
Statistical Models and Computing Methods, Problem Set 4

December 17, 2020 Due 12/31/2020

Problem 1.
Given a corpus w = {w1, . . . , wD}, consider a latent Dirichlet allocation (LDA) model
with K = 10 topics

zdn|θd ∼ Discrete(θd), wdn|zdn, β ∼ Discrete(βzdn), d = 1, . . . , D, n = 1, . . . , N

θd ∼ Dirichlet(α), βk ∼ Dirichlet(η), d = 1, . . . , D, k = 1, . . . ,K

Consider the following mean field approximation

q(β, θ, z) =
K∏
k=1

q(βk|λk)
D∏
d=1

q(θd|γd)
D∏
d=1

N∏
n=1

q(zdn|φdn)

Download the data from the course website (data already processed as indices in the
vocabulary).

(1) Derive the coordinate ascent algorithm for mean field variational inference.
(2) Derive the variational lower bound for mean field approximation.
(3) Find the vocabulary size V . Set the hyperparameters α = 1K and η = 1V . Run
mean field VI for 100 iterations (be careful about your initialization of the variational
parameters). Show the variational lower bound as a function of the number of processed
documents.
(4) Implement the stochastic variational inference algorithm and run 100 epochs. Show
the variational lower bound as a function of the number of processed documents. How
does it compare to the standard VI?

Problem 2.
Consider a logistic regression model with normal priors

yi ∼ Bernoulli(pi), pi =
1

1 + exp(−xTi β)
, i = 1, . . . , n. β ∼ N (0, σ2β)

where σβ = 1. Use the spherical Gaussian q(β|µ, σ) = N (µ, σ2I) as our variational
distribution. Download the data from the course website (hw2 p3).

(1) Derive the score function estimator for the gradient of the ELBO with respect to the
variational parameters.
(2) Implement black-box VI using control variates for variance reduction (you can adapt
the baseline using an exponential moving average of the learning signals). Use your
favorite stochastic gradient ascent method for training. Show the lower bound as a func-
tion of the number of processed observations. Hint: you can estimate the lower bound
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using a large number (say, 1000) of samples.
(3) Use the reparameterization trick for the stochastic gradient estimate. Repeat and
compare the result to (2). Try to use minibatch instead of full batch when computing
the likelihood and its gradients. Does this affect the performances of the score function
estimator and the reparameterization trick?
(4) Compare the variance of the stochastic gradient estimates obtained via three meth-
ods: score function estimator, score function estimator + control variates, and the repa-
rameterization trick. Report your results for different numbers of Monte Carlo samples.

Problem 3.
Consider the following banana-shaped distribution with normal priors

yi ∼ N (θ1 + θ22, σ
2
y), i = 1, . . . , n, θ ∼ N (0, σ2θI)

where σθ = 1, σy = 2. Download the data from the course website. We can use Tensor-
flow or Pytorch for this problem.

(1) Derive the ELBO and gradient estimator (using the reparameterization trick) for a
general normalizing flow model with a standard normal base distribution.
(2) Implement the following normalizing flows: planar flows, NICE and RealNVP. Use
your favorite stochastic gradient ascent method for training. Show the lower bound as
a function of the number of iterations.
(3) Implement a Hamiltonian Monte Carlo sampler to collect 500 samples (with the first
500 samples discarded as burn-in).
(4) Draw 500 samples from each of the trained normalizing flow models. Show the scatter
plots of these samples and compare to your HMC results. You may also try out a larger
sample size (e.g., 10000) and report the KL divergence to the ground truth from a long
HMC run (say, 10000 sample with 10000 discarded as burn-in).
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