
Autoregressive Models

Stefano Ermon, Aditya Grover

Stanford University

Lecture 3

Stefano Ermon, Aditya Grover (AI Lab) Deep Generative Models Lecture 3 1 / 31



Learning a generative model

We are given a training set of examples, e.g., images of dogs

We want to learn a probability distribution p(x) over images x such that

1 Generation: If we sample xnew ⇠ p(x), xnew should look like a dog
(sampling)

2 Density estimation: p(x) should be high if x looks like a dog, and low
otherwise (anomaly detection)

3 Unsupervised representation learning: We should be able to learn
what these images have in common, e.g., ears, tail, etc. (features)

First question: how to represent p(x). Second question: how to learn it.
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Recap: Bayesian networks vs neural models

Using Chain Rule

p(x1, x2, x3, x4) = p(x1)p(x2 | x1)p(x3 | x1, x2)p(x4 | x1, x2, x3)

Fully General, no assumptions needed (exponential size, no free lunch)

Bayes Net

p(x1, x2, x3, x4) ⇡ pCPT(x1)pCPT(x2 | x1)pCPT(x3 |⇢⇢x1, x2)pCPT(x4 | x1,⇠⇠⇠x2, x3)

Assumes conditional independencies; tabular representations via conditional
probability tables (CPT)

Neural Models

p(x1, x2, x3, x4) ⇡ p(x1)p(x2 | x1)pNeural(x3 | x1, x2)pNeural(x4 | x1, x2, x3)

Assumes specific functional form for the conditionals. A su�ciently deep
neural net can approximate any function.
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Neural Models for classification

Setting: binary classification of Y 2 {0, 1} given input features X 2 {0, 1}n

For classification, we care about p(Y | x), and assume that

p(Y = 1 | x;↵) = f (x,↵)

Logistic regression: let z(↵, x) = ↵0 +
Pn

i=1 ↵ixi .
plogit(Y = 1 | x;↵) = �(z(↵, x)), where �(z) = 1/(1 + e

�z)

Non-linear dependence: let h(A,b, x) be a non-linear transformation of the

input features. pNeural(Y = 1 | x;↵,A,b) = �(↵0 +
Ph

i=1 ↵ihi )

More flexible
More parameters: A,b,↵
Repeat multiple times to get a multilayer perceptron (neural network)
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Motivating Example: MNIST

Given: a dataset D of handwritten digits (binarized MNIST)

Each image has n = 28⇥ 28 = 784 pixels. Each pixel can either be
black (0) or white (1).

Goal: Learn a probability distribution p(x) = p(x1, · · · , x784) over
x 2 {0, 1}784 such that when x ⇠ p(x), x looks like a digit

Two step process:
1 Parameterize a model family {p✓(x), ✓ 2 ⇥} [This lecture]
2 Search for model parameters ✓ based on training data D [Next lecture]
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Autoregressive Models

We can pick an ordering of all the random variables, i.e., raster scan
ordering of pixels from top-left (X1) to bottom-right (Xn=784)

Without loss of generality, we can use chain rule for factorization

p(x1, · · · , x784) = p(x1)p(x2 | x1)p(x3 | x1, x2) · · · p(xn | x1, · · · , xn�1)

Some conditionals are too complex to be stored in tabular form. Instead, we
assume

p(x1, · · · , x784) = pCPT(x1;↵
1)plogit(x2 | x1;↵2)plogit(x3 | x1, x2;↵3) · · ·

plogit(xn | x1, · · · , xn�1;↵
n)

More explicitly

pCPT(X1 = 1;↵1) = ↵1, p(X1 = 0) = 1� ↵1

plogit(X2 = 1 | x1;↵2) = �(↵2
0 +↵2

1x1)
plogit(X3 = 1 | x1, x2;↵3) = �(↵3

0 +↵3
1x1 +↵3

2x2)

Note: This is a modeling assumption. We are using parameterized
functions (e.g., logistic regression above) to predict next pixel given all the
previous ones. Called autoregressive model.
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Fully Visible Sigmoid Belief Network (FVSBN)

