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Recap of last lecture

1 Autoregressive models:
Chain rule based factorization is fully general
Compact representation via conditional independence and/or neural
parameterizations

2 Autoregressive models Pros:
Easy to evaluate likelihoods
Easy to train

3 Autoregressive models Cons:
Requires an ordering
Generation is sequential
Cannot learn features in an unsupervised way
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Plan for today

1 Latent Variable Models
Mixture models
Variational autoencoder
Variational inference and learning
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Latent Variable Models: Motivation

1 Lots of variability in images x due to gender, eye color, hair color,
pose, etc. However, unless images are annotated, these factors of
variation are not explicitly available (latent).

2 Idea: explicitly model these factors using latent variables z
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Latent Variable Models: Motivation

1 Only shaded variables x are observed in the data (pixel values)
2 Latent variables z correspond to high level features

If z chosen properly, p(x|z) could be much simpler than p(x)
If we had trained this model, then we could identify features via
p(z | x), e.g., p(EyeColor = Blue|x)

3 Challenge: Very di�cult to specify these conditionals by hand
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Deep Latent Variable Models

1 z ⇠ N (0, I )

2 p(x | z) = N (µ✓(z),⌃✓(z)) where µ✓,⌃✓ are neural networks

3 Hope that after training, z will correspond to meaningful latent
factors of variation (features). Unsupervised representation learning.

4 As before, features can be computed via p(z | x)
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Mixture of Gaussians: a Shallow Latent Variable Model

Mixture of Gaussians. Bayes net: z ! x.

1 z ⇠ Categorical(1, · · · ,K )

2 p(x | z = k) = N (µk ,⌃k)

Generative process

1 Pick a mixture component k by sampling z

2 Generate a data point by sampling from that Gaussian
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Mixture of Gaussians: a Shallow Latent Variable Model

Mixture of Gaussians:

1 z ⇠ Categorical(1, · · · ,K )

2 p(x | z = k) = N (µk ,⌃k)

3 Clustering: The posterior p(z | x) identifies the mixture component

4 Unsupervised learning: We are hoping to learn from unlabeled data
(ill-posed problem)
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Unsupervised learning
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Unsupervised learning

Shown is the posterior probability that a data point was generated by the
i-th mixture component, P(z = i |x)
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Unsupervised learning

Unsupervised clustering of handwritten digits.
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Mixture models

Combine simple models into a more complex and expressive one

p(x) =
X

z

p(x, z) =
X

z

p(z)p(x | z) =
KX

k=1

p(z = k)N (x;µk ,⌃k)| {z }
component
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Variational Autoencoder

A mixture of an infinite number of Gaussians:
1 z ⇠ N (0, I )
2 p(x | z) = N (µ✓(z),⌃✓(z)) where µ✓,⌃✓ are neural networks

µ✓(z) = �(Az+ c) = (�(a1z+ c1),�(a2z+ c2)) = (µ1(z), µ2(z))

⌃✓(z) = diag(exp(�(Bz+ d))) =
⇣

exp(�(b1z+d1)) 0
0 exp(�(b2z+d2))

⌘

✓ = (A,B , c , d)

3 Even though p(x | z) is simple, the marginal p(x) is very
complex/flexible
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Recap

Latent Variable Models
Allow us to define complex models p(x) in terms of simple building
blocks p(x | z)
Natural for unsupervised learning tasks (clustering, unsupervised
representation learning, etc.)
No free lunch: much more di�cult to learn compared to fully observed,
autoregressive models
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Marginal Likelihood

Suppose some pixel values are missing at train time (e.g., top half)

Let X denote observed random variables, and Z the unobserved ones (also
called hidden or latent)

Suppose we have a model for the joint distribution (e.g., PixelCNN)

p(X,Z; ✓)

What is the probability p(X = x̄; ✓) of observing a training data point x̄?
X

z

p(X = x̄,Z = z; ✓) =
X

z

p(x̄, z; ✓)

