
Statistical Models and Computing Methods, Problem Set 3

November 26, 2020 Due 12/10/2020

Problem 1.
A total of n instruments are used to observe the same astronomical source. Suppose the
number of photons recorded by instrument j can be modeled as yj ∼ Poisson(xjθ + rj)
where θ ≥ 0 is the parameter of interest, and xj and rj are known positive constants. You
may think of θ, xj , rj as the source intensity, the observation time, and the background
intensity for instrument j, respectively. Assume the photon counts across different in-
struments are independent.

(1) Write down the likelihood function for θ.
(2) Introduce mutually independent latent variables zj1 ∼ Poisson(xjθ) and zj2 ∼
Poisson(rj) and suppose we observe only yj ≡ zj1 + zj2. Under this formulation, derive
an EM algorithm to find the MLE of θ.

Table 1: Data (xj , rj , yj)

(3) Apply your EM algorithm to the data set given by Table 1. What is the MLE?
(4) For these data compute the observed Fisher information and the fraction of missing
information. (Recall the observed Fisher information is defined as the negative second
derivative of the observed data log-likelihood evaluated at the MLE.)

Problem 2.
Consider a two-dimensional Gaussian mixture model

pθ(x) = π1N (µ1,Σ1) + π2N (µ2,Σ2), π1 + π2 = 1, 0 ≤ π1, π2 ≤ 1

Here the model parameters are θ = {π1, π2, µ1, µ2,Σ1,Σ2}. Download the data from the
course website.
(1) Derive an EM algorithm to find the MLE of θ.

(2) Choose the starting value π
(0)
1 = π

(0)
2 = 0.5, µ

(0)
1 = (0.05, 0), µ

(0)
2 = (0,−0.05),Σ

(0)
1 =

Σ
(0)
2 = I2. Apply your EM algorithm to the data and report the contours of the two

estimated Gaussian densities (together with the scatter plot of the data) at iteration
t = 0, 1, 5, 10, 20, 40. Try other starting values for your EM. Does your EM always con-
verge to the same point estimate? Explain it.
(3) Derive the gradient of the parameters. (Hint: for Σ, you can use Σ−1 as the param-
eter)
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(4) Compare the standard gradient descent method to EM. Show `∗− ` as a function of
the number of iterations (` is the log-likelihood function and `∗ is the optimal) for both
methods. Which one is better in this case? Explain it.

Problem 3.
Consider a hidden Markov model (HMM) for predicting protein secondary structure.
For each observed amino acid sequence x,

pθ(x) =
∑
z

pθ(x, z), pθ(x, z) = pθ(z0)

n−1∏
i=0

pθ(zi+1|zi)
n∏
i=0

pθ(xi|zi)

where z = (z0, . . . , zn) is the latent variables. Assume each latent variable zt ∈ {1, . . . , 8}.
The model parameters θ = {π,A,B}, where pθ(z0) ∼ Discrete(π), A ∈ R8×8 is the
transition probability matrix with aij = pθ(zt+1 = j|zt = i) and B ∈ R8×20 is the
emission probability matrix with bij = pθ(xt = j|zt = i). Download the data from the
course website. Load the data and convert it from text strings into numeric indices with
the following code

1 import numpy as np

2 from os import walk

3 mypath = ’proteins/’ # use path to data files

4 _, _, filenames = next(walk(mypath), (None , None , []))

5

6 mSeq = len(filenames) # read in each sequence

7 x = []

8 for i in range(mSeq):

9 f = open( mypath + filenames[i] , ’r’)

10 x.append( f.readline ()[:-1] ) # strip trailing ’\n’

11 f.close ()

12

13 xvals = set() # extract the symbols used in x

14 for i in range(mSeq):

15 xvals |= set(x[i])

16 xvals = list( np.sort( list(xvals) ) )

17 dx = len(xvals)

18

19 for i in range(mSeq): # and convert to numeric indices

20 x[i] = np.array([ xvals.index(s) for s in x[i]])

(1) Derive an algorithm for computing the log-likelihood function using dynamical pro-
gramming.
(2) Derive the forward-backward algorithm (i.e., two-pass algorithm) for computing the
marginal probabilities of the latent variables needed in the E-step.
(3) Initialize the model parameters with the following code

1 np.random.seed (1234)

2

3 model.pi = np.random.rand (8)

4 model.A = np.random.rand (8,8)
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5 model.B = np.random.rand (8,20)

6

7 model.pi /= model.pi.sum()

8 model.A /= model.A.sum(1, keepdims=True)

9 model.B /= model.B.sum(1, keepdims=True)

Implement your algorithms to evaluate p(x(2)), p(z0|x(3)), and p(z3, z4|x(1)). Here x(i)

means the i-th sequence in the data.
(4) Derive the updating formulas in the M-step. Run EM on the data for 200 iterations
and report the average log-likelihood (over different sequences) as a function of iterations.
You may also want to generate new protein sequences based on your trained HMM model
(Just for fun!).
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