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Recap of last lecture

© Autoregressive models:

e Chain rule based factorization is fully general
o Compact representation via conditional independence and/or neural
parameterizations

@ Autoregressive models Pros:

o Easy to evaluate likelihoods
e Easy to train

© Autoregressive models Cons:

o Requires an ordering
o Generation is sequential
o Cannot learn features in an unsupervised way
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Plan for today

@ Latent Variable Models

e Mixture models
e Variational autoencoder
e Variational inference and learning

Stefano Ermon, Aditya Grover (Al Lab) Deep Generative Models Lecture 5 3/28



Latent Variable Models: Motivation

@ Lots of variability in images x due to gender, eye color, hair color,
pose, etc. However, unless images are annotated, these factors of
variation are not explicitly available (latent).

@ ldea: explicitly model these factors using latent variables z
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Latent Variable Models: Motivation

(O Ethnicity

Z

() Hair color () Pose

Image  x

@ Only shaded variables x are observed in the data (pixel values)
@ Latent variables z correspond to high level features

o If z chosen properly, p(x|z) could be much simpler than p(x)
o If we had trained this model, then we could identify features via
p(z | x), e.g., p(EyeColor = Blue|x)

© Challenge: Very difficult to specify these conditionals by hand

Stefano Ermon, Aditya Grover (Al Lab) Deep Generative Models Lecture 5 5/28



Deep Latent Variable Models

Q@ z~ N(0,/)
@ p(x|z) =N (ug(z), Xg(z)) where 119Xy are neural networks

© Hope that after training, z will correspond to meaningful latent
factors of variation (features). Unsupervised representation learning.

Q As before, features can be computed via p(z | x)
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Mixture of Gaussians: a Shallow Latent Variable Model

Mixture of Gaussians. Bayes net: z — x.
Q z ~ Categorical(l,--- , K)
Q@ p(x|z=k)=N (p Xk)

A

X

R
X,

Generative process
© Pick a mixture component k by sampling z

@ Generate a data point by sampling from that Gaussian
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Mixture of Gaussians: a Shallow Latent Variable Model

Mixture of Gaussians:
Q z ~ Categorical(l,--- , K)
9 p(x|z=k)=N (p Xk)
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© Clustering: The posterior p(z | x) identifies the mixture component

@ Unsupervised learning: We are hoping to learn from unlabeled data
(ill-posed problem)
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Unsupervised learning
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Unsupervised learning

Shown is the posterior probability that a data point was generated by the
i-th mixture component, P(z = i|x)
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Unsupervised learning

Unsupervised clustering of handwritten digits.
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Mixture models

Combine simple models into a more complex and expressive one

K
) = 3 o2 = Sl ) = 3l = 0 )
_,_/
z k=1 component
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Variational Autoencoder

A mixture of an infinite number of Gaussians:

Q@ z~ N(0,/)

@ p(x|z) =N (ug(z),Xg(z)) where 19, Xy are neural networks
° pp(2) = 0(Az + ¢) = (o(a1z + 1), 0(222 + @) = (1a(2), p12(2))
o Yy(z) = diag(exp(c(Bz + d))) = (eXp(a(%Hdl)) exp(a’(t?gz+d2))
o 0= (A B,c,d)

@ Even though p(x | z) is simple, the marginal p(x) is very

complex/flexible
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o Latent Variable Models
o Allow us to define complex models p(x) in terms of simple building
blocks p(x | z)
o Natural for unsupervised learning tasks (clustering, unsupervised
representation learning, etc.)

e No free lunch: much more difficult to learn compared to fully observed,
autoregressive models
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Marginal Likelihood

b X

@ Suppose some pixel values are missing at train time (e.g., top half)

@ Let X denote observed random variables, and Z the unobserved ones (also
called hidden or latent)

@ Suppose we have a model for the joint distribution (e.g., Pixel CNN)
p(X,Z;0)
What is the probability p(X = X; 6) of observing a training data point x?
Zp(X:)_(,Z =z0)= Zp()‘(,z;ﬂ)
z z

@ Need to consider all possible ways to complete the image (fill green part)
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Variational Autoencoder Marginal Likelihood

X
A mixture of an infinite number of Gaussians:
Q@ z~ N(0,/)
Q@ p(x|z) =N (1o(z), Xo(z)) where 119,%9 are neural networks
© Z are unobserved at train time (also called hidden or latent)
@ Suppose we have a model for the joint distribution. What is the
probability p(X = X; 6) of observing a training data point Xx?