Need to consider all possible ways to complete the image (fill green part)
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Variational Autoencoder Marginal Likelihood

A mixture of an infinite number of Gaussians:
1 z ⇠ N (0, I )
2 p(x | z) = N (µ✓(z),⌃✓(z)) where µ✓,⌃✓ are neural networks
3 Z are unobserved at train time (also called hidden or latent)
4 Suppose we have a model for the joint distribution. What is the

probability p(X = x̄; ✓) of observing a training data point x̄?
Z

z

p(X = x̄,Z = z; ✓)dz =

Z

z

p(x̄, z; ✓)dz
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Partially observed data

Suppose that our joint distribution is

p(X,Z; ✓)

We have a dataset D, where for each datapoint the X variables are observed
(e.g., pixel values) and the variables Z are never observed (e.g., cluster or
class id.). D = {x(1), · · · , x(M)}.
Maximum likelihood learning:

log
Y

x2D
p(x; ✓) =

X

x2D
log p(x; ✓) =

X

x2D
log
X

z

p(x, z; ✓)

Evaluating log
P

z
p(x, z; ✓) can be intractable. Suppose we have 30 binary

latent features, z 2 {0, 1}30. Evaluating
P

z
p(x, z; ✓) involves a sum with

230 terms. For continuous variables, log
R
z
p(x, z; ✓)dz is often intractable.

Gradients r✓ also hard to compute.

Need approximations. One gradient evaluation per training data point
x 2 D, so approximation needs to be cheap.
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First attempt: Naive Monte Carlo

Likelihood function p✓(x) for Partially Observed Data is hard to compute:

p✓(x) =
X

All values of z

p✓(x, z) = |Z|
X

z2Z

1

|Z|p✓(x, z) = |Z|Ez⇠Uniform(Z) [p✓(x, z)]

We can think of it as an (intractable) expectation. Monte Carlo to the rescue:

1 Sample z
(1), · · · , z(k) uniformly at random

2 Approximate expectation with sample average

X

z

p✓(x, z) ⇡ |Z| 1
k

kX

j=1

p✓(x, z
(j))

Works in theory but not in practice. For most z, p✓(x, z) is very low (most
completions don’t make sense). Some are very large but will never ”hit” likely
completions by uniform random sampling. Need a clever way to select z(j) to
reduce variance of the estimator.
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Second attempt: Importance Sampling

Likelihood function p✓(x) for Partially Observed Data is hard to compute:

p✓(x) =
X

All possible values of z

p✓(x, z) =
X

z2Z

q(z)

q(z)
p✓(x, z) = Ez⇠q(z)


p✓(x, z)

q(z)

�

Monte Carlo to the rescue:

1 Sample z
(1), · · · , z(k) from q(z)

2 Approximate expectation with sample average

p✓(x) ⇡
1

k

kX

j=1

p✓(x, z(j))

q(z(j))

What is a good choice for q(z)? Intuitively, choose likely completions. It would
then be tempting to estimate the log-likelihood as:

log (p✓(x)) ⇡ log

0

@ 1

k

kX

j=1

p✓(x, z(j))

q(z(j))

1

A k=1⇡ log

✓
p✓(x, z(1))

q(z(1))

◆

However, it’s clear that Ez(1)⇠q(z)

h
log
⇣

p✓(x,z
(1))

q(z(1))

⌘i
6= log

⇣
Ez(1)⇠q(z)

h
p✓(x,z

(1))
q(z(1))

i⌘
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Evidence Lower Bound

Log-Likelihood function for Partially Observed Data is hard to compute:

log

 
X

z2Z
p✓(x, z)

!
= log

 
X

z2Z

q(z)

q(z)
p✓(x, z)

!
= log

✓
Ez⇠q(z)


p✓(x, z)

q(z)

�◆

log() is a concave function. log(px + (1� p)x 0) � p log(x) + (1� p) log(x 0).

