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Descent Methods 2/60

I We now focus on numerical solutions for unconstrained
optimization problems

minimize f(x)

where f : Rn → R is twice differentiable

I Descent method. We can set up a sequence

x(k+1) = x(k) + t(k)∆x(k), t(k) > 0

such that f(x(k+1)) < f(x(k)), k = 0, 1, . . . ,

I ∆x(k) is called the search direction; t(k) is called the step
size or learning rate in machine learning.
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A reasonable choice for the search direction is the negative
gradient, which leads to gradient descent methods

x(k+1) = x(k) − t(k)∇f(x(k)), k = 0, 1, . . .

I step size t(k) can be constant or
determined by line search

I every iteration is cheap, does not
require second derivatives



Steepest Descent Direction 4/60

I First-order Taylor expansion

f(x+ v) ≈ f(x) +∇f(x)T v

I v is a descent direction iff ∇f(x)T v < 0

I Negative gradient is the steepest descent direction with
respect to the Euclidean norm.

−∇f(x)

‖∇f(x)‖2
= arg min

v
{∇f(x)T v | ‖v‖2 = 1}



Newton’s Method 5/60

I Consider the second-order Taylor expansion of f at x,

f(x+ v) ≈ f(x) +∇f(x)T v +
1

2
vT∇2f(x)v

, f̃(x)

I We find the optimal direction v by minimizing f̃(x) with
respect to v

v = −[∇2f(x)]−1∇f(x)

I If ∇2f(x) � 0 (e.g., convex functions)

∇f(x)T v = −∇f(x)T [∇2f(x)]−1∇f(x) < 0

when ∇f(x) 6= 0



Newton’s Method 6/60

I The search direction in Newton’s method can also be
viewed as a steepest descent direction, but with a different
metric

I In general, given a positive definite matrix P , we can define
a quadratic norm

‖v‖P = (vTPv)1/2

I Similarly, we can show that −P−1∇f(x) is the steepest
descent direction w.r.t. the quadratic norm ‖ · ‖P

minimize ∇f(x)T v, subject to ‖v‖P = 1

I When P is the Hessian ∇2f(x), we get Newton’s method



Quasi-Newton Method 7/60

I Computing the Hessian and its inverse could be expensive,
we can approximate it with another positive definite matrix
M � 0 which is easier to use

I Update M (k) to learn about the curvature of f in the
search direction and maintain a secant condition

∇f(x(k+1))−∇f(x(k)) = M (k+1)(x(k+1) − x(k))

I Rank-one update

∆x(k) = x(k+1) − x(k)

y(k) = ∇f(x(k+1))−∇f(x(k))

v(k) = y(k) −M (k)∆x(k)

M (k+1) = M (k) +
v(k)(v(k))T

(v(k))T∆x(k)



Quasi-Newton Method 8/60

I Easy to compute the inverse of matrices for low rank
updates by Sherman-Morrison-Woodbury formula

(A+ UCV )−1 = A−1 −A−1U(C−1 + V A−1U)−1V A−1

where A ∈ Rn×n, U ∈ Rn×d, C ∈ Rd×d, V ∈ Rd×n

I Another popular rank-two update method: the BFGS
(Broyden-Fletcher-Goldfarb-Shanno) method

M (k+1) = M (k) +
y(k)(y(k))T

(y(k))T∆x(k)
− M (k)∆x(k)(M (k)∆x(k))T

(∆x(k))TM (k)∆x(k)



Maximum Likelihood Estimation 9/60

I In the frequentist framework, we typically perform
statistical inference by maximizing the log-likelihood L(θ),
or equivalently minimizing negative log-likelihood, which is
also known as the energy function

I Some notations we introduced before
I Score function: s(θ) = ∇θL(θ)

I Observed Fisher information: J(θ) = −∇2
θL(θ)

I Fisher information: I(θ) = E(−∇2
θL(θ))

I Newton’s method for MLE:

θ(k+1) = θ(k) + (J(θ(k)))−1s(θ(k))



Fisher Scoring Algorithm 10/60

I If we use the Fisher information instead of the observed
information, the resulting method is called the Fisher
scoring algorithm

θ(k+1) = θ(k) + (I(θ(k)))−1s(θ(k))