/p(X =x,Z=2;0)dz = /p()‘(,z; 0)dz

z z
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Partially observed data

@ Suppose that our joint distribution is

p(X,Z;0)

@ We have a dataset D, where for each datapoint the X variables are observed
(e.g., pixel values) and the variables Z are never observed (e.g., cluster or
classid.). D = {xM) ... x(M}.

@ Maximum likelihood learning:

log H p(x;0) = Z log p(x; 0) = Z log Z p(x,z;0)

xeD x€D xeD z

@ Evaluating log >, p(x, z; 0) can be intractable. Suppose we have 30 binary
latent features, z € {0,1}3. Evaluating Y, p(x, z; §) involves a sum with
230 terms. For continuous variables, log J, p(x,z; 8)dz is often intractable.
Gradients Vy also hard to compute.

@ Need approximations. One gradient evaluation per training data point
x € D, so approximation needs to be cheap.
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First attempt: Naive Monte Carlo

Likelihood function py(x) for Partially Observed Data is hard to compute:

PH(X) = Z pg(X Z |Z| Z |Z|P0 X Z) |Z|]E2~Umform [pg(X Z)]

All values of z zeZ
We can think of it as an (intractable) expectation. Monte Carlo to the rescue:
@ Sample z(, .. z(K uniformly at random

@ Approximate expectation with sample average
> po(x,z) ~ | 2] ZPa ,20))
z

Works in theory but not in practice. For most z, py(x, z) is very low (most
completions don't make sense). Some are very large but will never "hit" likely
completions by uniform random sampling. Need a clever way to select zU) to
reduce variance of the estimator.
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Second attempt: Importance Sampling

Likelihood function py(x) for Partially Observed Data is hard to compute:

po(x) = 3 Z q(z = Byt [PG(X,Z)}

z
All possible values of z ZGZ q( )

Monte Carlo to the rescue:
@ Sample zM), ... 2(K from g(z)

@ Approximate expectation with sample average

po(x) ~ Z pe

What is a good choice for g(z)? Intuitively, choose likely completions. It would
then be tempting to estimate the log-likelihood as:

k

1 po(x,z9) \ ket [ po(x,20)

log (py(x)) ~ log kZT)) e Taemy
j=1

However, it's clear that E,q),.q,) [Iog (p"(x 2 )] # log ( W rg(2) [p‘i’((’;ﬁ;l)))D
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Evidence Lower Bound

Log-Likelihood function for Partially Observed Data is hard to compute:

log (Z po(x, z)) = log <Z Zgipe(x, z)) = log (EZNq(z) {Peq((xz,)z)D

zeZ zeZ

@ log() is a concave function. log(px + (1 — p)x’) > plog(x) + (1 — p) log(x’).

@ Idea: use Jensen Inequality (for concave functions)

log (E,q(z) [f(2)]) = log <Z (2)f(2) > > Z )log f(2)

z

f(z,) f(z,)
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Evidence Lower Bound

Log-Likelihood function for Partially Observed Data is hard to compute:

log (Z Po (X, Z)) = log <Z Zé:gpo(x, z)> = log (EM(Z) {peq((xZ’)Z)D

zeZ zeZ

@ log() is a concave function. log(px + (1 — p)x’) > plog(x) + (1 — p) log(x’).

@ Idea: use Jensen Inequality (for concave functions)

108 (Exqn [£(2)]) = log (Z q(z)f(z>> > q(2)log £(2)

z

Choosing f(z) = %

o8 (et [205]) 2 o o (20052

Called Evidence Lower Bound (ELBO).
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Variational inference

@ Suppose q(z) is any probability distribution over the hidden variables
e Evidence lower bound (ELBO) holds for any ¢

logp(x;0) > > q(2)log (l)HCI(E;)Z))

= Z q(z) log py(x,z) — Z ) log q(2)

z

Entropy H(q) of q

= > q(z)log ps(x,2z) + H(q)

e Equality holds if g = p(z|x; 6)
log p(x; 0)= > _ q(z) log p(z,x; 0) + H(q)

@ (Aside: This is what we compute in the E-step of the EM algorithm)
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Why is the bound tight

@ We derived this lower bound that holds holds for any choice of g(z):

log p(x; 60) > 2 q(z) log p(:,(z)@)

e If g(z) = p(z|x; #) the bound becomes:

2lx: p(x,z,0) _ 2lx: p(z[x; 0)p(x; 6)
2_plzlx;6) log p(z|x; 0) EZ:P( x;0) log p(z|x; 0)

> p(2|x; 6) log p(x; 6)

z

log p(x; 6) > _ p(z[x; 6)

———
=1

z

= logp(x;0)
@ Confirms our previous importance sampling intuition: we should
choose likely completions.
e What if the posterior p(z|x; #) is intractable to compute? How loose
is the bound?