Idea: use Jensen Inequality (for concave functions)

log
�
Ez⇠q(z) [f (z)]

�
= log

 
X

z

q(z)f (z)

!
�
X

z

q(z) log f (z)
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Evidence Lower Bound

Log-Likelihood function for Partially Observed Data is hard to compute:

log

 
X

z2Z
p✓(x, z)

!
= log

 
X

z2Z

q(z)

q(z)
p✓(x, z)

!
= log

✓
Ez⇠q(z)


p✓(x, z)

q(z)

�◆

log() is a concave function. log(px + (1� p)x 0) � p log(x) + (1� p) log(x 0).

Idea: use Jensen Inequality (for concave functions)

log
�
Ez⇠q(z) [f (z)]

�
= log

 
X

z

q(z)f (z)

!
�
X

z

q(z) log f (z)

Choosing f (z) = p✓(x,z)
q(z)

log

✓
Ez⇠q(z)


p✓(x, z)

q(z)

�◆
� Ez⇠q(z)


log

✓
p✓(x, z)

q(z)

◆�

Called Evidence Lower Bound (ELBO).

Stefano Ermon, Aditya Grover (AI Lab) Deep Generative Models Lecture 5 21 / 28



Variational inference

Suppose q(z) is any probability distribution over the hidden variables
Evidence lower bound (ELBO) holds for any q

log p(x; ✓) �
X

z

q(z) log

✓
p✓(x, z)

q(z)

◆

=
X

z

q(z) log p✓(x, z)�
X

z

q(z) log q(z)

| {z }
Entropy H(q) of q

=
X

z

q(z) log p✓(x, z) + H(q)

Equality holds if q = p(z|x; ✓)

log p(x; ✓)=
X

z

q(z) log p(z, x; ✓) + H(q)

(Aside: This is what we compute in the E-step of the EM algorithm)
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Why is the bound tight

We derived this lower bound that holds holds for any choice of q(z):

log p(x; ✓) �
X

z

q(z) log
p(x, z; ✓)
q(z)

If q(z) = p(z|x; ✓) the bound becomes:
X

z

p(z|x; ✓) log p(x, z; ✓)
p(z|x; ✓) =

X

z

p(z|x; ✓) log p(z|x; ✓)p(x; ✓)
p(z|x; ✓)

=
X

z

p(z|x; ✓) log p(x; ✓)

= log p(x; ✓)
X

z

p(z|x; ✓)

| {z }
=1

= log p(x; ✓)

Confirms our previous importance sampling intuition: we should
choose likely completions.
What if the posterior p(z|x; ✓) is intractable to compute? How loose
is the bound?
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Variational inference continued

Suppose q(z) is any probability distribution over the hidden variables.
A little bit of algebra reveals

DKL(q(z)kp(z|x; ✓)) = �
X

z

q(z) log p(z, x; ✓) + log p(x; ✓)� H(q) � 0

Rearranging, we re-derived the Evidence lower bound (ELBO)

log p(x; ✓) �
X

z

q(z) log p(z, x; ✓) + H(q)

Equality holds if q = p(z|x; ✓) because DKL(q(z)kp(z|x; ✓)) = 0

log p(x; ✓)=
X

z

q(z) log p(z, x; ✓) + H(q)

In general, log p(x; ✓) = ELBO+ DKL(q(z)kp(z|x; ✓)). The closer
q(z) is to p(z|x; ✓), the closer the ELBO is to the true log-likelihood
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The Evidence Lower bound

What if the posterior p(z|x; ✓) is intractable to compute?