I It seems that the Fisher scoring algorithm is less sensitive
to the initial guess. On the other hand, the Newton’s
method tends to converge faster

I For exponential family models with natural parameters and
generalized linear models (GLMs) with canonical links, the
two methods are identical



Generalized Linear Model 11/60

I A generalized linear model (GLM) assumes a set of
independent random variables Y1, . . . , Yn that follow
exponential family distributions of the same form

p(yi|θi) = exp (yib(θi) + c(θi) + d(yi))

I The parameters θi are typically not of direct interest.
Instead, we usually assume that the expectation of Yi can
be related to a vector of parameters β via a transformation
(link function)

E(Yi) = µi, g(µi) = xTi β

where xi is the observed covariates for yi.



Generalized Linear Model 12/60

I Using the link function, we can now write the score
function in terms of β

I Let g(µi) = ηi, we can show that for jth parameter

s(βj) =

n∑
i=1

(yi − µi)xij
Var(Yi)

∂µi
∂ηi

where ∂µi/∂ηi depends on the link function we choose

I It is also easy to show that the Fisher information matrix is

I(βj , βk) = E(s(βj)s(βk))

=

n∑
i=1

xijxik
Var(Yi)

(
∂µi
∂ηi

)2



Iterative Reweighted Least Squares 13/60

I Note that the Fisher information matrix can be written as

I(β) = XTWX

where W is the n× n diagonal matrix with elements

wii =
1

Var(Yi)

(
∂µi
∂ηi

)2

I Rewriting Fisher scoring algorithm for updating β as

I(β(k))β(k+1) = I(β(k))β(k) + s(β(k))



Iterative Reweighted Least Squares 14/60

I After few simple steps, we have

XTW (k)Xβ(k+1) = XTW (k)Z(k)

where

z
(k)
i = η

(k)
i + (yi − µ(k)i )

∂η
(k)
i

∂µ
(k)
i

I Therefore, we can find the next estimate as follows

β(k+1) = (XTW (k)X)−1XTW (k)Z(k)

I The above estimate is similar to the weighted least square
estimate, except that the weights W and the response
variable Z change from one iteration to another

I We iteratively estimate β until the algorithm converges



Example: Logistic Regression 15/60

I Recall that the Log-likelihood for logistic regression is

L(Y |p) =

n∑
i=1

yi log
pi

1− pi
+ log(1− pi)

I The natural parameters are θi = log pi
1−pi . We use

g(x) = log x
1−x as the link function, θi = g(pi) = xTi β

I We now write the log-likelihood as follows

L(β) = Y TXβ −
n∑
i=1

log(1 + exp(xTi β))

I The score function is

s(β) = XT (Y − p), p =
1

1 + exp(−Xβ)



Example: Logistic Regression 16/60

I The observed Fisher information matrix is

J(β) = XTWX

where W is a diagonal matrix with elements

wii = pi(1− pi)

I Note that J(β) does not depend on Y , meaning that it is
also the Fisher information matrix I(β) = J(β)

I Newton’s update

β(k+1) = β(k) +
(
XTW (k)X

)−1 (
XT (Y − p(k))

)



Advanced Gradient Descent Methods 17/60

I While gradient descent is simple and intuitive, it has many
problems as well.
I Saddle-point problem
I Not applicable to non-differential objectives
I Could be slow
I How to scale to big data problems

I In what follows, we will discuss some advanced techniques
that can alleviate these problems
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I Introduced in 1964 by Polyak, momentum method is a
technique that can accelerate gradient descent by taking
accounts of previous gradients in the update rule at each
iteration.

m(k) = µm(k−1) + (1− µ)∇f(x(k))

x(k+1) = x(k) − αm(k)

where 0 ≤ µ < 1

I When µ = 0, gradient descent is recovered.



How Does Momentum Work? 19/60

I The vanilla gradient descent may suffer from oscillations
when the magnitudes of gradient varies a lot across
different directions.

I Using the exponential weighted gradient (momentum),
those oscillations are more likely to be damped out,
resulting in faster rate of convergence.



Nesterov’s Acceleration 20/60

I Choose any initial x(0) = x(−1), ∀ k = 1, 2, 3, . . .

y = x(k−1) +
k − 2

k + 1
(x(k−1) − x(k−2))

x(k) = y − tk∇f(y)

I The first two steps are the usually gradient updates

I After that, y = x(k−1) + k−2
k+1(x(k−1) − x(k−2)) carries some

“momentum” from previous iterations, and
x(k) = y − tk∇f(y) uses lookahead gradient at y.