Stefano Ermon, Aditya Grover (Al Lab) Deep Generative Models Lecture 5 23 /28



Variational inference continued

@ Suppose q(z) is any probability distribution over the hidden variables.
A little bit of algebra reveals

Dt (q(2)|Ip(z|x; 6)) = — > q(2) log p(z, x; 0) + log p(x; 6) — H(q) > 0

@ Rearranging, we re-derived the Evidence lower bound (ELBO)

log p(x; 6) >Z )log p(z,x;0) + H(q)

e Equality holds if g = p(z|x; #) because Dy (q(z)|/p(z|x;0)) =0

log p(x; )= _ q(2) log p(z, x; 6) + H(q)

z

@ In general, log p(x; #) = ELBO + Dg;(q(2)| p(z|x; #)). The closer
q(z) is to p(z|x; 6), the closer the ELBO is to the true log-likelihood
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The Evidence Lower bound

@ What if the posterior p(z|x; ) is intractable to compute?
@ Suppose g(z; ¢) is a (tractable) probability distribution over the hidden
variables parameterized by ¢ (variational parameters)
o For example, a Gaussian with mean and covariance specified by ¢

q(z: ¢) = N (61, $2)

@ Variational inference: pick ¢ so that g(z; ¢) is as close as possible to
p(z|x; 0). In the figure, the posterior p(z|x;8) (blue) is better approximated
by N(2,2) (orange) than N'(—4,0.75) (green)
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A variational approximation to the posterior

1

@ Assume p(x‘oP, xbottom: 9 assigns high probability to images that look like
digits. In this example, we assume z = x™" are unobserved (latent)

@ Suppose g(x™P; @) is a (tractable) probability distribution over the hidden
variables (missing pixels in this example) x™P parameterized by ¢
(variational parameters)

q(XtoP; (b) — H (d)i)xiop(]- . ¢i)(1—xiop)
unobserved variables xf"”

@ Is ¢; = 0.5 Vi a good approximation to the posterior p(xP|x?°t°™: §)? No
@ Is ¢; = 1 Vi a good approximation to the posterior p(xP|x>°tte™: )7 No

@ Is ¢; = 1 for pixels i corresponding to the top part of digit 9 a good

approximation? Yes
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The Evidence Lower bound

e Dir1(gs(2[x), po(z[x))

log pe(x)
- ELBO

log-likelihood estimate

¢

log p(x; 0) > Zq ¢)log p(z,x; 0) + H(q(z: ) = L(x;6,9)
—_——
ELBO
= L(x:0,0) + Dri(a(z: ¢) p(zx; )
The better g(z; ¢) can approximate the posterior p(z|x; @), the smaller
Dki(q(z; ¢)||p(z|x; 8)) we can achieve, the closer ELBO will be to
log p(x; 0). Next: jointly optimize over § and ¢ to maximize the ELBO

over a dataset
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o Latent Variable Models Pros:

o Easy to build flexible models

o Suitable for unsupervised learning
@ Latent Variable Models Cons:

e Hard to evaluate likelihoods

e Hard to train via maximum-likelihood

e Fundamentally, the challenge is that posterior inference p(z | x) is hard.
Typically requires variational approximations

@ Alternative: give up on KL-divergence and likelihood (GANs)
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Plan for today

@ Latent Variable Models

o Learning deep generative models
e Stochastic optimization:

@ Reparameterization trick

o Inference Amortization
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Variational Autoencoder

X Image x

A mixture of an infinite number of Gaussians:
Q@ z~ N(0,/)
Q p(x|z) =N (o(z),Zg(z)) where 19, Xy are neural networks

@ Even though p(x | z) is simple, the marginal p(x) is very
complex/flexible
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o Latent Variable Models
o Allow us to define complex models p(x) in terms of simple building
blocks p(x | z)
o Natural for unsupervised learning tasks (clustering, unsupervised
representation learning, etc.)

