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General Information 2/56

I Class times:
I Thursday 6:40-9:30pm
I Classroom Building No.2, Room 401

I Instructor:
I Cheng Zhang: chengzhang@math.pku.edu.cn

I Teaching assistants:
I Dequan Ye: 1801213981@pku.edu.cn
I Zihao Shao: zh.s@pku.edu.cn

I Tentative office hours:
I 1279 Science Building No.1
I Thursday 3:00-5:00pm or by appointment

I Website:
https://zcrabbit.github.io/courses/smcm-f20.html

chengzhang@math.pku.edu.cn
1801213981@pku.edu.cn
zh.s@pku.edu.cn
https://zcrabbit.github.io/courses/smcm-f20.html


Computational Statistics/Statistical Computing 3/56

I A branch of mathematical sciences focusing on efficient
numerical methods for statistically formulated problems

I The focus lies on computer intensive statistical methods
and efficient modern statistical models.

I Developing rapidly, leading to a broader concept of
computing that combines the theories and techniques from
many fields within the context of statistics, mathematics
and computer sciences.



Goals 4/56

I Become familiar with a variety of modern computational
statistical techniques and knows more about the role of
computation as a tool of discovery

I Develop a deeper understanding of the mathematical
theory of computational statistical approaches and
statistical modeling.

I Understand what makes a good model for data.

I Be able to analyze datasets using a modern programming
language (e.g., python).



Textbook 5/56

I No specific textbook required for this course

I Recommended textbooks:
I Givens, G. H. and Hoeting, J. A. (2005) Computational

Statistics, 2nd Edition, Wiley-Interscience.
I Gelman, A., Carlin, J., Stern, H., and Rubin, D. (2003).

Bayesian Data Analysis, 2nd Edition, Chapman & Hall.
I Liu, J. (2001). Monte Carlo Strategies in Scientific

Computing, Springer-Verlag.
I Lange, K. (2002). Numerical Analysis for Statisticians,

Springer-Verlag, 2nd Edition.
I Hastie, T., Tibshirani, R. and Friedman, J. (2009). The

Elements of Statistical Learning, 2nd Edition, Springer.
I Goodfellow, I., Bengio, Y. and Courville, A. (2016). Deep

Learning, MIT Press.



Tentative Topics 6/56

I Optimization Methods
I Gradient Methods
I Expectation Maximization

I Approximate Bayesian Inference Methods
I Markov chain Monte Carlo
I Variational Inference
I Scalable Approaches

I Applications in Machine Learning & Related Fields
I Variational Autoencoder
I Generative Adversarial Networks
I Flow-based Generative Models
I Bayesian Phylogenetic Inference



Prerequisites 7/56

Familiar with at least one programming language (with python
preferred!).

I All class assignments will be in python (and use numpy).

I You can find a good Python tutorial at

http://www.scipy-lectures.org/

You may find a shorter python+numpy tutorial useful at

http://cs231n.github.io/python-numpy-tutorial/

Familiar with the following subjects

I Probability and Statistical Inference

I Stochastic Processes

http://www.scipy-lectures.org/
http://cs231n.github.io/python-numpy-tutorial/


Grading Policy 8/56

I 4 Problem Sets: 4× 15% = 60%

I Final Course Project: 40%
I up to 4 people for each team
I Teams should be formed by the end of week 4
I Midterm proposal: 5%
I Oral presentation: 10%
I Final write-up: 25%

I Late policy
I 7 free late days, use them in your ways
I Afterward, 25% off per late day
I Not accepted after 3 late days per PS
I Does not apply to Final Course Project

I Collaboration policy
I Finish your work independently, verbal discussion allowed



Final Project 9/56

I Structure your project exploration around a general
problem type, algorithm, or data set, but should explore
around your problem, testing thoroughly or comparing to
alternatives.

I Present a project proposal that briefly describe your teams’
project concept and goals in one slide in class on 11/12.