Example 21/60

Logistic regression



Convergence Rate of Gradient Methods 22/60

Assumptions

I f is convex and continuously differentiable on Rn

I ∇f(x) is L-Lipschitz continuous w.r.t Euclidean norm: for
any x, y ∈ Rn

‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖

I optimal value f∗ = infx f(x) is finite and attained at x∗.

Theorem: Gradient descent with 0 < t ≤ 1/L satisfies

f(x(k))− f∗ ≤ 1

2kt
‖x(0) − x∗‖2



Some Useful Lemma and Strong Convexity 23/60

I If f is L-Lipschitz, then for any x, y ∈ Rn

f(y) ≤ f(x) +∇f(x)T (y − x) +
L

2
‖y − x‖2

I If f is differentiable and m-strongly convex, then

f(y) ≥ f(x) +∇f(x)T (y − x) +
m

2
‖y − x‖2

If m = 0, we cover the standard(weak) convexity

I In other words, f is sandwiched between two quadratic
functions
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I If x+ = x− t∇f(x) and 0 < t ≤ 1/L

f(x+) ≤ f(x)− t‖∇f(x)‖2 +
t2L

2
‖∇f(x)‖2

≤ f(x)− t

2
‖∇f(x)‖2

I From convexity

f(x) ≤ f∗ +∇f(x)T (x− x∗)− m

2
‖x− x∗‖2

I Add the above two inequalities

f(x+)− f∗ ≤ ∇f(x)T (x− x∗)− t

2
‖∇f(x)‖2 − m

2
‖x− x∗‖2
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I Continue ...

≤ 1

2t
(‖x− x∗‖2 − ‖x+ − x∗‖2)− m

2
‖x− x∗‖2

=
1

2t

(
(1−mt)‖x− x∗‖2 − ‖x+ − x∗‖2

)
(1)

≤ 1

2t
(‖x− x∗‖2 − ‖x+ − x∗‖2) (2)

I For gradient descent updates

k∑
i=1

(f(x(i))− f∗) ≤ 1

2t

k∑
i=1

(‖x(i−1) − x∗‖2 − ‖x(i) − x∗‖2)

=
1

2t
(‖x(0) − x∗‖2 − ‖x(k) − x∗‖2)
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I Since f(x(i)) is non-increasing

f(x(k))− f∗ ≤ 1

2kt
‖x(0) − x∗‖2

I If f is m-strongly convex, and m > 0, from (1)

‖x(i) − x∗‖2 ≤ (1−mt)‖x(i−1) − x∗‖2, ∀i = 1, 2, . . .

I Therefore

‖x(k) − x∗‖2 ≤ (1−mt)k‖x(0) − x∗‖2

i.e., linear convergence if f is strongly convex (m > 0)
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I First order method: any iterative algorithm that selects
x(k+1) in the set

x(0) + span{∇f(x(0)),∇f(x(1)), . . . ,∇f(x(k))}

I Theorem (Nesterov): for every integer k ≤ (n− 1)/2 and
every x(0), there exist functions that satisfy the
assumptions such that for any first-order method

f(x(k))− f∗ ≥ 3

32

L‖x0 − x∗‖2

(k + 1)2

I Therefore, 1/k2 is the best convergence rate for all
first-order methods.



Convergence Rate of Nesterov’s Acceleration 28/60

I Accelerated gradient descent with fixed step size t ≤ 1/L
satisfies

f(x(k))− f∗ ≤ 2‖x(0) − x∗‖2

t(k + 1)2

I Nesterov’s accelerated gradient (NAG) descent achieve the
oracle convergence rate of first-order methods!



Reformulation of NAG 29/60

I Initialize x(0) = u(0), and for k = 1, 2, . . .

y = (1− θk)x(k−1) + θku
(k−1)

x(k) = y − tk∇f(y)

u(k) = x(k−1) +
1

θk
(x(k) − x(k−1))

with θk = 2/(k + 1).

