Probabilistic Path Hamiltonian Monte Carlo

Cheng Zhang

Joint work with Vu Dinh, Arman Bilge and Erick Matsen
http://matsen.group

Fred Hutchinson Cancer Research Center

WASHINGTON
University of Washington

August 1, 2017

Sampling: From Continuous to Discrete Variables

- Advanced MCMCs, e.g. Hamiltonian Monte Carlo, can not handle discrete parameters in general.
- Simple MCMCs usually are not efficient at sampling continuous parameters.

Sampling: From Continuous to Discrete Variables

- Advanced MCMCs, e.g. Hamiltonian Monte Carlo, can not handle discrete parameters in general.
- Simple MCMCs usually are not efficient at sampling continuous parameters.

Question: How to sample from posteriors with both continuous and structural discrete parameters efficiently?

Bayesian Learning on Orthant Complexes

An orthant complex is a geometric object \mathcal{X} obtained by gluing orthants of the same dimension that share certain boundaries together

$$
\mathcal{X}=\left\{(\tau, q): \tau \in \Gamma, q \in \mathbb{R}_{\geq 0}^{n}\right\}
$$

where Γ is a countable set. Given observations D and a proper prior $\pi_{0}(\tau, q)$, the posterior is

$$
P(\tau, q \mid D) \propto L(D \mid \tau, q) \pi_{0}(\tau, q)
$$

Assumptions:

- $\left(\tau, q_{\tau}\right)=\left(\tau^{\prime}, q_{\tau^{\prime}}\right) \Rightarrow q_{\tau}=q_{\tau^{\prime}}, \tau^{\prime} \in \mathcal{N}\left(\tau, q_{\tau}\right)$
- The adjacency graph of \mathcal{X} has finite diameter k.
- $U(\tau, q)=-\log P(\tau, q)$ is continuous and smooth up to the boundary.

Example: Phylogenetic Inference

Let (τ, q) be a phylogenetic tree and $\psi=\left\{\psi_{i}\right\}_{i=1}^{S}$ be the observed sequences over the leaves.

Goal: reconstruct the evolution history (phylogenetic tree) based on observed sequences.

The Billera-Holmes-Vogtmann Space

The adjacent orthants are called NNI neighbors.

Challenges in Phylogenetic Inference

- A continuous-time Markov chain is used to model the evolution history which leads to the following likelihood

$$
L(\psi \mid \tau, q)=\prod_{s=1}^{S} \sum_{a^{s}} \eta\left(a_{\rho}^{s}\right) \prod_{(u, v) \in E(\tau, q)} P_{a_{u}^{s} a_{v}^{s}}^{u v}\left(q_{u v}\right)
$$

- Efficient computation via Felsenstein's pruning algorithm (a.k.a. belief propagation, sum-product message passing etc.)
- Challenging Topology Space: The number of possible topologies $T(n)$ grows exponentially as the number of leaves n increases

$$
T(n)=\frac{(2 n-5)!}{(n-3)!2^{n-3}}=e^{\mathcal{O}(n \log n)}
$$

Hamiltonian Monte Carlo

$$
H(q, p)=U(q)+K(p), \quad K(p)=\frac{1}{2} p^{T} p
$$

$$
\frac{d q_{i}}{d t}=p_{i}
$$

Probabilistic Path Hamiltonian Monte Carlo

$$
H(\tau, q, p)=U(\tau, q)+K(p), \quad K(p)=\frac{1}{2} p^{T} p
$$

$$
\frac{d q_{i}}{d t}=p_{i}
$$

Probabilistic Path Hamiltonian Monte Carlo

$$
\begin{gathered}
H(\tau, q, p)=U(\tau, q)+K(p), \quad K(p)=\frac{1}{2} p^{T} p \\
p_{i}=-p_{i} ; \tau \sim Z(\mathcal{N}(\tau, q) \\
d t \\
d t \\
\hline d q_{i} \\
(\tau, q, p)
\end{gathered}
$$

Theoretical Properties

Assume symmetric transition:

$$
P\left(\tau^{\prime} \mid \tau, q\right)=P\left(\tau \mid \tau^{\prime}, q\right), \quad \tau^{\prime} \in \mathcal{N}(\tau, q)
$$

Augmented state: $s=(\tau, q, p)$, a pair of measurable sets: A, B.

Theoretical Properties

Assume symmetric transition:

$$
P\left(\tau^{\prime} \mid \tau, q\right)=P\left(\tau \mid \tau^{\prime}, q\right), \quad \tau^{\prime} \in \mathcal{N}(\tau, q)
$$

Augmented state: $s=(\tau, q, p)$, a pair of measurable sets: A, B.

- Probabilistic Reversibility.

$$
P\left((\tau, q, p),\left(\tau^{*}, q^{*}, p^{*}\right)\right)=P\left(\left(\tau^{*}, q^{*},-p^{*}\right),(\tau, q,-p)\right)
$$

Theoretical Properties

Assume symmetric transition:

$$
P\left(\tau^{\prime} \mid \tau, q\right)=P\left(\tau \mid \tau^{\prime}, q\right), \quad \tau^{\prime} \in \mathcal{N}(\tau, q)
$$

Augmented state: $s=(\tau, q, p)$, a pair of measurable sets: A, B.