I There will be in class project presentation at the end of the
term. Not presenting your projects will be taken as
voluntarily giving up the opportunity for the final
write-ups.

I Turn in a write-up (< 10 pages) describing your project
and its outcomes, similar to a research-level publication.



Today’s Agenda 10/56

I A brief overview of statistical approaches

I Basic concepts in statistical computing

I Convex optimization
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Statistical Models 12/56

“All models are wrong, but some are useful.”
George E. P. Box

Models are used to describe the data generating process, hence
prescribe the probabilities of the observed data D

p(D|θ)

also known as the likelihood.



Examples: Linear Models 13/56

Data: D = {(xi, yi)}ni=1

Model:

Y = Xθ + ε, ε ∼ N (0, σ2In)

⇒ Y ∼ N (Xθ, σ2In)

p(Y |X, θ) = (2πσ2)−n/2 exp

(
−‖Y −Xθ‖

2
2

2σ2

)



Examples: Logistic Regression 14/56

Data:

D = {(xi, yi)}ni=1, yi ∈ {0, 1}

Model:

Y ∼ Bernoulli(p)

p =
1

1 + exp(−Xθ)

p(Y |X, θ) =

n∏
i=1

pyii (1− pi)1−yi



Examples: Gaussian Mixture Model 15/56

Data: D = {yi}ni=1, yi ∈ Rd

Model:

y|Z = z ∼ N (µz, σ
2
zId)

Z ∼ Categorical(α)

p(Y |µ, σ, α) =

n∏
i=1

K∑
k=1

αk (2πσ2k)
(−d/2) exp

(
−‖yi − µk‖

2
2

2σ2k

)



Examples: Phylogenetic Model 16/56
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Data: DNA sequences D = {yi}ni=1

p(Y |τ, q) =

n∏
i=1

∑
ai

η(aiρ)
∏

(u,v)∈E(τ)

Paiuaiv(quv)

where ai agree with yi at the tips
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Examples: Latent Dirichlet Allocation 17/56

I Each topic is a distribution over words

I Documents exhibit multiple topics



Examples: Latent Dirichlet Allocation 17/56

Data: a corpus D = {wi}Mi=1

Model: for each document w in D,

I choose a mixture of topics θ ∼ Dir(α)

I for each of the N words wn,

zn ∼ Multinomial(θ), wn|zn, β ∼ p(wn|zn, β)

p(D|α, β) =

M∏
d=1

∫
p(θd|α)

Nd∏
n=1

∑
zdn

p(zdn|θd)p(wdn|zdn, β) dθd
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Exponential Family 18/56

Many well-known distributions take the following form

p(y|θ) = h(y) exp (φ(θ) · T (y)−A(θ))

I φ(θ): natural/canonical parameters

I T (y): sufficient statistics

I A(θ): log-partition function

A(θ) = log

(∫
y
h(y) exp(φ(θ) · T (y)) dy

)



Examples: Bernoulli Distribution 19/56

Y ∼ Bernoulli(θ):

p(y|θ) = θy(1− θ)1−y

= exp

(
log

(
θ

1− θ

)
y + log(1− θ)

)

I φ(θ) = log

(
θ

1− θ

)
I T (y) = y

I A(θ) = − log(1− θ) = log(1 + eφ(θ))

I h(y) = 1



Examples: Gaussian Distribution 20/56

Y ∼ N (µ, σ2):

p(y|µ, σ2) =
1√
2πσ

exp

(
− 1

2σ2
(y − µ)2

)
=

1√
2π

exp

(
µ

σ2
y − 1

2σ2
y2 − µ2

2σ2
− log σ

)

I φ(θ) = [ µ
σ2 ,− 1

2σ2 ]T

I T (y) = [y, y2]T

I A(θ) = µ2

2σ2 + log σ

I h(y) = 1√
2π



Score Function 21/56

Y = {yi}ni=1, yi ∼ p(yi|θ), the Log-likelihood

L(θ;Y ) =

n∑
i=1

log p(yi|θ)

The gradient of L with respect to θ is called the score

s(θ) =
∂L

∂θ

The expected value of the score is zero

E(s) =

n∑
i=1

∫
∂ log p(yi|θ)

∂θ
p(yi|θ) dyi =

n∑
i=1

∂

∂θ

∫
p(yi|θ) dyi = 0



Fisher Information 22/56

Fisher information is the variance of the score.

