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General Information 2/56

» Class times:

» Thursday 6:40-9:30pm

» Classroom Building No.2, Room 401
» Instructor:

» Cheng Zhang: chengzhang@math.pku.edu.cn
» Teaching assistants:

» Dequan Ye: 1801213981@pku.edu.cn
» Zihao Shao: zh.s@pku.edu.cn

» Tentative office hours:
» 1279 Science Building No.1
» Thursday 3:00-5:00pm or by appointment
» Website:
https://zcrabbit.github.io/courses/smcm-£20.html
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Computational Statistics/Statistical Computing  3/56

>

| 2

>

A branch of mathematical sciences focusing on efficient
numerical methods for statistically formulated problems
The focus lies on computer intensive statistical methods

and efficient modern statistical models.

Developing rapidly, leading to a broader concept of
computing that combines the theories and techniques from
many fields within the context of statistics, mathematics
and computer sciences.
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Goals 4/56

» Become familiar with a variety of modern computational
statistical techniques and knows more about the role of
computation as a tool of discovery

» Develop a deeper understanding of the mathematical
theory of computational statistical approaches and
statistical modeling.

» Understand what makes a good model for data.

> Be able to analyze datasets using a modern programming
language (e.g., python).
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Textbook 5/56

» No specific textbook required for this course
» Recommended textbooks:

» Givens, G. H. and Hoeting, J. A. (2005) Computational
Statistics, 2nd Edition, Wiley-Interscience.

» Gelman, A., Carlin, J., Stern, H., and Rubin, D. (2003).
Bayesian Data Analysis, 2nd Edition, Chapman & Hall.

» Liu, J. (2001). Monte Carlo Strategies in Scientific
Computing, Springer-Verlag.

» Lange, K. (2002). Numerical Analysis for Statisticians,
Springer-Verlag, 2nd Edition.

» Hastie, T., Tibshirani, R. and Friedman, J. (2009). The
Elements of Statistical Learning, 2nd Edition, Springer.

» Goodfellow, I., Bengio, Y. and Courville, A. (2016). Deep
Learning, MIT Press.
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Tentative Topics 6/56

» Optimization Methods
» Gradient Methods
» Expectation Maximization
» Approximate Bayesian Inference Methods
» Markov chain Monte Carlo
» Variational Inference
» Scalable Approaches
» Applications in Machine Learning & Related Fields
» Variational Autoencoder
» Generative Adversarial Networks
» Flow-based Generative Models
» Bayesian Phylogenetic Inference
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Prerequisites 7/56

Familiar with at least one programming language (with python
preferred!).

» All class assignments will be in python (and use numpy).
» You can find a good Python tutorial at
http://www.scipy-lectures.org/
You may find a shorter python-+numpy tutorial useful at

http://cs231n.github.io/python-numpy-tutorial/

Familiar with the following subjects
> Probability and Statistical Inference

» Stochastic Processes
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http://www.scipy-lectures.org/
http://cs231n.github.io/python-numpy-tutorial/

Grading Policy 8/56

» 4 Problem Sets:
» Final Course Project:
» up to 4 people for each team
» Teams should be formed by the end of week 4
» Midterm proposal:
» Oral presentation:
» Final write-up:
» Late policy
» 7 free late days, use them in your ways
> Afterward, 25% off per late day
» Not accepted after 3 late days per PS
» Does not apply to Final Course Project
» Collaboration policy
» Finish your work independently, verbal discussion allowed
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Final Project 9/56

» Structure your project exploration around a general
problem type, algorithm, or data set, but should explore
around your problem, testing thoroughly or comparing to
alternatives.

» Present a project proposal that briefly describe your teams’
project concept and goals in one slide in class on 11/12.

» There will be in class project presentation at the end of the
term. Not presenting your projects will be taken as
voluntarily giving up the opportunity for the final
write-ups.

