradient Descent: special case with
h(x) = 1C(x)

x+ = PC(x− t∇g(x))

I ISTA (Iterative Shrinkage-Thresholding Algorithm):
special case with h(x) = ‖x‖1

x+ = St(x− t∇g(x))

where
St(u) = (|u| − t)+sign(u)

Convergence Rate of Proximal Gradient Descent 42/60

I If h is convex and closed,

proxh(x) = arg min
u

(
h(u) +

1

2
‖u− x‖22

)
exists and is unique for all x. Moreover, it has the following
useful properties

u = proxh(x)⇐⇒ x− u ∈ ∂h(u)

⇐⇒ h(z) ≥ h(u) + (x− u)T (z − u), ∀z

I Proximal gradient descent has the same convergence rate
as gradient descent when 0 < t ≤ 1/L

f(x(k))− f∗ ≤ 1

2kt
‖x(0) − x∗‖22

Accelerated Proximal Gradient Descent 43/60

I Similarly, we can apply Nesterov’s acceleration for proximal
gradient descent. Choose any initial x(0) = x(−1),
∀ k = 1, . . .

y = x(k−1) +
k − 2

k + 1
(x(k−1) − x(k−2))

x(k) = proxtkh(y − tk∇g(y))

I Convergence rate is the same with NAG if 0 < t ≤ 1/L

f(x(k))− f∗ ≤ 2‖x(0) − x∗‖2

t(k + 1)2

I When applied to LASSO, this is called FISTA (Fast
Iterative Shrinkage-Thresholding Algorithm)

Example: ISTA vs FISTA 44/60

LASSO Logistic regression: 100 instances

Stochastic Optimization 45/60

Consider the following stochastic optimization problem

min
x

f(x) = Eξ(F (x, ξ)) =

∫
F (x, ξ)p(ξ)dξ

I ξ is a random variable

I The challenge: evaluation of the expectation/integration

Example

I Supervised Learning

min
w
f(w) = E(x,y)∼D(x,y)(`(hw(x), y))

where D(x, y) is the data distribution, `(·, ·) is certain loss,
w is the model parameter

Stochastic Gradient Descent 46/60

I Gradient descent with stochastic approximation (SA)

x(k+1) = x(k) − tkg(x(k))

where E(g(x)) = ∇f(x), ∀x
I Example. Consider supervised learning with observations
D = {xi, yi}Ni=1

min
w
f(w) =

1

N

N∑
i=1

`(hw(x(i), y(i)))

SGD
w(k+1) = w(k) − tk∇`(hw(x(ik), y(ik)))

where ik ∈ {1, . . . ,m} is some chosen index at iteration k.

Example 47/60

Stochastic logistic regression

Convergence Rate of SGD 48/60

I Assume that E(‖g(x)‖2) ≤M2 and f(x) is convex

Ef(x̃[0:k])− f∗ ≤
‖x(0) − x∗‖22 +M2

∑k
j=0 t

2
j

2
∑k

j=0 tk

where x̃[0:k] =
∑k

j=1 tjx
(j)/

∑k
j=1 tj

I Fix the number of iterations K and constant step sizes

tj = ‖x(0)−x∗‖
M
√
K

, j = 0, 1, . . . ,K, we have

E(f(x̄K))− f∗ ≤ ‖x
(0) − x∗‖M√

K

where x̄K = 1
K+1

∑K
j=0 x

(j)

Proof 49/60

By convexity, we have f(x(k))− f∗ ≤ ∇f(x(k))T (x(k) − x∗)

tkE(f(x(k)))− tkf∗ ≤ tkE(g(x(k))T (x(k) − x∗))

=
1

2
(E‖x(k) − x∗‖22 − E‖x(k+1) − x∗‖22) +

1

2
t2kE‖g(x(k))‖22

≤ 1

2
(E‖x(k) − x∗‖22 − E‖x(k+1) − x∗‖22) +

1

2
t2kM

2

∀k ≥ 0. Therefore

k∑
j=0

tjE(f(x(j)))−
k∑
j=0

tjf
∗ ≤ 1

2
‖x(0) − x∗‖22 +

M2

2

k∑
j=0

t2j

Dividing both size with
∑k

j=0 tj together with convexity
complete the proof

Pros and Cons of Vanilla SGD 50/60

What We Love About SGD

I Efficient in computation and memory usage, naturally
scalable for big data problems

I Less likely to be trapped at local modes

What Needs to Be Improved

I In general, vanilla SGD is slow to converge (only 1/k even
with strong convexity). Variance reduction seems to be a
good remedy, see algorithms like SVRG, SAGA, etc.