The conditional variables Xi | X1, · · · ,Xi�1 are Bernoulli with parameters

x̂i = p(Xi = 1|x1, · · · , xi�1;↵
i ) = p(Xi = 1|x<i ;↵

i ) = �(↵i
0 +

i�1X

j=1

↵i
jxj)

How to evaluate p(x1, · · · , x784)? Multiply all the conditionals (factors)
In the above example:

p(X1 = 0,X2 = 1,X3 = 1,X4 = 0) = (1� x̂1)⇥ x̂2 ⇥ x̂3 ⇥ (1� x̂4)

= (1� x̂1)⇥ x̂2(X1 = 0)⇥ x̂3(X1 = 0,X2 = 1)⇥ (1� x̂4(X1 = 0,X2 = 1,X3 = 1))

How to sample from p(x1, · · · , x784)?
1 Sample x1 ⇠ p(x1) (np.random.choice([1,0],p=[x̂1, 1� x̂1]))
2 Sample x2 ⇠ p(x2 | x1 = x1)
3 Sample x3 ⇠ p(x3 | x1 = x1, x2 = x2) · · ·

How many parameters? 1 + 2 + 3 + · · ·+ n ⇡ n
2/2
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FVSBN Results

Training data on the left (Caltech 101 Silhouettes). Samples from the
model on the right.
Figure from Learning Deep Sigmoid Belief Networks with Data

Augmentation, 2015.
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NADE: Neural Autoregressive Density Estimation

To improve model: use one layer neural network instead of logistic regression

hi = �(Aix<i + ci )

x̂i = p(xi |x1, · · · , xi�1;Ai , ci ,↵i , bi| {z }
parameters

) = �(↵ihi + bi )

For example h2 = �

0

BB@
⇣
...

⌘

|{z}
A2

x1 +
⇣
...

⌘

|{z}
c2

1

CCA h3 = �

0

BB@
⇣
...
...

⌘

| {z }
A3

( x1x2 ) +
⇣
...

⌘

|{z}
c3

1

CCA
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NADE: Neural Autoregressive Density Estimation

Tie weights to reduce the number of parameters and speed up computation

(see blue dots in the figure):
hi = �(W·,<ix<i + c)

x̂i = p(xi |x1, · · · , xi�1) = �(↵ihi + bi )

For example h2 = �

0
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.
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.

.
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⌘
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h4 = �

0

BBBBBBBBBBB@

0

BBBB@

.

.

.
.
.
.

.

.

.
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.

.
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| {z }
A3

✓ x1
x2
x3

◆

1

CCCCCCCCCCCA

If hi 2 Rd , how many total parameters? Linear in n: weights W 2 Rd⇥n,
biases c 2 Rd , and n logistic regression coe�cient vectors ↵i , bi 2 Rd+1.
Probability is evaluated in O(nd).

Stefano Ermon, Aditya Grover (AI Lab) Deep Generative Models Lecture 3 10 / 31



NADE results

Samples on the left. Conditional probabilities x̂i on the right.
Figure from The Neural Autoregressive Distribution Estimator, 2011.
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General discrete distributions

How to model non-binary discrete random variables Xi 2 {1, · · · ,K}? E.g., pixel
intensities varying from 0 to 255
One solution: Let x̂ i parameterize a categorical distribution

hi = �(W·,<ix<i + c)

p(xi |x1, · · · , xi�1) = Cat(p1
i , · · · , pK

i )

x̂ i = (p1
i , · · · , pK

i ) = softmax(Xihi + bi )

Softmax generalizes the sigmoid/logistic function �(·) and transforms a vector of
K numbers into a vector of K probabilities (non-negative, sum to 1).

softmax(a) = softmax(a1, · · · , aK ) =
✓

exp(a1)P
i exp(a

i )
, · · · , exp(aK )P

i exp(a
i )

◆

In numpy: np.exp(a)/np.sum(np.exp(a))
Stefano Ermon, Aditya Grover (AI Lab) Deep Generative Models Lecture 3 12 / 31



RNADE

How to model continuous random variables Xi 2 R? E.g., speech signals
Solution: let x̂ i parameterize a continuous distribution
E.g., uniform mixture of K Gaussians
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RNADE