I(θ) = E(ssT )

Under mild assumptions (e.g., exponential families),

I(θ) = −E
(

∂2L

∂θ∂θT

)
Intuitively, Fisher information is a measure of the curvature of
the Log-likelihood function. Therefore, it reflects the sensitivity
of model about the parameter at its current value.



KL Divergence 23/56

I Kullback-Leibler divergence or KL divergence is a measure
of statistical distance between two distributions p(x) and
q(x)

DKL(q‖p) =

∫
q(x) log

q(x)

p(x)
dx

I KL divergence is non-negative

DKL(q‖p) = −
∫
q(x) log

p(x)

q(x)
≥ − log

∫
p(x) dx = 0

I Consider a family of distributions p(x|θ), Fisher
information is Hessian of KL-divergence between two
distributions p(x|θ) and p(x|θ′) with respect to θ′ at θ′ = θ

∇2
θ′DKL

(
p(x|θ)‖p(x|θ′)

)
|θ′=θ = I(θ)



Maximum Likelihood Estimate 24/56

θ̂MLE = arg max
θ

L(θ) ≈ arg max
θ

Ey∼pdata log
p(y|θ)
pdata(y)

= arg min
θ

DKL(pdata(y)||p(y|θ))

I Consistency. Under weak regularity condition, θ̂MLE is
consistent: θ̂MLE → θ0 in probability as n→∞, where θ0
is the “true” parameter

I Asymptotical Normality.

θ̂MLE − θ0 → N (0, I−1(θ0))

See Rao 1973 for more details.



Example: Poisson Distribution 25/56

L(θ; y1, . . . , yn) =

n∑
i=1

yi log θ − nθ −
n∑
i=1

log yi!

s(θ) =

∑n
i=1 yi
θ

− n, I(θ) =
n

θ

θ̂MLE = arg max
θ

n∑
i=1

yi log θ − nθ =

∑n
i=1 yi
n

By the Law of large numbers

θ̂MLE
p−→ θ0

By central limit theorem

θ̂MLE − θ0
d−→ N

(
0,
θ0
n

)



Cramér-Rao Lower Bound 26/56

I Can we find an unbiased estimator with smaller variance
than I−1(θ0)?

I Cramér-Rao Lower Bound: For any unbiased estimator
θ̂ of θ0 based on independent observations following the
true distribution, the variance of the estimator is bounded
by the reciprocal of the Fisher information

Var(θ̂) ≥ 1

I(θ0)

I Sketch of proof: Consider a general estimator T = t(X)
with E(T ) = ψ(θ0). Let s be the score function,

Cov(T, s) = E(Ts) = ψ′(θ0)⇒ Var(T ) ≥ [ψ′(θ0)]
2

Var(s)
=

[ψ′(θ0)]
2

I(θ0)



Bayesian Inference 27/56

In Bayesian statistics,
besides specifying a
model p(y|θ) for the
observed data, we also
specify our prior p(θ) for
the model parameters.

Bayes rule for inverse probability

p(θ|D) =
p(D|θ) · p(θ)

p(D)
∝ p(D|θ) · p(θ)

known as the posterior.



Bayesian Approach for Machine Learning 28/56

I uncertainty quantification, provides more useful
information

I reducing overfitting. Regularization ⇐⇒ Prior.

Prediction

p(x|D) =

∫
p(x|θ,D)p(θ|D)dθ

Model Comparison

p(m|D) =
p(D|m)p(m)

p(D)

p(D|m) =

∫
p(D|θ,m)p(θ|m) dθ



Choice of Priors 29/56

I Subjective Priors. Priors should reflect our beliefs as
well as possible. They are subjective, but not arbitrary.