» Turn in a write-up (< 10 pages) describing your project
and its outcomes, similar to a research-level publication.

ez x Y

@

PEKING UNIVERSITY




Today’s Agenda 10/56

> A brief overview of statistical approaches

» Basic concepts in statistical computing

» Convex optimization
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Statistical Pipeline 11/56

Knowledge
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Statistical Pipeline

11/56
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Statistical Pipeline 11/56

Knowledge
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Statistical Pipeline 11/56

Linear Models Latent Variable Models Neural Networks

Bayesian Nonparametric Models

Generalized Linear Models

Knowledge
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Statistical Pipeline 11/56

Knowledge

D p(D|0)
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Statistical Pipeline 11/56

Gradient Descent

EM
‘ T
MCMC
D p(D[H) Variational Methods
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Statistical Pipeline 11/56

Gradient Descent

EM
—> ‘—b Knowledge
MCMC
D p(D[Q) Variational Methods
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Statistical Pipeline 11/56

Gradient Descent

Our focus
\\1
_> — [luforonce >  Knowledge
MCMC
D p(D[Q) Variational Methods
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Statistical Models 12/56

“All models are wrong, but some are useful.”
George E. P. Box

Models are used to describe the data generating process, hence
prescribe the probabilities of the observed data D

p(D|9)

also known as the likelihood.
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Examples: Linear Models 13/56

Data: D = {(xi, i)},
Model: )
Y:X9—|-6, ENN(O,O'ZITL) 4

=Y ~ N(X0,0%I,)

2y-n/2 Iy — X0]3
p(Y[X,0) = (2m07) /2 exp <—M
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Examples: Logistic Regression 14/56

Data:
D = {(zi,yi) }iz1, vi € {0,1}
Model:

Y ~ Bernoulli(p)
v
1+ exp(—X0)

p:

p(Y|X,0) = prw— 1=
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Examples: Gaussian Mixture Model 15/56

Data: D = {yi}?:p Y; € R4
Model:
ylZ =2 ~ N(ps,0?ly)

Z ~ Categorical(«)

n K 2
d/2 |y —MkH2
p(Y|u,0,a) H E ag ( 27?0’ = /)eXp <_T§

:@;at 212
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Examples: Phylogenetic Model
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Examples: Phylogenetic Model

Data: DNA sequences D = {y;}I"

CTTTTCAAGG
CATTGCAAAG
CATTTTCAGG
GAAAAGAAAT
TGCAAAAAAA
TTTTTGTGGA
GTTATTAAGG
TACCCACCGG
AATCAAAATG
ATCACAGGGG
ACATCCAGTG

AGTATTTCCT
GGAATAATCT
ATAACTTTCT
CGAGGCAAAA
GGAAGACCAT
GAAGACGCGT
ATATGTTCAT
ATTTTTACCC
GAATAAAATC
AAGGTGAGAT
AGAGAGACCG

ATGAACGAGT
ATGAACGCAA
ATGAAAGTAA
ATGAGCAAAG
ATGCTTGACG
GTGATTGTTA
ATGTTTTTCA
ATGCTCACCG
ATGCTACCAT
ATGCACTCTC
ATGCATCCGA

TAGACGGCAT
TAATTATTGA
ACTTAATACT
TCAGACTCGC
CTCAAACCAT
AACGACCCGT
AAAAGAACCT
TTAAGCAGAT
CTATTTCAAT
AAATCTGGGT
TGCTGAACAT
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Examples: Phylogenetic Model

Data: DNA sequences D = {y;}I"

CTTTTCAAGG
CATTGCAAAG
CATTTTCAGG
GAAAAGAAAT
TGCAAAAAAA
TTTTTGTGGA
GTTATTAAGG
TACCCACCGG
AATCAAAATG
ATCACAGGGG
ACATCCAGTG

AGTATTTCCT
GGAATAATCT
ATAACTTTCT
CGAGGCAAAA
GGAAGACCAT
GAAGACGCGT
ATATGTTCAT
ATTTTTACCC
GAATAAAATC
AAGGTGAGAT
AGAGAGACCG

ATGAACGAGT
ATGAACGCAA
ATGAAAGTAA
ATGAGCAAAG
ATGCTTGACG
GTGATTGTTA
ATGTTTTTCA
ATGCTCACCG
ATGCTACCAT
ATGCACTCTC
ATGCATCCGA

TAGACGGCAT
TAATTATTGA
ACTTAATACT
TCAGACTCGC
CTCAAACCAT
AACGACCCGT
AAAAGAACCT
TTAAGCAGAT
CTATTTCAAT
AAATCTGGGT
TGCTGAACAT

16/56

P. gonderi
plasmodium sp. W,
P. fragile
P. coatneyi
P. knowlesi

P. simiovale

P. fieldi - N-3
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Examples: Phylogenetic Model

Data: DNA sequences D = {y;}I"

Model: Phylogenetic tree: (7,q).
Substitution model:

