5 X

Statistical Models and Computing Methods, Problem Set 1
October 15, 2020 Due 10/29/2020

Problem 1.

(1) Show that X ~ A/(0,1) is the maximum entropy distribution such that EX = 0 and
EX? = 1.

(2) Generalize the result in (1) for the maximum entropy distribution given the first &k
moments, i.e., EX' =m;, i=1,...,k.

Problem 2.
Let Y1,...,Y, be a set of independent random variables with the following pdfs
p(yil0:) = exp(yib(0;) + c(0;) +d(y:)), i=1,....n

Let E(Y;) = pi(0:), g(u;) = 28, where g is the link function and 8 € R? is the vector
of model parameters.
(1) Denote g(pi) as n;, and let s be the score function of 5. Show that

n

(yi — pi)xij Ops
= AAT et A =1,...,d
Sj ; Var(Yz) 8771 sy J))
(2) Let Z be the Fisher information matrix. Show that
U wiiwie (O 2
T =E(sjs5) = A ! V1<j,k<d.
jk (Sjsk’) ‘- Val’(Y;) (8771>) SLHRS

Problem 3.
Use the following code to generate covariate matrices X

import numpy as np
2 np.random.seed (1234)

100
np.random.normal (size=(n,2))

n

(1) Generate n = 100 observations Y following the logistic regression model with true
parameter By = (—2,1).

(2) Find the MLE using the iteratively reweighted least square algorithm.

(3) Repeat (1) and (2) for 100 instances. Compare the MLEs with the asymptotical
distribution 8 ~ N (Bo, ZT7(B0)). Present your result with a scatter plot for MLEs with
contours for the pdf of the asymptotical distribution.

N

N

(4) Try the same for n = 10000. Does the asymptotical distribution provide a better fit
to the MLEs? You can use the empirical covariance matrix of the MLEs for comparison.

Problem 4.
Consider the probit regression model

Y|X, 8 ~ Bernoulli(p), p= ®(Xp5)

where ® is the cumulative distribution function of the standard normal distribution.
Similarly as in Problem 3, generate a large covariate matrix X with 100000 instances
and 100 features, and response Y with true parameter 5

import numpy as np
np.random.seed (1234)

n, d = 100000, 100
X = np.random.normal (size=(n,d))

; beta_0 = np.random.normal (size=d)

(1) Compare gradient descent and nesterov’s accelerated gradient descent.

(2) Compare vanilla stochastic gradient descent with different adaptive stochastic gradi-
ent descent methods, including AdaGrad, RMSprop, and Adam. Using minibatch sizes
32,64,128.

(3) Bonus question. Generate a random mask matrix M as follows and use it to sparsify
the covariance matrix X

np.random.seed (1234)

sparse_rate = 0.3
M = np.random.uniform(size=(n,d)) < sparse_rate
XMl = 0.

Repeat your experiments in (2), and compare with the results for the full covariance
matrix.

