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Recap

Model families
Autoregressive Models: p✓(x) =

Qn
i=1 p✓(xi |x<i )

Variational Autoencoders: p✓(x) =
R
p✓(x, z)dz

Normalizing Flow Models: pX (x; ✓) = pZ

�
f�1
✓ (x)

� ���det
⇣

@f�1
✓ (x)
@x

⌘���

All the above families are based on maximizing likelihoods (or
approximations)

Is the likelihood a good indicator of the quality of samples generated
by the model?
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Towards likelihood-free learning

Case 1: Optimal generative model will give best sample quality and
highest test log-likelihood

For imperfect models, achieving high log-likelihoods might not always
imply good sample quality, and vice-versa (Theis et al., 2016)
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Towards likelihood-free learning

Case 2: Great test log-likelihoods, poor samples. E.g., For a discrete
noise mixture model p✓(x) = 0.01pdata(x) + 0.99pnoise(x)

99% of the samples are just noise
Taking logs, we get a lower bound

log p✓(x) = log[0.01pdata(x) + 0.99pnoise(x)]

� log 0.01pdata(x) = log pdata(x)� log 100

For expected likelihoods, we know that
Lower bound

Epdata [log p✓(x)] � Epdata [log pdata(x)]� log 100

Upper bound (via non-negativity of KL)

Epdata [log pdata(x))] � Epdata [log p✓(x)]
As we increase the dimension of x, absolute value of log pdata(x)
increases proportionally but log 100 remains constant. Hence,
Epdata [log p✓(x)] ⇡ Epdata [log pdata(x)] in very high dimensions
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Towards likelihood-free learning

Case 3: Great samples, poor test log-likelihoods. E.g., Memorizing
training set

Samples look exactly like the training set (cannot do better!)
Test set will have zero probability assigned (cannot do worse!)

The above cases suggest that it might be useful to disentangle
likelihoods and samples

Likelihood-free learning consider objectives that do not depend
directly on a likelihood function
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Comparing distributions via samples

Given a finite set of samples from two distributions S1 = {x ⇠ P} and
S2 = {x ⇠ Q}, how can we tell if these samples are from the same
distribution? (i.e., P = Q?)
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Two-sample tests

Given S1 = {x ⇠ P} and S2 = {x ⇠ Q}, a two-sample test
considers the following hypotheses

Null hypothesis H0: P = Q

Alternate hypothesis H1: P 6= Q

Test statistic T compares S1 and S2 e.g., di↵erence in means,
variances of the two sets of samples

If T is less than a threshold ↵, then accept H0 else reject it

Key observation: Test statistic is likelihood-free since it does not
involve the densities P or Q (only samples)
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Generative modeling and two-sample tests

Apriori we assume direct access to S1 = D = {x ⇠ pdata}
In addition, we have a model distribution p✓

Assume that the model distribution permits e�cient sampling (e.g.,
directed models). Let S2 = {x ⇠ p✓}
Alternate notion of distance between distributions: Train the
generative model to minimize a two-sample test objective between S1

and S2
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Two-Sample Test via a Discriminator

Finding a two-sample test objective in high dimensions is hard

In the generative model setup, we know that S1 and S2 come from
di↵erent distributions pdata and p✓ respectively

Key idea: Learn a statistic that maximizes a suitable notion of
distance between the two sets of samples S1 and S2
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Generative Adversarial Networks

A two player minimax game between a generator and a
discriminator

x

z

G✓

Generator
Directed, latent variable model with a deterministic mapping between z
and x given by G✓

Minimizes a two-sample test objective (in support of the null
hypothesis pdata = p✓)
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Generative Adversarial Networks

A two player minimax game between a generator and a discriminator

x

y

D�

Discriminator
Any function (e.g., neural network) which tries to distinguish “real”
samples from the dataset and “fake” samples generated from the model
Maximizes the two-sample test objective (in support of the alternate
hypothesis pdata 6= p✓)
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Example of GAN objective

Training objective for discriminator:

max
D

V (G ,D) = Ex⇠pdata [logD(x)] + Ex⇠pG [log(1� D(x))]

For a fixed generator G , the discriminator is performing binary
classification with the cross entropy objective

Assign probability 1 to true data points x ⇠ pdata

Assing probability 0 to fake samples x ⇠ pG

Optimal discriminator

D
⇤
G (x) =

pdata(x)
pdata(x) + pG (x)
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Example of GAN objective

Training objective for generator:

min
G

V (G ,D) = Ex⇠pdata [logD(x)] + Ex⇠pG [log(1� D(x))]

For the optimal discriminator D⇤
G (·), we have

V (G ,D⇤
G (x))