e No free lunch: much more difficult to learn compared to fully observed,
autoregressive models
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Recap: Variational Inference

@ Suppose g(z) is any probability distribution over the hidden variables

Dii(q(2)|Ip(z|x; 6)) = = q(2) log p(z, x; ) + log p(x; 6) — H(q) > 0

z

e Evidence lower bound (ELBO) holds for any g

log p(x; 0) > >~ q(2) log p(z, x; 6) + H(q)

e Equality holds if g = p(z|x; 0)

log p(x; )= _ q(2) log p(z, x; 0) + H(q)

z
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Recap: The Evidence Lower bound

@ What if the posterior p(z|x; ) is intractable to compute?
@ Suppose g(z; ¢) is a (tractable) probability distribution over the hidden
variables parameterized by ¢ (variational parameters)
o For example, a Gaussian with mean and covariance specified by ¢

q(z: ¢) = N (61, $2)

@ Variational inference: pick ¢ so that g(z; ¢) is as close as possible to
p(z|x; 0). In the figure, the posterior p(z|x;8) (blue) is better approximated
by N(2,2) (orange) than N'(—4,0.75) (green)
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Recap: The Evidence Lower bound

e Dir1(gs(2[x), po(z[x))

log pe(x)
- ELBO

log-likelihood estimate

¢

log p(x; 0) > Zq ¢)log p(z,x; 0) + H(q(z: ) = L(x;6,9)
—_——
ELBO
= L(x:0,0) + Dri(a(z: ¢) p(zx; )
The better g(z; ¢) can approximate the posterior p(z|x; @), the smaller
Dki(q(z; ¢)||p(z|x; 8)) we can achieve, the closer ELBO will be to
log p(x; 0). Next: jointly optimize over § and ¢ to maximize the ELBO

over a dataset
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Variational learning

marginal likelihood

— —/

0n+1 977, - 9£(

and L(x; 8, ¢2) are both lower bounds. We want to jointly optimize 6 and

¢
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The Evidence Lower bound applied to the entire dataset

Evidence lower bound (ELBO) holds for any ¢g(z; ¢)

log p(x;0) > > q(z; ¢) log p(z, x; 0) + H(q(z: ¢)) = L(x; 6, )

ELBO

Maximum likelihood learning (over the entire dataset):

D)= Y logp(x;0) > > L(x;0

x'€D x'eD

@ Therefore
maxé 0; D) max L(x': 0,
(6:D) > max > L(x:6,¢))
x' €D
@ Note that we use different variational parameters ¢' for every data point x/,

because the true posterior p(z|x’; #) is different across datapoints x’
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A variational approximation to the posterior

@ Assume p(z,x’; ) is close to pgata(z,x'). Suppose z captures information
such as the digit identity (label), style, etc. For simplicity, assume
z¢{0,1,2,---,9}.

@ Suppose q(z; ¢') is a (categorical) probability distribution over the hidden

variable z parameterized by ¢' = [po, p1, - , o]
aqzo)= [ (e)FH
ke{0,1,2,+ 9}

e If ' =[0,0,0,1,0,---,0], is g(z; ¢') a good approximation of p(z|x!; #) (x*
is the leftmost datapoint)? Yes

e If ' =0,0,0,1,0,---,0], is g(z; ¢') a good approximation of p(z|x3; ) (x3
is the rightmost datapoint)? No

@ For each x', need to find a good ¢"* (via optimization, can be expensive).
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Learning via stochastic variational inference (SVI)

e Optimize Y icp L(x';0,¢') as a function of 8, ¢, --- , M using
(stochastic) gradient descent

L(x'0,¢") = > a(z:¢)logp(z,x';0) + H(q(z: ¢'))

z

— Eq(z;¢;)[log p(z, x" 0) — log q(z; ¢i)]

@ Initialize 0, ¢, - , M
@ Randomly sample a data point x’ from D
@ Optimize L£(x'; 6, ¢") as a function of ¢':
@ Repeat ¢' = ¢ + V4 L(X'; 0, ¢') ‘
@ until convergence to ¢'* ~ argmaxy L(x'; 6, ¢)
Q@ Compute VyL(x';0,¢"")
© Update 6 in the gradient direction. Go to step 2