- Probabilistic Reversibility.

$$
P\left((\tau, q, p),\left(\tau^{*}, q^{*}, p^{*}\right)\right)=P\left(\left(\tau^{*}, q^{*},-p^{*}\right),(\tau, q,-p)\right)
$$

- Stochastic Volume Preservation.

$$
\int_{A} \int_{B} P\left(s, s^{\prime}\right) d s^{\prime} d s=\int_{B} \int_{A} P\left(s^{\prime}, s\right) d s d s^{\prime}
$$

Theoretical Properties

Assume symmetric transition:

$$
P\left(\tau^{\prime} \mid \tau, q\right)=P\left(\tau \mid \tau^{\prime}, q\right), \quad \tau^{\prime} \in \mathcal{N}(\tau, q)
$$

Augmented state: $s=(\tau, q, p)$, a pair of measurable sets: A, B.

- Probabilistic Reversibility.

$$
P\left((\tau, q, p),\left(\tau^{*}, q^{*}, p^{*}\right)\right)=P\left(\left(\tau^{*}, q^{*},-p^{*}\right),(\tau, q,-p)\right)
$$

- Stochastic Volume Preservation.

$$
\int_{A} \int_{B} P\left(s, s^{\prime}\right) d s^{\prime} d s=\int_{B} \int_{A} P\left(s^{\prime}, s\right) d s d s^{\prime}
$$

- k-accessibility. Any two states in \mathcal{X} can be connected by k iterations of probabilistic path HMC.

Theoretical Properties

Assume symmetric transition:

$$
P\left(\tau^{\prime} \mid \tau, q\right)=P\left(\tau \mid \tau^{\prime}, q\right), \quad \tau^{\prime} \in \mathcal{N}(\tau, q)
$$

Augmented state: $s=(\tau, q, p)$, a pair of measurable sets: A, B.

- Probabilistic Reversibility.

$$
P\left((\tau, q, p),\left(\tau^{*}, q^{*}, p^{*}\right)\right)=P\left(\left(\tau^{*}, q^{*},-p^{*}\right),(\tau, q,-p)\right)
$$

- Stochastic Volume Preservation.

$$
\int_{A} \int_{B} P\left(s, s^{\prime}\right) d s^{\prime} d s=\int_{B} \int_{A} P\left(s^{\prime}, s\right) d s d s^{\prime}
$$

- k-accessibility. Any two states in \mathcal{X} can be connected by k iterations of probabilistic path HMC.

Theorem: Probabilistic Path HMC preserves the posterior and is ergodic.

Reflection

(Afshar and Domke)

- $U(\tau, q)$ is continuous across boundary

$$
\Delta E=U\left(\tau^{\prime}, q\right)-U(\tau, q)=0, \quad q_{i}=0
$$

- Momentum and topology update: $p_{i}=-p_{i}, \quad \tau=\tau^{\prime}$
- However, T steps leap-frog scheme with step size ϵ has the global numerical error $\mathcal{O}\left(C \epsilon+T \epsilon^{3}\right)$ if ∂U is discontinuous on the boundary, where C is the number of reflection events.

Surrogate Smoothing and Refraction

- Surrogate function. $\tilde{U}(\tau, q)=U(\tau, \tilde{q}), \quad \tilde{q}_{i}=g_{\delta}\left(q_{i}\right), \quad \forall i$

$$
g_{\delta}(x)= \begin{cases}x, & x \geq \delta \\ \frac{1}{2 \delta}\left(x^{2}+\delta^{2}\right), & 0 \leq x<\delta\end{cases}
$$

- Surrogate makes the gradients equal. However, $\Delta \tilde{E} \neq 0$

- Momentum and topology update (refraction, Afshar and Domke)

$$
\left(\tau, p_{i}\right)= \begin{cases}\left(\tau^{\prime}, \sqrt{\left\|p_{i}\right\|^{2}-2 \Delta \tilde{E}}\right) & \left\|p_{i}\right\|^{2}>2 \Delta \tilde{E} \\ \left(\tau,-p_{i}\right) & \text { otherwise }\end{cases}
$$

Surrogate vs Exact PPHMC

Figure: Expected number of NNI moves on a real data set.

Compared to MrBayes

Figure: Loglikelihood vs topology transitions on a 1000 taxa simulated data set.

Conclusion

- Probabilistic path HMC extended HMC towards sampling both continuous and structural discrete parameters.
- The surrogate smoothing strategy enables long HMC paths with potential non-differentiable boundary transitions.
- Contribution in Bayesian phylogenetic inference: allowing several topology transitions in a single proposal with high acceptance rate and these transitions are all guided by the gradient and hence could be more "intelligent" than random choices.
- Future developments: enabling adaptive path length and extension to other classes of problems with similar continuous and discrete parameter structures.