I This is equivalent to the formulation of NAG presented
earlier (slide 5), and makes convergence analysis easier
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I If y = (1− θ)x+ θu, x+ = y − t∇f(y), and 0 < t ≤ 1/L

f(x+) ≤ f(y) +∇f(y)T (x+ − y) +
1

2t
‖x+ − y‖2

I From convexity, ∀z ∈ Rn

f(y) ≤ f(z) +∇f(y)T (y − z)

I Add these together

f(x+) ≤ f(z) +
1

t
(x+ − y)(z − x+) +

1

2t
‖x+ − y‖2 (3)
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I Let u+ = x+ 1
θ (x+ − x), using bound (3) at z = x and

z = x∗

f(x+)− f∗ − (1− θ)(f(x)− f∗)

≤ 1

t
(x+ − y)T (θx∗ + (1− θ)x− x+) +

1

2t
‖x+ − y‖2

=
θ2

2t

(
‖u− x∗‖2 − ‖u+ − x∗‖2

)
I i.e., at iteration k

t

θ2k
(f(x(k))− f∗) +

1

2
‖u(k) − x∗‖2

≤ (1− θk)t
θ2k

(f(x(k−1))− f∗) +
1

2
‖u(k−1) − x∗‖2
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I Using (1− θi)/θ2i ≤ 1/θ2i−1, and iterating this inequlity

t

θ2k
(f(x(k))− f∗) +

1

2
‖u(k) − x∗‖2

≤ (1− θ1)t
θ21

(f(x(0))− f∗) +
1

2
‖u(0) − x∗‖2

=
1

2
‖x(0) − x∗‖2

I Therefore

f(x(k))− f∗ ≤
θ2k
2t
‖x(0) − x∗‖2 =

2

t(k + 1)2
‖x(0) − x∗‖2



Why NAG works? 33/60

I Although the algebraic manipulations of the proof is
beautiful, the acceleration effect in NAG has been
mysterious and hard to understand

I Recent works reinterpreted the NAG algorithm from
different point of views, including Zhu et al (2017) and Su
et al (2014)

I Here we introduce the ODE explanation from Su et al
(2014)
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I Su et al (2014) proposed an ODE based explanation where
NAG can be viewed as a discretization of the following
ordinary differential equation

Ẍ +
3

t
Ẋ +∇f(X) = 0, t > 0 (4)

with initial conditions X(0) = x(0), Ẋ(0) = 0.

I Theorem (Su et al): For any f ∈ F∞ , ∩L>0FL and any
x(0) ∈ Rn, the ODE (4) with initial conditions
X(0) = x(0), Ẋ(0) = 0 has a unique global solution
X ∈ C2((0,∞);Rn) ∩ C1([0,∞);Rn).



Convergence Rate of The ODE Solution 35/60

I Theorem (Su et al): For any f ∈ F∞, let X(t) be the
unique global solution to (4) with initial conditions
X(0) = x(0), Ẋ(0) = 0. For any t > 0,

f(X(t))− f∗ ≤ 2‖x(0) − x∗‖2

t2

I Consider the energy functional defined as

E(t) , t2(f(X(t))− f∗) + 2‖X +
t

2
Ẋ − x∗‖2

I The derivative of the energy function is

Ė = 2t(f(X)−f∗) + t2〈∇f, Ẋ〉+ 4〈X+
t

2
Ẋ−x∗, 3

2
Ẋ+

t

2
Ẍ〉
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I Substituting 3Ẋ/2 + tẌ/2 with −t∇f(X)/2

Ė = 2t(f(X)− f∗) + 4〈X − x∗,− t
2
∇f(X)〉

= 2t(f(X)− f∗)− 2t〈X − x∗,∇f(X)〉
≤ 0

where the last inequality follows from the convexity of f .