@ How to compute the gradients? There might not be a closed form
solution for the expectations. So we use Monte Carlo sampling
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Learning Deep Generative models

L(x0,¢) = Y a(z¢)logp(z,x;0) + H(q(z ¢))

z

= Eqzg)llog p(z, x; ) — log q(z; ¢)]

Note: dropped i superscript from ¢’ for compactness

To evaluate the bound, sample z,--- , z¥ from q(z; ¢) and estimate

Eq(z;¢)[log p(z,%; 0) — log q(z; ¢)] = % > log p(z*,x;0) — log a(z*; ¢))
k

Key assumption: q(z; ¢) is tractable, i.e., easy to sample from and evaluate
Want to compute VoL (x; 6, ¢) and V4L(x; 6, ¢)
The gradient with respect to 6 is easy

VgEq(z;¢)[Iog p(z,x;0) —log q(z; ¢)] = Eq(z¢) [Volog p(z,x;0)]

1

T Z Vg log p(z*, x; 6)
P

Q
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Learning Deep Generative models

L(x0,¢) = Y a(z¢)logp(z,x;0) + H(a(z: ¢))

z

Eqz:9)llog p(z,x; 0) — log q(z; ¢)]

@ Want to compute VgL(x; 0, ¢) and V4 L(x; 0, @)

@ The gradient with respect to ¢ is more complicated because the expectation
depends on ¢

@ We still want to estimate with a Monte Carlo average

@ Later in the course we'll see a general technique called REINFORCE (from
reinforcement learning)

@ For now, a better but less general alternative that only works for continuous
z (and only some distributions)
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Reparameterization

Want to compute a gradient with respect to ¢ of

Euwolr(@)] = [ alzi0)r(2)dz
where z is now continuous

Suppose q(z; ¢) = N(p,021) is Gaussian with parameters ¢ = (i, o). These
are equivalent ways of sampling:

e Sample z ~ gy4(z)
o Sample e ~ N(0,1), z= pu+ oe = g(e; ¢)
Using this equivalence we compute the expectation in two ways:
Eveatenlr(@)] = Evevon (&6 6))] = [ p(Or(u-+ ae)de
Vo Eqzo)[r(z)] = Vo Ec[r(g(€: ¢))] = Ec[Vor(g(e: 8))]

Easy to estimate via Monte Carlo if r and g are differentiable w.r.t. ¢ and ¢
is easy to sample from (backpropagation)

EVor(g(e 6))] = 15, Vor(g(eh; 6)) where el, - ek ~ N(0,1),
Typically much lower variance than REINFORCE
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Learning Deep Generative models

L(x;0,6) = > aq(zi¢)logp(z,x;0) + H(q(z ¢))

= Eyze)llogp(z,x;0) — log q(z; ¢)]
H(2.0)

@ Our case is slightly more complicated because we have Eq(;.4)[r(z, ¢)]
instead of Eg(;.4)[r(z)]. Term inside the expectation also depends on ¢.

@ Can still use reparameterization. Assume z = p1 + oe = g(e; ¢) like before.
Then

Ec[r(g(e; ¢), 9)]
£ (el 0),0)

k

Eq(Z;d)) [r(z,¢)]

Q
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Amortized Inference

meaxﬁ(G;D)z Jmax LD LK 6,9)
6rhsr o x'€D

@ So far we have used a set of variational parameters ¢’ for each data
point x’. Does not scale to large datasets.

@ Amortization: Now we learn a single parametric function f, that
maps each x to a set of (good) variational parameters. Like doing
regression on x' — ¢/

o For example, if g(z|x’) are Gaussians with different means u!,--- , u™,
we learn a single neural network fy mapping x' to y'

o We approximate the posteriors g(z|x’) using this distribution gy (z|x)
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A variational approximation to the posterior

@ Assume p(z,x’;0) is close to pgata(z,x'). Suppose z captures information
such as the digit identity (label), style, etc.

@ Suppose q(z; ¢') is a (tractable) probability distribution over the hidden
variables z parameterized by ¢'

@ For each x/, need to find a good ¢"* (via optimization, expensive).

