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Sampling: From Continuous to Discrete Variables

» Advanced MCMCs, e.g. Hamiltonian Monte Carlo, can not handle
discrete parameters in general.

» Simple MCMCs usually are not efficient at sampling continuous
parameters.

Motivation



Sampling: From Continuous to Discrete Variables

» Advanced MCMCs, e.g. Hamiltonian Monte Carlo, can not handle
discrete parameters in general.

» Simple MCMCs usually are not efficient at sampling continuous
parameters.

Question: How to sample from posteriors with both continuous and
structural discrete parameters efficiently?
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Bayesian Learning on Orthant Complexes

An orthant complex is a geometric object X obtained by gluing orthants
of the same dimension that share certain boundaries together

X:{(T7q):7—€1—‘7 QERZO}

where I' is a countable set. Given observations D and a proper prior
mo(7, q), the posterior is

P(Ta q|D) X L(D‘Ta Q)TFO(Tv Q)
Assumptions:
> (T, QT) = (leq'r’) = qr = qr7, T’ € /\/(T, qr)
» The adjacency graph of X has finite diameter k.

» U(r,q) = —log P(7,q) is continuous and smooth up to the
boundary.
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Example: Phylogenetic Inference

Let (7,q) be a phylogenetic tree and ¢ = {1;}_, be the observed

sequences over the leaves.
AACGCATGC
CACGCATGC
CATGCATGC
CATGCATGC

(1,q) P12 Ys

\
//\

Goal: reconstruct the evolution history (phylogenetic tree) based on
observed sequences.
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The Billera-Holmes-Vogtmann Space

The adjacent orthants are called NNI neighbors.
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Challenges in Phylogenetic Inference

» A continuous-time Markov chain is used to model the evolution
history which leads to the following likelihood

Z/J|T q HZU H P:g}af,(quv)

s=1 a° (uw)EE(T,q)

» Efficient computation via Felsenstein's pruning algorithm (a.k.a.
belief propagation, sum-product message passing etc.)

» Challenging Topology Space: The number of possible topologies
T'(n) grows exponentially as the number of leaves n increases

(27175)' O(nlogn
T T
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Hamiltonian Monte Carlo

(a,p)

o, (¢*,p")
dt 0q; a

dqi_
a P
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Probabilistic Path Hamiltonian Monte Carlo

H(r,q,p) =U(r,9) + K(p), K(p)=3p"p

(7,4,p)

™, q",p*
dpi _ U ¢ )
dt (9!]7; T q

dqi_
at P




Probabilistic Path Hamiltonian Monte Carlo

dpi 8U( q) (/ ,q , P )
dt ~  0¢;i'’ A. B
pi=—pi; 7~ ZN(7,9) ALB b ¢
I — X
dt '
C B
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Theoretical Properties
Assume symmetric transition:

P('|t,q) = P(r|7",q), 7' € N(7,q)

Augmented state: s = (7, ¢,p), a pair of measurable sets: A, B.
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Theoretical Properties

Assume symmetric transition:
P(r'|r,q) = P(r|T",q), 7 € N(7,q)

Augmented state: s = (7, ¢,p), a pair of measurable sets: A, B.

» Probabilistic Reversibility.

P((1,q,p), (7",q",p")) = P((",¢", =p"), (T, 4, —D))
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Theoretical Properties

Assume symmetric transition:
P(r'|r,q) = P(r|T",q), 7 € N(7,q)

Augmented state: s = (7, ¢,p), a pair of measurable sets: A, B.

» Probabilistic Reversibility.

P((1,q,p), (7",q",p")) = P((",¢", =p"), (T, 4, —D))

» Stochastic Volume Preservation.

// P(s,s") ds'ds:// P(s',s) dsds'
AJB BJa
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Theoretical Properties

Assume symmetric transition:
P(r'|r,q) = P(r|,q), 7 € N(r.q)
Augmented state: s = (7, ¢,p), a pair of measurable sets: A, B.
» Probabilistic Reversibility.
P((r,q,p), (7", q%,p")) = P((", ¢", —p"), (7. ¢, =)

» Stochastic Volume Preservation.

// P(s,s") ds'ds:// P(s',s) dsds'
AJB BJA

» k-accessibility. Any two states in X' can be connected by k
iterations of probabilistic path HMC.
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Theoretical Properties

Assume symmetric transition:
P(r'|r,q) = P(r|T",q), 7 € N(7,q)

Augmented state: s = (7, ¢,p), a pair of measurable sets: A, B.

» Probabilistic Reversibility.

P((1,q,p), (7",q",p")) = P((",¢", =p"), (T, 4, —D))

» Stochastic Volume Preservation.

// P(s,s") ds'ds:// P(s',s) dsds'
AJB BJA

» k-accessibility. Any two states in X' can be connected by k
iterations of probabilistic path HMC.

Theorem: Probabilistic Path HMC preserves the posterior and is ergodic.
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Reflection
(Afshar and Domke)

» U(r,q) is continuous across boundary

AE = U(T/a q) - U(Ta q) =0, qi = 0

qi 0 qi

» Momentum and topology update: p; = —p;, 7=7'

» However, T steps leap-frog scheme with step size € has the global
numerical error O(C'c + Te) if QU is discontinuous on the
boundary, where C' is the number of reflection events.
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Surrogate Smoothing and Refraction
» Surrogate function. U(7,q) = U(7,q), G = gs(q), Vi

() = T, x>0
go\®) = @2 +6%), 0<z<é

» Surrogate makes the gradients equal. However, AE #0
q—i ,
r

\

qi 6 0 6 q; qi 0 q;

» Momentum and topology update (refraction, Afshar and Domke)

(1,pi) = { (" A/ llpel* = QAE) ||pz||2 < 9AE

(1, —p3) otherwise
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Surrogate vs Exact PPHMC

—— Surrogate PPHMC

121 — Exact PPHMC
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Figure: Expected number of NNI moves on a real data set.
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Compared to MrBayes
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Figure: Loglikelihood vs topology transitions on a 1000 taxa simulated data set.
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Conclusion

» Probabilistic path HMC extended HMC towards sampling both
continuous and structural discrete parameters.

» The surrogate smoothing strategy enables long HMC paths with
potential non-differentiable boundary transitions.

» Contribution in Bayesian phylogenetic inference: allowing several
topology transitions in a single proposal with high acceptance rate
and these transitions are all guided by the gradient and hence could
be more “intelligent” than random choices.

» Future developments: enabling adaptive path length and extension
to other classes of problems with similar continuous and discrete
parameter structures.

Conclusion
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