I Therefore,

f(X(t)− f∗) ≤ E(t)/t2 ≤ E(0)/t2 =
2‖x(0) − x∗‖2

t2



Example 37/60

f(x) = 0.02x21 + 0.005x22, x(0) = (1, 1)



Proximal Gradient Descent: Motivation 38/60

The objective in many unconstrained optimization problems
can be split in two components

minimize f(x) = g(x) + h(x)

I g is convex and differentiable on Rn

I h is convex and simple, but may be non-differentiable

Examples

I Indicator function of closed convex set C

h(x) = 1C(x) =

{
0, x ∈ C
+∞, x /∈ C

I L1 regularization (LASSO): h(x) = ‖x‖1



Proximal Mapping 39/60

The proximal mapping (or proximal-operator) of a convex
function h is defined as

proxh(x) = arg min
u

(
h(u) +

1

2
‖u− x‖22

)
Examples

I h(x) = 0: proxh(x) = x

I h(x) = 1C(x): proxh is projection on C

proxh(x) = arg min
u∈C

‖u− x‖22 = PC(x)

I h(x) = ‖x‖1: proxh is the “soft-threshold” (shrinkage)
operation

proxh(x)i =


xi − 1 xi ≥ 1
0 |xi| ≤ 1
xi + 1 xi ≤ −1



Proximal Gradient Descent 40/60

I Proximal gradient algorithm

x(k+1) = proxtkh(x(k) − tk∇g(x(k))), k = 0, 1, . . .

I Interpretation. If x+ = proxth(x− t∇g(x)), from the
definition of proximal mapping

x+ = arg min
u

(
h(u) +

1

2t
‖u− x+ t∇g(x)‖22

)
= arg min

u

(
h(u) + g(x) +∇g(x)T (u− x) +

1

2t
‖u− x‖22

)
I x+ minimizes h(u) plus a simple quadratic local

approximation of g(u) around x
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I Gradient Descent: special case with h(x) = 0

x+ = x− t∇g(x)

I Projected Gradient Descent: special case with
h(x) = 1C(x)

x+ = PC(x− t∇g(x))

I ISTA (Iterative Shrinkage-Thresholding Algorithm):
special case with h(x) = ‖x‖1

x+ = St(x− t∇g(x))

where
St(u) = (|u| − t)+sign(u)



Convergence Rate of Proximal Gradient Descent 42/60

I If h is convex and closed,

proxh(x) = arg min
u

(
h(u) +

1

2
‖u− x‖22

)
exists and is unique for all x. Moreover, it has the following
useful properties

u = proxh(x)⇐⇒ x− u ∈ ∂h(u)

⇐⇒ h(z) ≥ h(u) + (x− u)T (z − u), ∀z

I Proximal gradient descent has the same convergence rate
as gradient descent when 0 < t ≤ 1/L

f(x(k))− f∗ ≤ 1

2kt
‖x(0) − x∗‖22



Accelerated Proximal Gradient Descent 43/60

I Similarly, we can apply Nesterov’s acceleration for proximal
gradient descent. Choose any initial x(0) = x(−1),
∀ k = 1, . . .

y = x(k−1) +
k − 2

k + 1
(x(k−1) − x(k−2))

x(k) = proxtkh(y − tk∇g(y))

I Convergence rate is the same with NAG if 0 < t ≤ 1/L

f(x(k))− f∗ ≤ 2‖x(0) − x∗‖2

t(k + 1)2

I When applied to LASSO, this is called FISTA (Fast
Iterative Shrinkage-Thresholding Algorithm)



Example: ISTA vs FISTA 44/60

LASSO Logistic regression: 100 instances



Stochastic Optimization 45/60

Consider the following stochastic optimization problem

min
x

f(x) = Eξ(F (x, ξ)) =

∫
F (x, ξ)p(ξ)dξ

I ξ is a random variable

I The challenge: evaluation of the expectation/integration

Example

I Supervised Learning

min
w
f(w) = E(x,y)∼D(x,y)(`(hw(x), y))

where D(x, y) is the data distribution, `(·, ·) is certain loss,
w is the model parameter



Stochastic Gradient Descent 46/60

I Gradient descent with stochastic approximation (SA)

x(k+1) = x(k) − tkg(x(k))

where E(g(x)) = ∇f(x), ∀x
I Example. Consider supervised learning with observations
D = {xi, yi}Ni=1

min
w
f(w) =

1

N

N∑
i=1

`(hw(x(i), y(i)))

SGD
w(k+1) = w(k) − tk∇`(hw(x(ik), y(ik)))

where ik ∈ {1, . . . ,m} is some chosen index at iteration k.