I Hierarchical Priors. Priors of multiple levels.

p(θ) =

∫
p(θ|α)p(α) dα

=

∫
p(θ|α) dα

∫
p(α|β)p(β) dβ

I Conjugate Priors. Priors that ease computation, often
used to facilitate the development of inference and
parameter estimation algorithms.



Conjugate Priors 30/56

I Conjugacy: prior p(θ) and posterior p(θ|Y ) belong to the
same family of distribution

I Exponential family

p(Y |θ) ∝ exp

(
φ(θ) ·

∑
i

T (yi)− nA(θ)

)

I Conjugate prior

p(θ) ∝ exp (φ(θ) · ν − ηA(θ))

I Posterior

p(θ|Y ) ∝ exp

(
φ(θ) · (ν +

∑
i

T (yi))− (n+ η)A(θ)

)



Example: Multinomial Distribution 31/56

Data: D = {xi}mi=1. For each x in D

p(x|θ) ∝ exp

(
K∑
k=1

xk log θk

)

Use Dir(α) as the conjugate prior

p(θ) ∝ exp

(
K∑
k=1

(αk − 1) log θk

)

p(θ|D) ∝ exp

(
K∑
k=1

(
αk − 1 +

M∑
i=1

xik

)
log θk

)



Markov Chains 32/56

Consider random variables {Xt}, t = 0, 1, . . . with state space S

Markov Property

p(Xn+1 = x|X0 = x0, . . . , Xn = xn) = p(Xn+1 = x|Xn = xn)

Transition Probability

Pnij = p(Xn+1 = j|Xn = i), i, j ∈ S.

A Markov chain is called time homogeneous if Pnij = Pij , ∀n.

A Markov chain is governed by its transition probability matrix.



Markov Chains 33/56

I Stationary Distribution.

πTP = πT .

I Ergodic Theorem. If the Markov chain is irreducible and
aperiodic, with stationary distribution π, then

Xn
d−→ π

and for any function h

1

n

n∑
t=1

h(Xt)→ Eπh(X), n→∞

given Eπ|h(X)| exists.



What’s Next? 34/56

I In general, finding MLE and posterior analytically is
difficult. We almost always have to resort to computational
methods.

I In this course, we’ll discuss a variety of computational
techniques for numerical optimization and integration,
approximate Bayesian inference methods, with applications
in statistical machine learning, computational biology and
other related field.



Least Square Regression Models 35/56

I Consider the following least square problem

minimize L(β) =
1

2
‖Y −Xβ‖2

I Note that this is a quadratic problem, which can be solved
by setting the gradient to zero

∇βL(β) = −XT (Y −Xβ̂) = 0

β̂ = (XTX)−1XTY

given that the Hessian is positive definite:

∇2L(β) = XTX � 0

which is true iff X has independent columns.



Regularized Regression Models 36/56

I In practice, we would like to solve the least square
problems with some constraints on the parameters to
control the complexity of the resulting model

I One common approach is to use Bridge regression models
(Frank and Friedman, 1993)

minimize L(β) =
1

2
‖Y −Xβ‖2

subject to

p∑
j=1

|βj |γ ≤ s

I Two important special cases are ridge regression (Hoerl and
Kennard, 1970) γ = 2 and Lasso (Tibshirani, 1996) γ = 1



General Optimization Problems 37/56

I In general, optimization problems take the following form:

minimize f0(x)

subject to fi(x) ≤ 0, i = 1, . . . ,m

hj(x) = 0, j = 1, . . . , p

I We are mostly interested in convex optimization
problems, where the objective function f0(x), the
inequality constraints fi(x) and the equality constraints
hj(x) are all convex functions.