» stationary distribution: n(a,).
» transition probability:

p(au — av|qu) = Pauav (sz)

AT T
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Examples: Phylogenetic Model 16/56

Data: DNA sequences D = {y;}7

Model: Phylogenetic tree: (7,q).
Substitution model:

» stationary distribution: n(a,).
» transition probability:

p(au — av‘qu) = Pauav (CIuv)

n

p(Y|T, Q) = H Z n(azp) H Pafia% ((:IU’U)

i=1 q? (u,w)EE(T)
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Examples: Phylogenetic Model 16/56

Data: DNA sequences D = {y;}7

Model: Phylogenetic tree: (7,q).
Substitution model:

» stationary distribution: n(a,).
» transition probability:

p(au — av‘qu) = Pauav (CIuv)

Y|7’ q HZ H Pa@a%(@[uv)

i=1 q? (u,v)GE(T)

where a' agree with y; at the tips
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Examples: Latent Dirichlet Allocation 17/56

Topic proportions and

Topics Documents .
assignments

gene 0.04

e O Seeklng Life’s Bare (Genetlc) Necessities

life 0.02
evolve 0.01
organism 0.01

G

NEW YORK— cially in

in the hu

brain 0.04
neuron  0.02
nerve 0.01

bt s tho | Mycopiesme
\/ * Genome Mapping and Sequenc- N

ing, Cold Spring Harbor, New York Stripping down. Computer anaysisyieds an est-
May 810 12 matt of he minimum modorn and andient genomos.

data 0.02
number  0.02
computer 0.01

\/

SCIENCE o VOL. 272 » 24 MAY 1996

» Each topic is a distribution over words

» Documents exhibit multiple topics .
e g K F
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Examples: Latent Dirichlet Allocation 17/56

Datac acopus D= wlfy, 7t @
a 0 z - ,
Model: for each document w in D,
NS
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Examples: Latent Dirichlet Allocation 17/56

B
Data: a corpus D = {w;}}, 2 e O L J
a 0 z wooN ”
Model: for each document w in D,
» choose a mixture of topics 6 ~ Dir(«)
Gy ez F
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Examples: Latent Dirichlet Allocation 17/56

Data: a corpus D = {w;}}, 2 e O L J
a 0 z wooN ”
Model: for each document w in D,
» choose a mixture of topics 6 ~ Dir(«)
» for each of the N words wy,,
zp, ~ Multinomial(0), wy|zn, 8 ~ p(wy|zn, B)
Gy ez F
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Examples: Latent Dirichlet Allocation 17/56

Data: a corpus D = {w;}}, T ‘.

Model: for each document w in D,
» choose a mixture of topics 6 ~ Dir(«)
» for each of the N words wy,,

zp, ~ Multinomial(0), wy|zn, 8 ~ p(wy|zn, B)

p(Dla, B H / 0410) T 3 0l 0100 20m,5) 0

n=1 zqn
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Exponential Family 18/56

Many well-known distributions take the following form

p(y|0) = h(y) exp (4(0) - T(y) — A(0))

» ¢(6): natural/canonical parameters
» T'(y): sufficient statistics
» A(0): log-partition function

A(6) = log ( | iy ex(o0)- () dy)

Y

ANEIE T
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Examples: Bernoulli Distribution 19/56

Y ~ Bernoulli(6):

p(ylo) = 6¥(1 — 6)' 7

e i (12 )+ 0)

> T(y) =y
> A(f) = —log(1 — 6) = log(1 + ?@)
> h(y) =1

ANEIE T
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Examples: Gaussian Distribution 20/56

Y ~ N(p,0?):

1 1
p(y|ua 02) = \/ﬂO’ eXp <_20.2 (y - ,U,>2>
1 H 1o,

> 6(0) = &, —52]"
> T(y) = [y,y*]"

> A(0) = % +logo
> hy) = 7=

ANEIE T
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Score Function 21/56

Y ={yi}"™,, yi ~ p(vy:|#), the Log-likelihood

Y) =" logp(uil6)
=1

The gradient of L with respect to 8 is called the score

oL

The expected value of the score is zero

810 19 —~ 0
i=1
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Fisher Information 22/56

Fisher information is the variance of the score.
Z(0) = E(ssT)

Under mild assumptions (e.g., exponential families),

0 -5 (k)

Intuitively, Fisher information is a measure of the curvature of
the Log-likelihood function. Therefore, it reflects the sensitivity
of model about the parameter at its current value.
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KL Divergence 23/56