= Ex⇠pdata

h
log pdata(x)

pdata(x)+pG (x)

i
+ Ex⇠pG

h
log pG (x)

pdata(x)+pG (x)

i

= Ex⇠pdata


log pdata(x)

pdata(x)+pG (x)
2

�
+ Ex⇠pG


log pG (x)

pdata(x)+pG (x)
2

�
� log 4

= DKL


pdata,

pdata + pG

2

�
+ DKL


pG ,

pdata + pG

2

�

| {z }
2⇥Jenson-Shannon Divergence (JSD)

� log 4

= 2DJSD [pdata, pG ]� log 4
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Jenson-Shannon Divergence

Also called as the symmetric KL divergence

DJSD [p, q] =
1

2

✓
DKL


p,

p + q

2

�
+ DKL


q,

p + q

2

�◆

Properties
DJSD [p, q] � 0
DJSD [p, q] = 0 i↵ p = q

DJSD [p, q] = DJSD [q, p]p
DJSD [p, q] satisfies triangle inequality ! Jenson-Shannon Distance

Optimal generator for the JSD/Negative Cross Entropy GAN

pG = pdata

For the optimal discriminator D⇤
G⇤(·) and generator G ⇤(·), we have

V (G ⇤,D⇤
G⇤(x)) = � log 4
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The GAN training algorithm

Sample minibatch of m training points x(1), x(2), . . . , x(m) from D
Sample minibatch of m noise vectors z(1), z(2), . . . , z(m) from pz

Update the generator parameters ✓ by stochastic gradient descent

r✓V (G✓,D�) =
1

m
r✓

mX

i=1

log(1� D�(G✓(z
(i))))

Update the discriminator parameters � by stochastic gradient ascent

r�V (G✓,D�) =
1

m
r�

mX

i=1

[logD�(x
(i)) + log(1� D�(G✓(z

(i))))]

Repeat for fixed number of epochs
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Alternating optimization in GANs

min
✓

max
�

V (G✓,D�) = Ex⇠pdata [logD�(x)] + Ez⇠p(z)[log(1� D�(G✓(z)))]
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Frontiers in GAN research

GANs have been successfully applied to several domains and tasks
However, working with GANs can be very challenging in practice

Unstable optimization
Mode collapse
Evaluation

Many bag of tricks applied to train GANs successfully

Image Source: Ian Goodfellow. Samples from Goodfellow et al., 2014, Radford et
al., 2015, Liu et al., 2016, Karras et al., 2017, Karras et al., 2018
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Optimization challenges

Theorem (informal): If the generator updates are made in function
space and discriminator is optimal at every step, then the generator is
guaranteed to converge to the data distribution
Unrealistic assumptions!
In practice, the generator and discriminator loss keeps oscillating
during GAN training

Source: Mirantha Jayathilaka

No robust stopping criteria in practice (unlike MLE)
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Mode Collapse

GANs are notorious for su↵ering from mode collapse

Intuitively, this refers to the phenomena where the generator of a
GAN collapses to one or few samples (dubbed as “modes”)
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Mode Collapse

True distribution is a mixture of Gaussians

The generator distribution keeps oscillating between di↵erent modes
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Mode Collapse

Fixes to mode collapse are mostly empirically driven: alternate
architectures, adding regularization terms, injecting small noise
perturbations etc.

https://github.com/soumith/ganhacks

How to Train a GAN? Tips and tricks to make GANs work by
Soumith Chintala
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Beauty lies in the eyes of the discriminator

Source: Robbie Barrat, Obvious

GAN generated art auctioned at Christie’s.
Expected Price: $7, 000� $10, 000
True Price: $432, 500
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Selected GANs

https://github.com/hindupuravinash/the-gan-zoo

The GAN Zoo: List of all named GANs

Today
Rich class of likelihood-free objectives via f -GANs
Inferring latent representations via BiGAN
Application: Image-to-image translation via CycleGANs
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Beyond KL and Jenson-Shannon Divergence

What choices do we have for d(·)?
KL divergence: Autoregressive Models, Flow models

(scaled and shifted) Jenson-Shannon divergence: original GAN
objective
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f divergences

Given two densities p and q, the f -divergence is given by

Df (p, q) = Ex⇠q


f

✓
p(x)
q(x)

◆�

where f is any convex, lower-semicontinuous function with f (1) = 0.
Convex: Line joining any two points lies above the function
Lower-semicontinuous: function value at any point x0 is close to
f (x0) or greater than f (x0)

Example: KL divergence with f (u) = u log u
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f divergences

Many more f-divergences!
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f -GAN: Variational Divergence Minimization

To use f -divergences as a two-sample test objective for likelihood-free
learning, we need to be able to estimate it only via samples

Fenchel conjugate: For any function f (·), its convex conjugate is
defined as

f ⇤(t) = sup
u2domf

(ut � f (u))

Duality: f ⇤⇤ = f . When f (·) is convex, lower semicontinous, so is
f ⇤(·)

f (u) = sup
t2domf ⇤

(tu � f ⇤(t))
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f -GAN: Variational Divergence Minimization