How to model continuous random variables Xi 2 R? E.g., speech signals
Solution: let x̂ i parameterize a continuous distribution
E.g., In a mixture of K Gaussians,

p(xi |x1, · · · , xi�1) =
KX

j=1

1
K
N (xi ;µ

j
i ,�

j
i )

hi = �(W·,<ix<i + c)

x̂ i = (µ1
i , · · · , µK

i ,�
1
i , · · · ,�K

i ) = f (hi )

x̂ i defines the mean and stddev of each Gaussian (µj
i ,�

j
i ). Can use exponential

exp(·) to ensure stddev is positive
Stefano Ermon, Aditya Grover (AI Lab) Deep Generative Models Lecture 3 14 / 31



Autoregressive models vs. autoencoders

On the surface, FVSBN and NADE look similar to an autoencoder:

an encoder e(·). E.g., e(x) = �(W 2(W 1
x + b

1) + b
2)

a decoder such that d(e(x)) ⇡ x . E.g., d(h) = �(Vh + c).

Loss function
Binary r.v.: min

W 1,W 2,b1,b2,V ,c

X

x2D

X

i

�xi log x̂i � (1 � xi ) log(1 � x̂i )

Continuous r.v.: min
W 1,W 2,b1,b2,V ,c

X

x2D

X

i

(xi � x̂i )
2

e and d are constrained so that we don’t learn identity mappings. Hope that
e(x) is a meaningful, compressed representation of x (feature learning)
A vanilla autoencoder is not a generative model: it does not define a
distribution over x we can sample from to generate new data points.
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Autoregressive autoencoders

On the surface, FVSBN and NADE look similar to an autoencoder. Can we
get a generative model from an autoencoder?

We need to make sure it corresponds to a valid Bayesian Network (DAG
structure), i.e., we need an ordering. If the ordering is 1, 2, 3, then:

x̂1 cannot depend on any input x . Then at generation time we don’t
need any input to get started
x̂2 can only depend on x1

· · ·
Bonus: we can use a single neural network (with n outputs) to produce all
the parameters. In contrast, NADE requires n passes. Much more e�cient
on modern hardware.
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MADE: Masked Autoencoder for Distribution Estimation

1 Challenge: An autoencoder that is autoregressive (DAG structure)

2 Solution: use masks to disallow certain paths (Germain et al., 2015).
Suppose ordering is x2, x3, x1.

1 The unit producing the parameters for p(x2) is not allowed to depend
on any input. Unit for p(x3|x2) only on x2. And so on...

2 For each unit in a hidden layer, pick a random integer i in [1, n � 1].
That unit is allowed to depend only on the first i inputs (according to
the chosen ordering).

3 Add mask to preserve this invariant: connect to all units in previous
layer with smaller or equal assigned number (strictly < in final layer)
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RNN: Recurrent Neural Nets

Challenge: model p(xt |x1:t�1;↵t). “History” x1:t�1 keeps getting longer.
Idea: keep a summary and recursively update it

Summary update rule: ht+1 = tanh(Whhht +Wxhxt+1)

Prediction: ot+1 = Whyht+1

Summary initalization: h0 = b0

1 Hidden layer ht is a summary of the inputs seen till time t

2 Output layer ot�1 specifies parameters for conditional p(xt | x1:t�1)
3 Parameterized by b0 (initialization), and matrices Whh,Wxh,Why .

Constant number of parameters w.r.t n!
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Example: Character RNN (from Andrej Karpathy)

1 Suppose xi 2 {h, e, l , o}. Use one-hot encoding:
h encoded as [1, 0, 0, 0], e encoded as [0, 1, 0, 0], etc.

2 Autoregressive: p(x = hello) = p(x1 = h)p(x2 = e|x1 = h)p(x3 =
l |x1 = h, x2 = e) · · · p(x5 = o|x1 = h, x2 = e, x3 = l , x4 = l)

3 For example,

p(x2 = e|x1 = h) = softmax(o1) =
exp(2.2)

exp(1.0) + · · ·+ exp(4.1)
o1 = Whyh1

h1 = tanh(Whhh0 +Wxhx1)
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RNN: Recursive Neural Nets

Pros:
1 Can be applied to sequences of arbitrary length.
2 Very general: For every computable function, there exists a finite