@ Amortized inference: learn how to map x’ to a good set of parameters ¢’
via g(z; fA(x")). £ learns how to solve the optimization problem for you

@ In the literature, q(z; f\(x')) often denoted g4(z|x)
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Learning with amortized inference

©00O0

Optimize >_,icp L(x'; 0, ¢) as a function of 6, ¢ using (stochastic)
gradient descent

L(x0,6) = Y as(z[x)log p(z,x;0) + H(qs(2|x))

Eqy(zix[log p(z, x; 0) — log q4(z[x))]

Initialize 0(9), (©)

Randomly sample a data point x’ from D
Compute Vo L(x';0,¢) and V4L(x'; 0, ¢)
Update 0, ¢ in the gradient direction

How to compute the gradients? Use reparameterization like before
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Autoencoder perspective

Latent distribution

L(x;0,0) = Eq,@ollogp(z,x;0) — log q,(z|x))]

Eq,(zIx)[log p(z,x; 0) — log p(z) + log p(z) — log gy (z|x))]
Eq, (20 [log p(x|z; 0)] — Dki(q4(2|x)||p(2))

@ Take a data point X'

@ Map it to 2 by sampling from q,(z|x’) (encoder)

© Reconstruct X by sampling from p(x|z; 0) (decoder)
What does the training objective £(x; 6, ¢) do?

@ First term encourages X ~ x’ (x' likely under p(x|2; #))

@ Second term encourages 2 to be likely under the prior p(z
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Learning Deep Generative models

Dog
Running

Alice Free Bob

@ Alice goes on a space mission and needs to send images to Bob.
Given an image x’, she (stochastically) compresses it using
Z ~ qg(z|x") obtaining a message 2. Alice sends the message Z to Bob

@ Given z, Bob tries to reconstruct the image using p(x|Z; 0)

@ This scheme works well if Eq¢(z|x)[|og p(x|z; 0)] is large

o The term Dk (q4(z|x)||p(z)) forces the distribution over messages to
have a specific shape p(z). If Bob knows p(z), he can generate
realistic messages 2 ~ p(z) and the corresponding image, as if he had
received them from Alice!
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Summary of Latent Variable Models

@ Combine simple models to get a more flexible one (e.g., mixture of
Gaussians)

@ Directed model permits ancestral sampling (efficient generation):
z ~ p(z), x ~ p(x|z; 0)

© However, log-likelihood is generally intractable, hence learning is
difficult

@ Joint learning of a model (#) and an amortized inference component
(¢) to achieve tractability via ELBO optimization

© Latent representations for any x can be inferred via q4(z|x)

Stefano Ermon, Aditya Grover (Al Lab) Deep Generative Models Lecture 6 21 /25



Research Directions

Improving variational learning via:
© Better optimization techniques
@ More expressive approximating families

@ Alternate loss functions
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Model families - Encoder

Amortization (Gershman & Goodman, 2015; Kingma; Rezende; ..)
@ Scalability: Efficient learning and inference on massive datasets

@ Regularization effect: Because of joint training, it also implicitly regularizes
the model # (Shu et al., 2018)

Augmenting variational posteriors

@ Monte Carlo methods: Importance Sampling (Burda et al., 2015), MCMC
(Salimans et al., 2015, Hoffman, 2017, Levy et al., 2018), Sequential Monte
Carlo (Maddison et al., 2017, Le et al., 2018, Naesseth et al., 2018),
Rejection Sampling (Grover et al., 2018)

@ Normalizing flows (Rezende & Mohammed, 2015, Kingma et al., 2016)

Stefano Ermon, Aditya Grover (Al Lab) Deep Generative Models Lecture 6 23 /25



Model families - Decoder

@ Powerful decoders p(x|z; 8) such as DRAW (Gregor et al., 2015), PixelCNN
(Gulrajani et al., 2016)

© Parameterized, learned priors p(z; 6) (Nalusnick et al., 2016, Tomczak &
Welling, 2018, Graves et al., 2018)
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Variational objectives

Tighter ELBO does not imply:

@ Better samples: Sample quality and likelihoods are uncorrelated (Theis et
al., 2016)

@ Informative latent codes: Powerful decoders can ignore latent codes due to
tradeoff in minimizing reconstruction error vs. KL prior penalty (Bowman et
al., 2015, Chen et al., 2016, Zhao et al., 2017, Alemi et al., 2018)

Alternatives to the reverse-KL divergence:
@ Renyis alpha-divergences (Li & Turner, 2016)

@ Integral probability metrics such as maximum mean discrepancy, Wasserstein
distance (Dziugaite et al., 2015; Zhao et. al, 2017; Tolstikhin et al., 2018)
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