Suppose q(z;�) is a (tractable) probability distribution over the hidden
variables parameterized by � (variational parameters)

For example, a Gaussian with mean and covariance specified by �

q(z;�) = N (�1,�2)

Variational inference: pick � so that q(z;�) is as close as possible to
p(z|x; ✓). In the figure, the posterior p(z|x; ✓) (blue) is better approximated
by N (2, 2) (orange) than N (�4, 0.75) (green)

Stefano Ermon, Aditya Grover (AI Lab) Deep Generative Models Lecture 5 25 / 28



A variational approximation to the posterior

Assume p(xtop, xbottom; ✓) assigns high probability to images that look like
digits. In this example, we assume z = x

top are unobserved (latent)

Suppose q(xtop;�) is a (tractable) probability distribution over the hidden
variables (missing pixels in this example) xtop parameterized by �
(variational parameters)

q(xtop;�) =
Y

unobserved variables x
top

i

(�i )
x
top

i (1� �i )
(1�x

top

i
)

Is �i = 0.5 8i a good approximation to the posterior p(xtop|xbottom; ✓)? No

Is �i = 1 8i a good approximation to the posterior p(xtop|xbottom; ✓)? No

Is �i ⇡ 1 for pixels i corresponding to the top part of digit 9 a good
approximation? Yes
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The Evidence Lower bound

log p(x; ✓) �
X

z

q(z;�) log p(z, x; ✓) + H(q(z;�)) = L(x; ✓,�)| {z }
ELBO

= L(x; ✓,�) + DKL(q(z;�)kp(z|x; ✓))
The better q(z;�) can approximate the posterior p(z|x; ✓), the smaller
DKL(q(z;�)kp(z|x; ✓)) we can achieve, the closer ELBO will be to
log p(x; ✓). Next: jointly optimize over ✓ and � to maximize the ELBO
over a dataset
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Summary

Latent Variable Models Pros:
Easy to build flexible models
Suitable for unsupervised learning

Latent Variable Models Cons:
Hard to evaluate likelihoods
Hard to train via maximum-likelihood
Fundamentally, the challenge is that posterior inference p(z | x) is hard.
Typically requires variational approximations

Alternative: give up on KL-divergence and likelihood (GANs)
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Plan for today

1 Latent Variable Models
Learning deep generative models
Stochastic optimization:

Reparameterization trick

Inference Amortization
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Variational Autoencoder

A mixture of an infinite number of Gaussians:

1 z ⇠ N (0, I )

2 p(x | z) = N (µ✓(z),⌃✓(z)) where µ✓,⌃✓ are neural networks

3 Even though p(x | z) is simple, the marginal p(x) is very
complex/flexible
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Recap

Latent Variable Models
Allow us to define complex models p(x) in terms of simple building
blocks p(x | z)
Natural for unsupervised learning tasks (clustering, unsupervised
representation learning, etc.)
No free lunch: much more di�cult to learn compared to fully observed,
autoregressive models
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Recap: Variational Inference

Suppose q(z) is any probability distribution over the hidden variables

DKL(q(z)kp(z|x; ✓)) = �
X

z

q(z) log p(z, x; ✓) + log p(x; ✓)� H(q) � 0

Evidence lower bound (ELBO) holds for any q

log p(x; ✓) �
X

z

q(z) log p(z, x; ✓) + H(q)

Equality holds if q = p(z|x; ✓)

log p(x; ✓)=
X

z

q(z) log p(z, x; ✓) + H(q)
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Recap: The Evidence Lower bound

What if the posterior p(z|x; ✓) is intractable to compute?

Suppose q(z;�) is a (tractable) probability distribution over the hidden
variables parameterized by � (variational parameters)

For example, a Gaussian with mean and covariance specified by �

q(z;�) = N (�1,�2)

Variational inference: pick � so that q(z;�) is as close as possible to
p(z|x; ✓). In the figure, the posterior p(z|x; ✓) (blue) is better approximated
by N (2, 2) (orange) than N (�4, 0.75) (green)
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Recap: The Evidence Lower bound

log p(x; ✓) �
X

z

q(z;�) log p(z, x; ✓) + H(q(z;�)) = L(x; ✓,�)| {z }
ELBO

= L(x; ✓,�) + DKL(q(z;�)kp(z|x; ✓))
The better q(z;�) can approximate the posterior p(z|x; ✓), the smaller
DKL(q(z;�)kp(z|x; ✓)) we can achieve, the closer ELBO will be to
log p(x; ✓). Next: jointly optimize over ✓ and � to maximize the ELBO
over a dataset
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Variational learning