RNN that can compute it

Cons:
1 Still requires an ordering
2 Sequential likelihood evaluation (very slow for training)
3 Sequential generation (unavoidable in an autoregressive model)
4 Can be di�cult to train (vanishing/exploding gradients)
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Example: Character RNN (from Andrej Karpathy)

Train 3-layer RNN with 512 hidden nodes on all the works of Shakespeare.
Then sample from the model:

KING LEAR: O, if you were a feeble sight, the courtesy of your law,
Your sight and several breath, will wear the gods
With his heads, and my hands are wonder’d at the deeds,
So drop upon your lordship’s head, and your opinion
Shall be against your honour.

Note: generation happens character by character. Needs to learn valid
words, grammar, punctuation, etc.
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Example: Character RNN (from Andrej Karpathy)

Train on Wikipedia. Then sample from the model:

Naturalism and decision for the majority of Arab countries’ capitalide was
grounded by the Irish language by [[John Clair]], [[An Imperial Japanese
Revolt]], associated with Guangzham’s sovereignty. His generals were
the powerful ruler of the Portugal in the [[Protestant Immineners]], which
could be said to be directly in Cantonese Communication, which followed
a ceremony and set inspired prison, training. The emperor travelled
back to [[Antioch, Perth, October 25—21]] to note, the Kingdom of
Costa Rica, unsuccessful fashioned the [[Thrales]], [[Cynth’s Dajoard]],
known in western [[Scotland]], near Italy to the conquest of India with
the conflict.

Note: correct Markdown syntax. Opening and closing of brackets [[·]]
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Example: Character RNN (from Andrej Karpathy)

Train on Wikipedia. Then sample from the model:

{ { cite journal — id=Cerling Nonforest Depart-
ment—format=Newlymeslated—none } }
”www.e-complete”.
”’See also”’: [[List of ethical consent processing]]

== See also ==
*[[Iender dome of the ED]]
*[[Anti-autism]]

== External links==
* [http://www.biblegateway.nih.gov/entrepre/ Website of the World
Festival. The labour of India-county defeats at the Ripper of California
Road.]
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Example: Character RNN (from Andrej Karpathy)

Train on data set of baby names. Then sample from the model:

Rudi Levette Berice Lussa Hany Mareanne Chrestina Carissy Marylen
Hammine Janye Marlise Jacacrie Hendred Romand Charienna Nenotto
Ette Dorane Wallen Marly Darine Salina Elvyn Ersia Maralena Minoria El-
lia Charmin Antley Nerille Chelon Walmor Evena Jeryly Stachon Charisa
Allisa Anatha Cathanie Geetra Alexie Jerin Cassen Herbett Cossie Ve-
len Daurenge Robester Shermond Terisa Licia Roselen Ferine Jayn Lusine
Charyanne Sales Sanny Resa Wallon Martine Merus Jelen Candica Wallin
Tel Rachene Tarine Ozila Ketia Shanne Arnande Karella Roselina Alessia
Chasty Deland Berther Geamar Jackein Mellisand Sagdy Nenc Lessie
Rasemy Guen Gavi Milea Anneda Margoris Janin Rodelin Zeanna Elyne
Janah Ferzina Susta Pey Castina
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Pixel RNN (Oord et al., 2016)

1 Model images pixel by pixel using raster scan order

2 Each pixel conditional p(xt | x1:t�1) needs to specify 3 colors

p(xt | x1:t�1) = p(x red
t | x1:t�1)p(x

green
t | x1:t�1, x

red
t )p(xblue

t | x1:t�1, x
red
t , xgreen

t )

and each conditional is a categorical random variable with 256 possible
values

3 Conditionals modeled using RNN variants. LSTMs + masking (like MADE)
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Pixel RNN

Results on downsampled ImageNet. Very slow: sequential likelihood
evaluation.
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Convolutional Architectures

Convolutions are natural for image data and easy to parallelize on modern
hardware.
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PixelCNN (Oord et al., 2016)

Idea: Use convolutional architecture to predict next pixel given context (a
neighborhood of pixels).
Challenge: Has to be autoregressive. Masked convolutions preserve raster scan
order. Additional masking for colors order.
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PixelCNN