» Kullback-Leibler divergence or KL divergence is a measure
of statistical distance between two distributions p(z) and

q(z)
q(z)

Drkr(qllp) = /Q(x) logm dx

» KL divergence is non-negative
p(z
Dcalally) =~ [ ata)log 223 = ~1og [ p(a) do =0

» Consider a family of distributions p(x|6), Fisher
information is Hessian of KL-divergence between two
distributions p(z|f) and p(z|0’) with respect to 6" at ¢/ =6

Vo D (p(]0)|p(]6")) lor— = Z(6)
ez X P
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Maximum Likelihood Estimate 24/56

) 9
Orre = argmax L(0) ~ argmaxEy,, . log M
0 6 pdata(y)

= arg;nin D 1.(Pdata(y)|[p(y]6))

» Consistency. Under weak regularity condition, éM LE 18
consistent: 07,5 — g in probability as n — oo, where 6
is the “true” parameter

> Asymptotical Normality.
Orire — 0o — N (0,27 (6o))

See Rao 1973 for more details.
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Example: Poisson Distribution 25/56
L(O;y1,.. . yn) = Y _yilogh —nb — > logy!
=1 =1

s() = 2=V g =

0
n n '
éMLE = argmax g y; log @ — nh = M
0 , n
=1

By the Law of large numbers
Orie = 0o
By central limit theorem

Onire — bo iﬂ\/( 7>
n »
ez K F
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Cramér-Rao Lower Bound 26/56

» Can we find an unbiased estimator with smaller variance
than Z71(6p)?

» Cramér-Rao Lower Bound: For any unbiased estimator
0 of By based on independent observations following the
true distribution, the variance of the estimator is bounded
by the reciprocal of the Fisher information

Var(0) >

Z(6o)

» Sketch of proof: Consider a general estimator T = ¢(X)
with E(T) = 1(6p). Let s be the score function,

e (602 _ [/ (60))?
Cov(T, ) = E(Ts) = ¥/(60) = Var(T) = " o0 = 7

@ ez X P
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Bayesian Inference

In Bayesian statistics,
besides specifying a
model p(y|f) for the
observed data, we also
specify our prior p() for

the model parameters.

27/56

Posterios

Priot——p, Likelihood

Bayes rule for inverse probability

poip) = "=

known as the posterior.

p(DIo) - p

©) o p(DI0) - p(6)

ez x ¥
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Bayesian Approach for Machine Learning 28/56

» uncertainty quantification, provides more useful
information

» reducing overfitting. Regularization <= Prior.

Prediction

p(alD) = [ p(al6. D)p(6[D)as
Model Comparison

_ p(DIm)p(m)

pwmwz/mpmmWmew
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Choice of Priors 29/56

» Subjective Priors. Priors should reflect our beliefs as
well as possible. They are subjective, but not arbitrary.

» Hierarchical Priors. Priors of multiple levels.
p(6) = [ plbla)pl) da
= [ s(610) da [ ptalp(s) as
» Conjugate Priors. Priors that ease computation, often

used to facilitate the development of inference and
parameter estimation algorithms.
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Conjugate Priors 30/56

» Conjugacy: prior p(f) and posterior p(0|Y) belong to the
same family of distribution

» Exponential family

p(Y|0) o exp <¢(9) : Z T(y:) — nA(Q))
» Conjugate prior

p(0) o< exp (¢(0) - v —nA(0))

» Posterior

p(0Y) o exp < (v + Z T(yi)) — (n+ U)A(9)>

=~/ PEKING UNIVF ksITY




Example: Multinomial Distribution 31/56

Data: D = {x;}]",. For each  in D

K
p(x]0) x exp (Z xy log 9k>

k=1

Use Dir(«) as the conjugate prior

K
p(0) o< exp (Z(ak —1)log 9k>

k=1

K M
p(0]D) x exp (Z (ak -1+ Z:cm) log 9k:>

k=1 =1

ANEIE T
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Markov Chains 32/56

Consider random variables {X;},t =0, 1, ... with state space S
Markov Property
P(Xny1 =2/ Xo =20,..., Xp =) = p(Xny1 = 2| X, = xp)
Transition Probability
Pl = p(Xni1 = jlXa = i), i,j€S.
A Markov chain is called time homogeneous if P = Pj,Vn.