I Choosing a proper learning rate can be difficult, require
much effort in hyperparameter tuning to get good results

I The same learning rate applies to all parameter updates

Inspiration From Fisher Scoring 51/60

I Assume that f can be related to a probabilistic model, i.e.

f(θ) = −Ey∼Pdata
L(y|θ) = −Ey∼Pdata

log p(y|θ)

I Recall that Fisher information is defined as

I(θ) = Ey∼p(y|θ)(∇L(y|θ)(∇L(y|θ))T) (5)

I We can use Fisher information to adapt the learning rate
according to the local curvature. (5) inspire us to use some
average of g(θ(t))(g(θ(t)))T

Adaptive Stochastic Gradient Descent 52/60

I Previously, we performed an update for all parameters
using the same learning rate

I Duchi et al (2011) proposed an improved version of SGD,
AdaGrad, that adapts the learning rate to the parameters,
according to the frequencies of their associated features

I Denote the vector of parameters as θ and the gradient at
iteration t as gt. Let η be the usual learning rate for SGD.
AdaGrad’s update rule:

θt+1 = θt −
η√

Gt + ε
� gt

where Gt is a diagonal matrix where each diagonal element
is the sum of the squares of the corresponding gradients up
to time step t

RMSprop 53/60

I A potential weakness about AdaGrad is its accumulation of
the squared gradients in Gt, which in turn cause the
learning rate to shrink and eventually become very small

I RMSprop (Geoff Hinton): resolve AdaGrad’s diminishing
learning rate via the exponentially decaying average

E(g2)t = 0.9E(g2)t−1 + 0.1g2t

θt+1 = θt −
η√

E(g2)t + ε
gt

Adam 54/60

I Presumably the most popular stochastic gradient methods
in machine learning, proposed by D.P. Kingma et al (2014).

I In addition to the squared gradients, Adam also keeps an
exponentially decaying average of the past gradients

mt = β1mt−1 + (1− β1)gt, vt = β2vt−1 + (1− β2)g2t

I Bias correction for zero initialization

m̂t =
mt

1− βt1
, v̂t =

vt
1− βt2

I Adam uses the same update rule

θt+1 = θt −
η√
v̂t + ε

m̂t

Test on MNIST Images 55/60

Cheng Zhang

Pros and Cons for Adaptive Methods 56/60

Pros

I Faster training speed and smoother learning curve

I Easier to choose hyperparameters

I Better when data are very sparse

Cons

I Worse performance on unseen data (Wilson et al., 2017)

I Convergence issue: non-decreasing learning rates, extreme
learning rates

Some recent proposals for improvement: AMSGrad (Reddi et
al., 2018), AdaBound (Luo et al., 2019), etc.

References 57/60

I Polyak, B.T. Some methods of speeding up the convergence
of iteration methods. USSR Computational Mathematics
and Mathematical Physics, 4(5):1–17, 1964.

I Yurii Nesterov. A method of solving a convex
programming problem with convergence rate o (1/k2).
Soviet Mathematics Doklady, 27:372–376, 1983.

I Yurii Nesterov. Introductory Lectures on Convex
Optimization, volume 87. Springer Science & Business
Media, 2004.

I Weijie Su, Stephen Boyd, and Emmanuel J Candes. A
differential equation for modeling Nesterov’s accelerated
gradient method: theory and insights. Journal of Machine
Learning Research, 17 (153):1–43, 2016.

References 58/60

I A. Beck and M. Teboulle, “A fast iterative
shrinkage-thresholding algorithm for linear inverse
problems,” SIAM Journal on Imaging Sciences, vol. 2, no.
1, pp. 183–202, 2009.

I A. Nemirovski and A. Juditsky and G. Lan and A. Shapiro
(2009), “Robust stochastic optimization approach to
stochastic programming”

I R. Johnson and T. Zhang (2013), “Accelerating stochastic
gradient descent using predictive variance reduction”

I Kingma, D. P., & Ba, J. L. (2015). Adam: a Method for
Stochastic Optimization. International Conference on
Learning Representations, 1–13

References 59/60

I Zeyuan Allen-Zhu and Lorenzo Orecchia. Linear Coupling:
An Ultimate Unification of Gra- dient and Mirror Descent.
In Proceedings of the 8th Innovations in Theoretical
Computer Science, ITCS ’17, 2017.

I Ashia C Wilson, Rebecca Roelofs, Mitchell Stern, Nati
Srebro, and Benjamin Recht. The marginal value of
adaptive gradient methods in machine learning. In
Advances in Neural Information Processing Systems 30
(NIPS), pp. 4148–4158, 2017.

I Sashank J Reddi, Satyen Kale, and Sanjiv Kumar. On the
convergence of adam and beyond. In International
Conference on Learning Representations (ICLR), 2018.

References 60/60

I Liangchen Luo, Yuanhao Xiong, Yan Liu, and Xu Sun.
2019. Adaptive gradient methods with dynamic bound of
learning rate. arXiv preprint arXiv:1902.09843 (2019).