Convex Sets 38/56

I A set C is convex if the line segment between any two
points in C also lies in C, i.e.,

θx1 + (1− θ)x2 ∈ C, ∀x1, x2 ∈ C, 0 ≤ θ ≤ 1

I If C is a convex set in Rn and f(x) : Rn → Rn is an affine
function, then f(C), i.e., the image of C is also a convex
set.



Convex Functions 39/56

I A function f : Rn → R is convex if its domain Df is a
convex set, and ∀x, y ∈ Df and 0 ≤ θ ≤ 1

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y)

I For example, many norms are convex functions

‖x‖p = (
∑
i

|xi|p)1/p, p ≥ 1



Convex Functions 40/56

I First order conditions. Suppose f is differentiable, then f
is convex iff Df is convex and

f(y) ≥ f(x) +∇f(x)T (y − x), ∀x, y ∈ Df

Corollary: For convex function f ,

f(E(X)) ≤ E(f(X))

I Second order conditions. ∇2f(x) � 0, ∀x ∈ Df



Basic Terminology and Notations 41/56

I Optimial value p∗ = inf{f0(x)|fi(x) ≤ 0, hj(x) = 0}

I x is feasible if x ∈ D =
m⋂
i=0

Dfi ∩
p⋂
j=1

Dhj and satisfies the

constraints.

I A feasible x∗ is optimal if f(x∗) = p∗

I Optimality criterion. Assuming f0 is convex and
differentiable, x is optimal iff

∇f0(x)T (y − x) ≥ 0, ∀ feasible y

Remark: for unconstrained problems, x is optimial iff

∇f0(x) = 0



The Lagrangian 42/56

I Consider a general optimization problem

minimize f0(x)

subject to fi(x) ≤ 0, i = 1, . . . ,m

hj(x) = 0, j = 1, . . . , p

I To take the constraints into account, we augment the
objective function with a weighted sum of the constraints
and define the Lagrangian L : Rn × Rm × Rp → R as

L(x, λ, ν) = f0(x) +

m∑
i=1

λifi(x) +

p∑
j=1

νjhj(x)

where λ and ν are dual variables or Lagrangian multipliers.



The Lagrangian Dual Function 43/56

I We define the Lagrangian dual function as follows

g(λ, ν) = inf
x∈D

L(x, λ, ν)

I The dual function is the pointwise infimum of a family of
affine functions of (λ, ν), it is concave, even when the
original problem is not convex.

I If λ ≥ 0, for each feasible point x̃

g(λ, ν) = inf
x∈D

L(x, λ, ν) ≤ L(x̃, λ, ν) ≤ f0(x̃)

I Therefore, g(λ, ν) is a lower bound for the optimial value

g(λ, ν) ≤ p∗, ∀λ ≥ 0, ν ∈ Rp



The Lagrangian Dual Problem 44/56

I Finding the best lower bound leads to the Lagrangian dual
problem

maximize g(λ, ν), subject to λ ≥ 0

I The above problem is a convex optimization problem.

I We denote the optimal value as d∗, and call the
corresponding solution (λ∗, ν∗) the dual optimal

I In contrast, the original problem is called the primal
problem, whose solution x∗ is called primal optimal



Weak vs. Strong Duality 45/56

I d∗ is the best lower bound for p∗ that can be obtained from
the Lagrangian dual function.

I Weak Duality
d∗ ≤ p∗

I The difference p∗ − d∗ is called the optimal dual gap

I Strong Duality
d∗ = p∗
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I Strong duality doesn’t hold in general, but if the primal is
convex, it usually holds under some conditions called
constraint qualifications

I A simple and well-known constraint qualification is Slater’s
condition: there exist an x in the relative interior of D such
that

fi(x) < 0, i = 1, . . . ,m, Ax = b



Complementary Slackness 47/56

I Consider primal optmial x∗ and dual optimal (λ∗, ν∗)

I If strong duality holds

f0(x
∗) = g(λ∗, ν∗)

= inf
x

(
f0(x) +

m∑
i=1

λ∗i fi(x) +

p∑
i=1

v∗jhi(x)

)

≤ f0(x∗) +
m∑
i=1

λ∗i fi(x
∗) +

p∑
i=1

v∗jhi(x
∗)

≤ f0(x∗).