Samples from the model trained on Imagenet (32⇥ 32 pixels). Similar
performance to PixelRNN, but much faster.
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Application in Adversarial Attacks and Anomaly detection

Machine learning methods are vulnerable to adversarial examples

Can we detect them?
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PixelDefend (Song et al., 2018)

Train a generative model p(x) on clean inputs (PixelCNN)

Given a new input x , evaluate p(x)

Adversarial examples are significantly less likely under p(x)
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WaveNet (Oord et al., 2016)

State of the art model for speech:

Dilated convolutions increase the receptive field: kernel only touches the
signal at every 2d entries.
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Summary of Autoregressive Models

Easy to sample from
1 Sample x0 ⇠ p(x0)
2 Sample x1 ⇠ p(x1 | x0 = x0)
3 · · ·

Easy to compute probability p(x = x)
1 Compute p(x0 = x0)
2 Compute p(x1 = x1 | x0 = x0)
3 Multiply together (sum their logarithms)
4 · · ·
5 Ideally, can compute all these terms in parallel for fast training

Easy to extend to continuous variables. For example, can choose
Gaussian conditionals p(xt | x<t) = N (µ✓(x<t),⌃✓(x<t)) or mixture
of logistics

No natural way to get features, cluster points, do unsupervised
learning

Next: learning
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Maximum Likelihood Learning
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Stanford University

Lecture 4

Stefano Ermon, Aditya Grover (AI Lab) Deep Generative Models Lecture 4 1 / 25



Learning a generative model

We are given a training set of examples, e.g., images of dogs

We want to learn a probability distribution p(x) over images x such that

Generation: If we sample xnew ⇠ p(x), xnew should look like a dog
(sampling)
Density estimation: p(x) should be high if x looks like a dog, and low
otherwise (anomaly detection)
Unsupervised representation learning: We should be able to learn
what these images have in common, e.g., ears, tail, etc. (features)

First question: how to represent p✓(x). Second question: how to learn it.
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Setting

Lets assume that the domain is governed by some underlying distribution
Pdata

We are given a dataset D of m samples from Pdata

Each sample is an assignment of values to (a subset of) the variables,
e.g., (Xbank = 1,Xdollar = 0, ...,Y = 1) or pixel intensities.

The standard assumption is that the data instances are independent and
identically distributed (IID)

We are also given a family of models M, and our task is to learn some
“good” model M̂ 2 M (i.e., in this family) that defines a distribution pM̂

For example, all Bayes nets with a given graph structure, for all
possible choices of the CPD tables
For example, a FVSBN for all possible choices of the logistic regression
parameters. M = {P✓, ✓ 2 ⇥}, ✓ = concatenation of all logistic
regression coe�cients
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Goal of learning

The goal of learning is to return a model M̂ that precisely captures the
distribution Pdata from which our data was sampled

This is in general not achievable because of

limited data only provides a rough approximation of the true underlying
distribution
computational reasons

Example. Suppose we represent each image with a vector X of 784 binary
variables (black vs. white pixel). How many possible states (= possible
images) in the model? 2784 ⇡ 10236. Even 107 training examples provide
extremely sparse coverage!

We want to select M̂ to construct the ”best” approximation to the
underlying distribution Pdata

What is ”best”?
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What is “best”?

This depends on what we want to do

1 Density estimation: we are interested in the full distribution (so later we can
compute whatever conditional probabilities we want)

2 Specific prediction tasks: we are using the distribution to make a prediction

Is this email spam or not?
Predict next frame in a video

3 Structure or knowledge discovery: we are interested in the model itself

How do some genes interact with each other?
What causes cancer?
Take CS 228
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Learning as density estimation

We want to learn the full distribution so that later we can answer any
probabilistic inference query

In this setting we can view the learning problem as density estimation

We want to construct P✓ as ”close” as possible to Pdata (recall we assume
we are given a dataset D of samples from Pdata)

How do we evaluate ”closeness”?
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KL-divergence

How should we measure distance between distributions?

The Kullback-Leibler divergence (KL-divergence) between two
distributions p and q is defined as

D(pkq) =
X

x

p(x) log
p(x)
q(x)

.