L(x; ✓,�1)
and L(x; ✓,�2) are both lower bounds. We want to jointly optimize ✓ and

�
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The Evidence Lower bound applied to the entire dataset

Evidence lower bound (ELBO) holds for any q(z;�)

log p(x; ✓) �
X

z

q(z;�) log p(z, x; ✓) + H(q(z;�)) = L(x; ✓,�)| {z }
ELBO

Maximum likelihood learning (over the entire dataset):

`(✓;D) =
X

xi2D

log p(xi ; ✓) �
X

xi2D

L(xi ; ✓,�i )

Therefore

max
✓

`(✓;D) � max
✓,�1,··· ,�M

X

xi2D

L(xi ; ✓,�i )

Note that we use di↵erent variational parameters �i for every data point xi ,
because the true posterior p(z|xi ; ✓) is di↵erent across datapoints xi
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A variational approximation to the posterior

Assume p(z, xi ; ✓) is close to pdata(z, xi ). Suppose z captures information
such as the digit identity (label), style, etc. For simplicity, assume
z 2 {0, 1, 2, · · · , 9}.
Suppose q(z;�i ) is a (categorical) probability distribution over the hidden
variable z parameterized by �i = [p0, p1, · · · , p9]

q(z;�i ) =
Y

k2{0,1,2,··· ,9}

(�i
k)

1[z=k]

If �i = [0, 0, 0, 1, 0, · · · , 0], is q(z;�i ) a good approximation of p(z|x1; ✓) (x1
is the leftmost datapoint)? Yes

If �i = [0, 0, 0, 1, 0, · · · , 0], is q(z;�i ) a good approximation of p(z|x3; ✓) (x3
is the rightmost datapoint)? No

For each xi , need to find a good �i,⇤ (via optimization, can be expensive).
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Learning via stochastic variational inference (SVI)

Optimize
P

xi2D L(xi ; ✓,�i ) as a function of ✓,�1, · · · ,�M using
(stochastic) gradient descent

L(xi ; ✓,�i ) =
X

z

q(z;�i ) log p(z, xi ; ✓) + H(q(z;�i ))

= Eq(z;�i )[log p(z, x
i ; ✓)� log q(z;�i )]

1 Initialize ✓,�1, · · · ,�M

2 Randomly sample a data point xi from D
3 Optimize L(xi ; ✓,�i ) as a function of �i :

1 Repeat �i = �i + ⌘r�iL(xi ; ✓,�i )
2 until convergence to �i,⇤ ⇡ argmax� L(xi ; ✓,�)

4 Compute r✓L(xi ; ✓,�i ,⇤)
5 Update ✓ in the gradient direction. Go to step 2

How to compute the gradients? There might not be a closed form
solution for the expectations. So we use Monte Carlo sampling
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Learning Deep Generative models

L(x; ✓,�) =
X

z

q(z;�) log p(z, x; ✓) + H(q(z;�))

= Eq(z;�)[log p(z, x; ✓)� log q(z;�)]

Note: dropped i superscript from �i for compactness

To evaluate the bound, sample z1, · · · , zk from q(z;�) and estimate

Eq(z;�)[log p(z, x; ✓)� log q(z;�)] ⇡ 1

k

X

k

log p(zk , x; ✓)� log q(zk ;�))

Key assumption: q(z;�) is tractable, i.e., easy to sample from and evaluate

Want to compute r✓L(x; ✓,�) and r�L(x; ✓,�)
The gradient with respect to ✓ is easy

r✓Eq(z;�)[log p(z, x; ✓)� log q(z;�)] = Eq(z;�)[r✓ log p(z, x; ✓)]

⇡ 1

k

X

k

r✓ log p(z
k , x; ✓)
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Learning Deep Generative models