We can obtain a lower bound to any f -divergence via its Fenchel
conjugate

Df (p, q) = Ex⇠q

h
f
⇣
p(x)
q(x)

⌘i

= Ex⇠q

h
supt2domf ⇤

⇣
t p(x)q(x) � f ⇤(t)

⌘i

:= Ex⇠q

h
T ⇤(x)p(x)q(x) � f ⇤(T ⇤(x))

i

=
R
X [T ⇤(x)p(x)� f ⇤(T ⇤(x))q(x)] dx

� supT2T
R
X (T (x)p(x)� f ⇤(T (x))q(x))dx

= supT2T (Ex⇠p [T (x)]� Ex⇠q [f ⇤(T (x)))])

where T : X 7! R is an arbitrary class of functions

Note: Lower bound is likelihood-free w.r.t. p and q
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f -GAN: Variational Divergence Minimization

Variational lower bound

Df (p, q) � sup
T2T

(Ex⇠p [T (x)]� Ex⇠q [f
⇤(T (x)))])

Choose any f -divergence

Let p = pdata and q = pG

Parameterize T by � and G by ✓

Consider the following f -GAN objective

min
✓

max
�

F (✓,�) = Ex⇠pdata [T�(x)]� Ex⇠pG✓
[f ⇤(T�(x)))]

Generator G✓ tries to minimize the divergence estimate and
discriminator T� tries to tighten the lower bound
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Inferring latent representations in GANs

The generator of a GAN is typically a directed, latent variable model
with latent variables z and observed variables x How can we infer the
latent feature representations in a GAN?

Unlike a normalizing flow model, the mapping G : z 7! x need not be
invertible

Unlike a variational autoencoder, there is no inference network q(·)
which can learn a variational posterior over latent variables

Solution 1: For any point x, use the activations of the prefinal layer
of a discriminator as a feature representation

Intuition: Similar to supervised deep neural networks, the
discriminator would have learned useful representations for x while
distinguishing real and fake x
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Inferring latent representations in GANs

If we want to directly infer the latent variables z of the generator, we
need a di↵erent learning algorithm

A regular GAN optimizes a two-sample test objective that compares
samples of x from the generator and the data distribution

Solution 2: To infer latent representations, we will compare samples
of x, z from the joint distributions of observed and latent variables as
per the model and the data distribution

For any x generated via the model, we have access to z (sampled
from a simple prior p(z))

For any x from the data distribution, the z is however unobserved
(latent)
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Bidirectional Generative Adversarial Networks (BiGAN)

In a BiGAN, we have an encoder network E in addition to the
generator network G

The encoder network only observes x ⇠ pdata(x) during training to
learn a mapping E : x 7! z

As before, the generator network only observes the samples from the
prior z ⇠ p(z) during training to learn a mapping G : z 7! x
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Bidirectional Generative Adversarial Networks (BiGAN)

The discriminator D observes samples from the generative model
z,G (z) and the encoding distribution E (x), x

The goal of the discriminator is to maximize the two-sample test
objective between z,G (z) and E (x), x

After training is complete, new samples are generated via G and
latent representations are inferred via E
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Translating across domains

Image-to-image translation: We are given images from two domains,
X and Y
Paired vs. unpaired examples

Paired examples can be expensive to obtain. Can we translate from
X $ Y in an unsupervised manner?
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CycleGAN: Adversarial training across two domains

To match the two distributions, we learn two parameterized
conditional generative models G : X $ Y and F : Y $ X
G maps an element of X to an element of Y. A discriminator DY
compares the observed dataset Y and the generated samples
Ŷ = G (X )
Similarly, F maps an element of Y to an element of X . A
discriminator DX compares the observed dataset X and the generated
samples X̂ = F (Y )
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CycleGAN: Cycle consistency across domains

Cycle consistency: If we can go from X to Ŷ via G , then it should
also be possible to go from Ŷ back to X via F

F (G (X )) ⇡ X
Similarly, vice versa: G (F (Y )) ⇡ Y

Overall loss function

min
F ,G ,DX ,DY

LGAN(G ,DY ,X ,Y ) + LGAN(F ,DX ,X ,Y )

+� (EX [kF (G (X ))� Xk1] + EY [kG (F (Y ))� Y k1])| {z }
cycle consistency
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CycleGAN in practice
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AlignFlow

What if G is a flow model?

No need to parameterize F separately! F = G�1

Can train via MLE and/or adversarial learning!

Exactly cycle-consistent
F(G(X)) = X
G(F(Y)) = Y
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Summary of Generative Adversarial Networks

Key observation: Samples and likelihoods are not correlated in
practice

Two-sample test objectives allow for learning generative models only
via samples (likelihood-free)

Wide range of two-sample test objectives covering f -divergences (and
more)

Latent representations can be inferred via BiGAN

Cycle-consistent domain translations via CycleGAN and AlignFlow
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