A Markov chain is governed by its transition probability matrix.

ez x Y
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Markov Chains 33/56

» Stationary Distribution.
P =nl.

» Ergodic Theorem. If the Markov chain is irreducible and
aperiodic, with stationary distribution 7, then

d
X, >

and for any function A

1 n
- > h(Xy) = Erh(X), n— oo
t=1

given E,|h(X)| exists.
At £ X F
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What’s Next? 34/56

» In general, finding MLE and posterior analytically is
difficult. We almost always have to resort to computational
methods.

» In this course, we’ll discuss a variety of computational
techniques for numerical optimization and integration,
approximate Bayesian inference methods, with applications
in statistical machine learning, computational biology and
other related field.

ez x Y
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Least Square Regression Models 35/56

» Consider the following least square problem
o 1 2
minimize L(B) = §||Y—XB||

» Note that this is a quadratic problem, which can be solved
by setting the gradient to zero

VaL(B) = =X"(Y = XB) =0
f=xXTX)"'xTy

given that the Hessian is positive definite:
V2L(B) = XTX =0

which is true iff X has independent columns.
e 7 X Z
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Regularized Regression Models 36/56

» In practice, we would like to solve the least square
problems with some constraints on the parameters to
control the complexity of the resulting model

» One common approach is to use Bridge regression models
(Frank and Friedman, 1993)

1
minimize L(B) = §||Y — X

P
subject to Z 167 <s
j=1

» Two important special cases are ridge regression (Hoerl and
Kennard, 1970) v = 2 and Lasso (Tibshirani, 1996) v =1

ez x Y
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General Optimization Problems 37/56

» In general, optimization problems take the following form:

minimize fo(x)
subject to  fi(z) <0, i=1,...,m
h](x) 0? ]:17,]7

» We are mostly interested in convex optimization
problems, where the objective function fy(x), the
inequality constraints f;(z) and the equality constraints
hj(x) are all convex functions.
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Convex Sets 38/56

» A set C is convex if the line segment between any two
points in C also lies in C, i.e.,

Ox1+ (1 =0z € C, Vri,20€C,0<0<1

Convex Set Non-convex Set

» If C is a convex set in R™ and f(z) : R” — R™ is an affine
function, then f(C), i.e., the image of C' is also a convex

set. _ R
@ ez XY




Convex Functions 39/56

» A function f:R"™ — R is conver if its domain Dy is a
convex set, and Vz,y € Dy and 0 <0 <1

fOz+(1—-0)y) <0f(z)+(1-0)f(y)

» For example, many norms are convex functions

lzll, = Q_ lzal?)/?, p21
7

ez x Y
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Convex Functions 40/56

JW)
@)+ V@) ()

» First order conditions. Suppose f is differentiable, then f
is convex iff Dy is convex and

fy) = f(@) + V(@) (y = =), VeyeD;
Corollary: For convex function f,
FEX)) <E(f(X))
» Second order conditions. V2f(z) = 0, Vo € Dy

ez x Y
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Basic Terminology and Notations 41/56

» Optimial value p* = inf{ fo(z)|fi(x )<0 hj(x) = 0}

» z is feasible if x € D = ﬂ Dy N ﬂ Dy, and satisfies the
=0 j=
constraints.

» A feasible z* is optimal if f(z*) = p*
» Optimality criterion. Assuming fp is convex and
differentiable, x is optimal iff

Vio(x) (y —x) >0, Vfeasibley
Remark: for unconstrained problems, z is optimial iff

Vio(z) =

=~/ PEKING UNIVF RSITY




The Lagrangian 42/56

» Consider a general optimization problem

minimize fy(x)
subject to  fi(x) <0, i=1,...,m

» To take the constraints into account, we augment the
objective function with a weighted sum of the constraints
and define the Lagrangian L : R” x R™ x RP — R as

P
L(z,\,v) +Z)\ filx +Zyjh](x)
j=1

where A and v are dual variables or Lagrangian multipliers.

=~/ PEKING UNIVF RSITY




The Lagrangian Dual Function 43/56

» We define the Lagrangian dual function as follows

g(Av) = inf L(z,A,v)

» The dual function is the pointwise infimum of a family of
affine functions of (\,v), it is concave, even when the
original problem is not convex.

> If A > 0, for each feasible point &

g\ v) = inf L(z,\,v) < L(F\,v) < fol#)

» Therefore, g(\,v) is a lower bound for the optimial value
g\ v)<p*, VA>0,veR?

ez x Y
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The Lagrangian Dual Problem 44/56

» Finding the best lower bound leads to the Lagrangian dual
problem

maximize g(\,v), subjectto A >0

» The above problem is a convex optimization problem.