Example 47/60

Stochastic logistic regression
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I Assume that E(‖g(x)‖2) ≤M2 and f(x) is convex

Ef(x̃[0:k])− f∗ ≤
‖x(0) − x∗‖22 +M2

∑k
j=0 t

2
j

2
∑k

j=0 tk

where x̃[0:k] =
∑k

j=1 tjx
(j)/

∑k
j=1 tj

I Fix the number of iterations K and constant step sizes

tj = ‖x(0)−x∗‖
M
√
K

, j = 0, 1, . . . ,K, we have

E(f(x̄K))− f∗ ≤ ‖x
(0) − x∗‖M√

K

where x̄K = 1
K+1

∑K
j=0 x

(j)
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By convexity, we have f(x(k))− f∗ ≤ ∇f(x(k))T (x(k) − x∗)

tkE(f(x(k)))− tkf∗ ≤ tkE(g(x(k))T (x(k) − x∗))

=
1

2
(E‖x(k) − x∗‖22 − E‖x(k+1) − x∗‖22) +

1

2
t2kE‖g(x(k))‖22

≤ 1

2
(E‖x(k) − x∗‖22 − E‖x(k+1) − x∗‖22) +

1

2
t2kM

2

∀k ≥ 0. Therefore

k∑
j=0

tjE(f(x(j)))−
k∑
j=0

tjf
∗ ≤ 1

2
‖x(0) − x∗‖22 +

M2

2

k∑
j=0

t2j

Dividing both size with
∑k

j=0 tj together with convexity
complete the proof



Pros and Cons of Vanilla SGD 50/60

What We Love About SGD

I Efficient in computation and memory usage, naturally
scalable for big data problems

I Less likely to be trapped at local modes

What Needs to Be Improved

I In general, vanilla SGD is slow to converge (only 1/k even
with strong convexity). Variance reduction seems to be a
good remedy, see algorithms like SVRG, SAGA, etc.

I Choosing a proper learning rate can be difficult, require
much effort in hyperparameter tuning to get good results

I The same learning rate applies to all parameter updates



Inspiration From Fisher Scoring 51/60

I Assume that f can be related to a probabilistic model, i.e.

f(θ) = −Ey∼Pdata
L(y|θ) = −Ey∼Pdata

log p(y|θ)

I Recall that Fisher information is defined as

I(θ) = Ey∼p(y|θ)(∇L(y|θ)(∇L(y|θ))T ) (5)

I We can use Fisher information to adapt the learning rate
according to the local curvature. (5) inspire us to use some
average of g(θ(t))(g(θ(t)))T



Adaptive Stochastic Gradient Descent 52/60

I Previously, we performed an update for all parameters
using the same learning rate

I Duchi et al (2011) proposed an improved version of SGD,
AdaGrad, that adapts the learning rate to the parameters,
according to the frequencies of their associated features

I Denote the vector of parameters as θ and the gradient at
iteration t as gt. Let η be the usual learning rate for SGD.
AdaGrad’s update rule:

θt+1 = θt −
η√

Gt + ε
� gt

where Gt is a diagonal matrix where each diagonal element
is the sum of the squares of the corresponding gradients up
to time step t
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I A potential weakness about AdaGrad is its accumulation of
the squared gradients in Gt, which in turn cause the
learning rate to shrink and eventually become very small

I RMSprop (Geoff Hinton): resolve AdaGrad’s diminishing
learning rate via the exponentially decaying average

E(g2)t = 0.9E(g2)t−1 + 0.1g2t

θt+1 = θt −
η√

E(g2)t + ε
gt
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I Presumably the most popular stochastic gradient methods
in machine learning, proposed by D.P. Kingma et al (2014).

I In addition to the squared gradients, Adam also keeps an
exponentially decaying average of the past gradients

mt = β1mt−1 + (1− β1)gt, vt = β2vt−1 + (1− β2)g2t

I Bias correction for zero initialization

m̂t =
mt

1− βt1
, v̂t =

vt
1− βt2

I Adam uses the same update rule

θt+1 = θt −
η√
v̂t + ε

m̂t



Test on MNIST Images 55/60

Cheng Zhang
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Pros

I Faster training speed and smoother learning curve

I Easier to choose hyperparameters

I Better when data are very sparse

Cons

I Worse performance on unseen data (Wilson et al., 2017)

I Convergence issue: non-decreasing learning rates, extreme
learning rates

Some recent proposals for improvement: AMSGrad (Reddi et
al., 2018), AdaBound (Luo et al., 2019), etc.
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