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Sampling: From Continuous to Discrete Variables

I Advanced MCMCs, e.g. Hamiltonian Monte Carlo, can not handle
discrete parameters in general.

I Simple MCMCs usually are not efficient at sampling continuous
parameters.

Question: How to sample from posteriors with both continuous and
structural discrete parameters efficiently?
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Bayesian Learning on Orthant Complexes

An orthant complex is a geometric object X obtained by gluing orthants
of the same dimension that share certain boundaries together

X = {(τ, q) : τ ∈ Γ, q ∈ Rn≥0}

where Γ is a countable set. Given observations D and a proper prior
π0(τ, q), the posterior is

P (τ, q|D) ∝ L(D|τ, q)π0(τ, q)

Assumptions:

I (τ, qτ ) = (τ ′, qτ ′)⇒ qτ = qτ ′ , τ ′ ∈ N (τ, qτ )

I The adjacency graph of X has finite diameter k.

I U(τ, q) = − logP (τ, q) is continuous and smooth up to the
boundary.
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Example: Phylogenetic Inference

Let (τ, q) be a phylogenetic tree and ψ = {ψi}Si=1 be the observed
sequences over the leaves.

A T G A A C G C A T G C

A T G C A C G C A T G C

A T G C A T G C A T G C

A T G C A T G C A T G C

(τ, q) ψ1ψ2 · · · ψS

Goal: reconstruct the evolution history (phylogenetic tree) based on
observed sequences.
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The Billera-Holmes-Vogtmann Space

The adjacent orthants are called NNI neighbors.
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Challenges in Phylogenetic Inference

I A continuous-time Markov chain is used to model the evolution
history which leads to the following likelihood

L(ψ|τ, q) =

S∏
s=1

∑
as

η(asρ)
∏

(u,v)∈E(τ,q)

Puvasuasv (quv)

I Efficient computation via Felsenstein’s pruning algorithm (a.k.a.
belief propagation, sum-product message passing etc.)

I Challenging Topology Space: The number of possible topologies
T (n) grows exponentially as the number of leaves n increases

T (n) =
(2n− 5)!

(n− 3)! 2n−3
= eO(n logn)
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Hamiltonian Monte Carlo

H(q, p) = U(q) +K(p), K(p) = 1
2p
T p

(q, p)

(q∗, p∗)
dpi
dt

= −∂U
∂qi

(q)

dqi
dt

= pi

Probabilistic Path HMC 7



Probabilistic Path Hamiltonian Monte Carlo
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Theoretical Properties

Assume symmetric transition:

P (τ ′|τ, q) = P (τ |τ ′, q), τ ′ ∈ N (τ, q)

Augmented state: s = (τ, q, p), a pair of measurable sets: A, B.

I Probabilistic Reversibility.

P ((τ, q, p), (τ∗, q∗, p∗)) = P ((τ∗, q∗,−p∗), (τ, q,−p))

I Stochastic Volume Preservation.∫
A

∫
B

P (s, s′) ds′ds =

∫
B

∫
A

P (s′, s) dsds′

I k-accessibility. Any two states in X can be connected by k
iterations of probabilistic path HMC.

Theorem: Probabilistic Path HMC preserves the posterior and is ergodic.
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Reflection
(Afshar and Domke)

I U(τ, q) is continuous across boundary

∆E = U(τ ′, q)− U(τ, q) = 0, qi = 0

qi 0

U

qi

τ τ ′

qi 0

q−i

qi

τ τ ′

q

q′

p

p′

I Momentum and topology update: pi = −pi, τ = τ ′

I However, T steps leap-frog scheme with step size ε has the global
numerical error O(Cε+ Tε3) if ∂U is discontinuous on the
boundary, where C is the number of reflection events.
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Surrogate Smoothing and Refraction

I Surrogate function. Ũ(τ, q) = U(τ, q̃), q̃i = gδ(qi), ∀i

gδ(x) =

{
x, x ≥ δ
1
2δ (x2 + δ2), 0 ≤ x < δ

I Surrogate makes the gradients equal. However, ∆Ẽ 6= 0

qi 0

U

qi

∆Ẽ

δ δ

τ τ ′

qi 0

q−i

qi

τ τ ′

q

q′

p

p′p′

I Momentum and topology update (refraction, Afshar and Domke)

(τ, pi) =

{
(τ ′,

√
‖pi‖2 − 2∆Ẽ) ‖pi‖2 > 2∆Ẽ

(τ,−pi) otherwise
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Surrogate vs Exact PPHMC
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Figure: Expected number of NNI moves on a real data set.
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Compared to MrBayes
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Figure: Loglikelihood vs topology transitions on a 1000 taxa simulated data set.
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Conclusion

I Probabilistic path HMC extended HMC towards sampling both
continuous and structural discrete parameters.

I The surrogate smoothing strategy enables long HMC paths with
potential non-differentiable boundary transitions.

I Contribution in Bayesian phylogenetic inference: allowing several
topology transitions in a single proposal with high acceptance rate
and these transitions are all guided by the gradient and hence could
be more “intelligent” than random choices.

I Future developments: enabling adaptive path length and extension
to other classes of problems with similar continuous and discrete
parameter structures.
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