> We denote the optimal value as d*, and call the
corresponding solution (A*,*) the dual optimal

» In contrast, the original problem is called the primal
problem, whose solution z* is called primal optimal

ez x Y
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Weak vs. Strong Duality 45/56

» d* is the best lower bound for p* that can be obtained from
the Lagrangian dual function.

» Weak Duality
d* <p*
» The difference p* — d* is called the optimal dual gap

> Strong Duality
d* — p*

ez x Y

@

PEKING UNIVERSITY




Slater’s Condition 46/56

» Strong duality doesn’t hold in general, but if the primal is
convex, it usually holds under some conditions called
constraint qualifications

» A simple and well-known constraint qualification is Slater’s
condition: there exist an x in the relative interior of D such
that

filzx) <0, i=1,...,m, Ax=0»

ez x Y
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Complementary Slackness 47/56

» Consider primal optmial z* and dual optimal (\*, ")
» If strong duality holds

fola®) = g(\*, ")

P
mf ( +Z)\*fz +Zv;hi(x)>
i=1
< fo(z +Z)\*fz —i—Zv;hi(x
i=1

< fo(z").

» Therefore, these are all equalities

=~/ PEKING UNIVF RSITY




Complementary Slackness 48/56

» Important conclusions:
> z* minimize L(z, \*,v*)
> \ifi(x*)=0, i=1,...,m
» The latter is called complementary slackness, which
indicates

Ar >0 = fi(z")=0
filz®)y <0 = X =0
» When the dual problem is easier to solve, we can find

(A\*,v*) and then minimize L(z, A\*,v*). If the resulting
solution is primal feasible, then it is primal optimal.

ez x Y
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Entropy Maximization 49/56

» Consider the entropy maximization problem

minimize fo(z) = Zn i log z;
1=
subject to —x; <0, i=1,...,n

> e

» Lagrangian

L(xz,\,v) Zmllogazz Z)\m—kuzdfcl—l

» We minimize L(z, A, 1) by setting % to zero

logfci—kl—/\i—l—uz()jiﬁi:exp()\i—y—l)
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Entropy Maximization 50/56

» The dual function is
g\ v) = —Zexp()\i —v—1)—v
i=1
» Dual:

maximize g(A\,v) = —exp(—v —1) Zexp()\i) —v, A>0
i=1

» We find the dual optimal

A=0, 1=0,...,n, v '=-1+1logn

()
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Entropy Maximization 51/56

» We now minimize L(z, \*,v*)
logz; +1—-X +v"=0 = 2= —

» Therefore, the discrete probability distribution that has
maximum entropy is the uniform distribution

Exercise

Show that X ~ N(u,0?) is the maximum entropy distribution
such that EX = p and EX? = p? + 0. How about fixing the
first kK moments at EX' =m,;, i =1,...,k?
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Karush-Kun-Tucker (KKT) conditions 52/56

» Suppose the functions fo, fi1,..., fm,h1,...,hy are all
differentiable; z* and (\*,v*) are primal and dual optimal
points with zero duality gap

» Since z* minimize L(x, \*, v*), the gradient vanishes at z*

V fo(w +Z/\*sz +Zu Vh(

=1
» Additionally
fl(x*) ~ O) /L_]-u )
hj(z*) = 0, j=1,...,p
Al >0, i=1,....,m
Afi(z®) = 0, i=1,....,m

» These are called Karush-Kuhn-Tucker (KKT) conditions
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KKT conditions for convex problems 53/56

» When the primal problem is convex, the KKT conditions
are also sufficient for the points to be primal and dual
optimal with zero duality gap.

» Let #, A, 7 be any points that satisfy the KKT conditions, &
is primal feasible and minimizes L(Z, A, D)

g\, 0) = L(&, )\, D)

= fo(%)

» Therefore, for convex optimization problems with
differentiable functions that satisfy Slater’s condition, the

ez X P

KKT condtions are necessary and sufficient
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Example 54/56

» Consider the following problem:
o 1 7 T
minimize 5.%' Pr+qgax+r, P>0
subject to Ax =b
» KKT conditions:

Pr* +qg+ AT =0
Az* =b

» To find z*,v*, we can solve the above system of linear
equations
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