L(x; ✓,�) =
X

z

q(z;�) log p(z, x; ✓) + H(q(z;�))

= Eq(z;�)[log p(z, x; ✓)� log q(z;�)]

Want to compute r✓L(x; ✓,�) and r�L(x; ✓,�)

The gradient with respect to � is more complicated because the expectation
depends on �

We still want to estimate with a Monte Carlo average

Later in the course we’ll see a general technique called REINFORCE (from
reinforcement learning)

For now, a better but less general alternative that only works for continuous
z (and only some distributions)
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Reparameterization

Want to compute a gradient with respect to � of

Eq(z;�)[r(z)] =
Z

q(z;�)r(z)dz

where z is now continuous

Suppose q(z;�) = N (µ,�2
I ) is Gaussian with parameters � = (µ,�). These

are equivalent ways of sampling:

Sample z ⇠ q�(z)
Sample ✏ ⇠ N (0, I ), z = µ+ �✏ = g(✏;�)

Using this equivalence we compute the expectation in two ways:

Ez⇠q(z;�)[r(z)] = E✏⇠N (0,I )[r(g(✏;�))] =

Z
p(✏)r(µ+ �✏)d✏

r�Eq(z;�)[r(z)] = r�E✏[r(g(✏;�))] = E✏[r�r(g(✏;�))]

Easy to estimate via Monte Carlo if r and g are di↵erentiable w.r.t. � and ✏
is easy to sample from (backpropagation)

E✏[r�r(g(✏;�))] ⇡ 1
k

P
k r�r(g(✏k ;�)) where ✏1, · · · , ✏k ⇠ N (0, I ).

Typically much lower variance than REINFORCE
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Learning Deep Generative models

L(x; ✓,�) =
X

z

q(z;�) log p(z, x; ✓) + H(q(z;�))

= Eq(z;�)[log p(z, x; ✓)� log q(z;�)| {z }
r(z,�)

]

Our case is slightly more complicated because we have Eq(z;�)[r(z,�)]
instead of Eq(z;�)[r(z)]. Term inside the expectation also depends on �.

Can still use reparameterization. Assume z = µ+ �✏ = g(✏;�) like before.
Then

Eq(z;�)[r(z,�)] = E✏[r(g(✏;�),�)]

⇡ 1

k

X

k

r(g(✏k ;�),�)

Stefano Ermon, Aditya Grover (AI Lab) Deep Generative Models Lecture 6 15 / 25



Amortized Inference

max
✓

`(✓;D) � max
✓,�1,··· ,�M

X

xi2D

L(xi ; ✓,�i )

So far we have used a set of variational parameters �i for each data
point xi . Does not scale to large datasets.

Amortization: Now we learn a single parametric function f� that
maps each x to a set of (good) variational parameters. Like doing
regression on xi 7! �i ,⇤

For example, if q(z|xi ) are Gaussians with di↵erent means µ1, · · · , µm,
we learn a single neural network f� mapping xi to µi

We approximate the posteriors q(z|xi ) using this distribution q�(z|x)
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A variational approximation to the posterior

Assume p(z, xi ; ✓) is close to pdata(z, xi ). Suppose z captures information
such as the digit identity (label), style, etc.

Suppose q(z;�i ) is a (tractable) probability distribution over the hidden
variables z parameterized by �i

For each xi , need to find a good �i,⇤ (via optimization, expensive).

Amortized inference: learn how to map xi to a good set of parameters �i

via q(z; f�(xi )). f� learns how to solve the optimization problem for you

In the literature, q(z; f�(xi )) often denoted q�(z|x)
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Learning with amortized inference

Optimize
P

xi2D L(xi ; ✓,�) as a function of ✓,� using (stochastic)
gradient descent

L(x; ✓,�) =
X

z

q�(z|x) log p(z, x; ✓) + H(q�(z|x))

= Eq�(z|x)[log p(z, x; ✓)� log q�(z|x))]