I Therefore, these are all equalities



Complementary Slackness 48/56

I Important conclusions:
I x∗ minimize L(x, λ∗, ν∗)
I λ∗i fi(x

∗) = 0, i = 1, . . . ,m

I The latter is called complementary slackness, which
indicates

λ∗i > 0 ⇒ fi(x
∗) = 0

fi(x
∗) < 0 ⇒ λ∗i = 0

I When the dual problem is easier to solve, we can find
(λ∗, ν∗) and then minimize L(x, λ∗, ν∗). If the resulting
solution is primal feasible, then it is primal optimal.
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I Consider the entropy maximization problem

minimize f0(x) =
∑n

i=1
xi log xi

subject to − xi ≤ 0, i = 1, . . . , n∑n

i=1
xi = 1

I Lagrangian

L(x, λ, ν) =

n∑
i=1

xi log xi −
n∑
i=1

λixi + ν(

n∑
i=1

xi − 1)

I We minimize L(x, λ, µ) by setting ∂L
∂x to zero

log x̂i + 1− λi + ν = 0⇒ x̂i = exp(λi − ν − 1)
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I The dual function is

g(λ, ν) = −
n∑
i=1

exp(λi − ν − 1)− ν

I Dual:

maximize g(λ, ν) = − exp(−ν − 1)

n∑
i=1

exp(λi)− ν, λ ≥ 0

I We find the dual optimal

λ∗i = 0, i = 0, . . . , n, ν∗ = −1 + log n
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I We now minimize L(x, λ∗, ν∗)

log x∗i + 1− λ∗i + ν∗ = 0 ⇒ x∗i =
1

n

I Therefore, the discrete probability distribution that has
maximum entropy is the uniform distribution

Exercise
Show that X ∼ N (µ, σ2) is the maximum entropy distribution
such that EX = µ and EX2 = µ2 + σ2. How about fixing the
first k moments at EXi = mi, i = 1, . . . , k?
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I Suppose the functions f0, f1, . . . , fm, h1, . . . , hp are all
differentiable; x∗ and (λ∗, ν∗) are primal and dual optimal
points with zero duality gap

I Since x∗ minimize L(x, λ∗, ν∗), the gradient vanishes at x∗

∇f0(x∗) +

m∑
i=1

λ∗i∇fi(x∗) +

p∑
j=1

ν∗i∇hj(x∗) = 0

I Additionally

fi(x
∗) ≤ 0, i = 1, . . . ,m

hj(x
∗) = 0, j = 1, . . . , p

λ∗i ≥ 0, i = 1, . . . ,m

λ∗i fi(x
∗) = 0, i = 1, . . . ,m

I These are called Karush-Kuhn-Tucker (KKT) conditions
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I When the primal problem is convex, the KKT conditions
are also sufficient for the points to be primal and dual
optimal with zero duality gap.

I Let x̃, λ̃, ν̃ be any points that satisfy the KKT conditions, x̃
is primal feasible and minimizes L(x̃, λ̃, ν̃)

g(λ̃, ν̃) = L(x̃, λ̃, ν̃)

= f0(x̃) +

m∑
i=1

λ̃ifi(x̃) +

p∑
j=1

ν̃jhj(x̃)

= f0(x̃)

I Therefore, for convex optimization problems with
differentiable functions that satisfy Slater’s condition, the
KKT condtions are necessary and sufficient
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I Consider the following problem:

minimize
1

2
xTPx+ qTx+ r, P � 0

subject to Ax = b

I KKT conditions:

Px∗ + q +AT ν∗ = 0

Ax∗ = b

I To find x∗, v∗, we can solve the above system of linear
equations
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