1 Initialize ✓(0),�(0)

2 Randomly sample a data point xi from D
3 Compute r✓L(xi ; ✓,�) and r�L(xi ; ✓,�)
4 Update ✓,� in the gradient direction

How to compute the gradients? Use reparameterization like before
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Autoencoder perspective

L(x; ✓,�) = Eq�(z|x)[log p(z, x; ✓)� log q�(z|x))]
= Eq�(z|x)[log p(z, x; ✓)� log p(z) + log p(z)� log q�(z|x))]
= Eq�(z|x)[log p(x|z; ✓)]� DKL(q�(z|x)kp(z))

1 Take a data point xi

2 Map it to ẑ by sampling from q�(z|xi ) (encoder)
3 Reconstruct x̂ by sampling from p(x|ẑ; ✓) (decoder)

What does the training objective L(x; ✓,�) do?
First term encourages x̂ ⇡ xi (xi likely under p(x|ẑ; ✓))
Second term encourages ẑ to be likely under the prior p(z)
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Learning Deep Generative models

1 Alice goes on a space mission and needs to send images to Bob.
Given an image xi , she (stochastically) compresses it using
ẑ ⇠ q�(z|xi ) obtaining a message ẑ. Alice sends the message ẑ to Bob

2 Given ẑ, Bob tries to reconstruct the image using p(x|ẑ; ✓)

This scheme works well if Eq�(z|x)[log p(x|z; ✓)] is large
The term DKL(q�(z|x)kp(z)) forces the distribution over messages to
have a specific shape p(z). If Bob knows p(z), he can generate
realistic messages ẑ ⇠ p(z) and the corresponding image, as if he had
received them from Alice!
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Summary of Latent Variable Models

1 Combine simple models to get a more flexible one (e.g., mixture of
Gaussians)

2 Directed model permits ancestral sampling (e�cient generation):
z ⇠ p(z), x ⇠ p(x|z; ✓)

3 However, log-likelihood is generally intractable, hence learning is
di�cult

4 Joint learning of a model (✓) and an amortized inference component
(�) to achieve tractability via ELBO optimization

5 Latent representations for any x can be inferred via q�(z|x)
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Research Directions

Improving variational learning via:

1 Better optimization techniques

2 More expressive approximating families

3 Alternate loss functions
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Model families - Encoder

Amortization (Gershman & Goodman, 2015; Kingma; Rezende; ..)

Scalability: E�cient learning and inference on massive datasets

Regularization e↵ect: Because of joint training, it also implicitly regularizes
the model ✓ (Shu et al., 2018)

Augmenting variational posteriors

Monte Carlo methods: Importance Sampling (Burda et al., 2015), MCMC
(Salimans et al., 2015, Ho↵man, 2017, Levy et al., 2018), Sequential Monte
Carlo (Maddison et al., 2017, Le et al., 2018, Naesseth et al., 2018),
Rejection Sampling (Grover et al., 2018)

Normalizing flows (Rezende & Mohammed, 2015, Kingma et al., 2016)
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Model families - Decoder

Powerful decoders p(x|z; ✓) such as DRAW (Gregor et al., 2015), PixelCNN
(Gulrajani et al., 2016)

Parameterized, learned priors p(z; ✓) (Nalusnick et al., 2016, Tomczak &
Welling, 2018, Graves et al., 2018)
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Variational objectives

Tighter ELBO does not imply:

Better samples: Sample quality and likelihoods are uncorrelated (Theis et
al., 2016)

Informative latent codes: Powerful decoders can ignore latent codes due to
tradeo↵ in minimizing reconstruction error vs. KL prior penalty (Bowman et
al., 2015, Chen et al., 2016, Zhao et al., 2017, Alemi et al., 2018)

Alternatives to the reverse-KL divergence:

Renyis alpha-divergences (Li & Turner, 2016)

Integral probability metrics such as maximum mean discrepancy, Wasserstein
distance (Dziugaite et al., 2015; Zhao et. al, 2017; Tolstikhin et al., 2018)
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