D(p k q) � 0 for all p, q, with equality if and only if p = q. Proof:

Ex⇠p


� log

q(x)
p(x)

�
� � log

✓
Ex⇠p


q(x)
p(x)

�◆
= � log

 
X

x

p(x)
q(x)
p(x)

!
= 0

Notice that KL-divergence is asymmetric, i.e., D(pkq) 6= D(qkp)
Measures the expected number of extra bits required to describe
samples from p(x) using a code based on q instead of p
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Detour on KL-divergence

To compress, it is useful to know the probability distribution the data
is sampled from

For example, let X1, · · · ,X100 be samples of an unbiased coin.
Roughly 50 heads and 50 tails. Optimal compression scheme is to
record heads as 0 and tails as 1. In expectation, use 1 bit per sample,
and cannot do better

Suppose the coin is biased, and P[H] � P[T ]. Then it’s more
e�cient to uses fewer bits on average to represent heads and more
bits to represent tails, e.g.

Batch multiple samples together
Use a short sequence of bits to encode HHHH (common) and a long
sequence for TTTT (rare).
Like Morse code: E = •, A = •�, Q = �� •�

KL-divergence: if your data comes from p, but you use a scheme
optimized for q, the divergence DKL(p||q) is the number of extra bits
you’ll need on average
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Learning as density estimation

We want to learn the full distribution so that later we can answer any
probabilistic inference query

In this setting we can view the learning problem as density estimation

We want to construct P✓ as ”close” as possible to Pdata (recall we assume
we are given a dataset D of samples from Pdata)

How do we evaluate ”closeness”?

KL-divergence is one possibility:

D(Pdata||P✓) = Ex⇠Pdata


log

✓
Pdata(x)
P✓(x)

◆�
=
X

x

Pdata(x) log
Pdata(x)
P✓(x)

D(Pdata||P✓) = 0 i↵ the two distributions are the same.

It measures the ”compression loss” (in bits) of using P✓ instead of Pdata.
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Expected log-likelihood

We can simplify this somewhat:

D(Pdata||P✓) = Ex⇠Pdata


log

✓
Pdata(x)
P✓(x)

◆�

= Ex⇠Pdata [logPdata(x)]� Ex⇠Pdata [logP✓(x)]

The first term does not depend on P✓.

Then, minimizing KL divergence is equivalent to maximizing the expected
log-likelihood

argmin
P✓

D(Pdata||P✓) = argmin
P✓

�Ex⇠Pdata [logP✓(x)] = argmax
P✓

Ex⇠Pdata [logP✓(x)]

Asks that P✓ assign high probability to instances sampled from Pdata,
so as to reflect the true distribution
Because of log, samples x where P✓(x) ⇡ 0 weigh heavily in objective

Although we can now compare models, since we are ignoring H(Pdata), we
don’t know how close we are to the optimum

Problem: In general we do not know Pdata.
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Maximum likelihood

Approximate the expected log-likelihood

Ex⇠Pdata [logP✓(x)]

with the empirical log-likelihood:

ED [logP✓(x)] =
1

|D|
X

x2D
logP✓(x)

Maximum likelihood learning is then:

max
P✓

1

|D|
X

x2D
logP✓(x)

Equivalently, maximize likelihood of the data
P✓(x(1), · · · , x(m)) =

Q
x2D P✓(x)
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Main idea in Monte Carlo Estimation

1 Express the quantity of interest as the expected value of a
random variable.

Ex⇠P [g(x)] =
X

x

g(x)P(x)

2 Generate T samples x1, . . . , xT from the distribution P with respect
to which the expectation was taken.

3 Estimate the expected value from the samples using:

ĝ(x1, · · · , xT ) , 1

T

TX

t=1

g(xt)

where x1, . . . , xT are independent samples from P . Note: ĝ is a
random variable. Why?
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Properties of the Monte Carlo Estimate

Unbiased:
EP [ĝ ] = EP [g(x)]

Convergence: By law of large numbers

ĝ =
1

T

TX

t=1

g(x t) ! EP [g(x)] for T ! 1

Variance:

VP [ĝ ] = VP

"
1

T

TX

t=1

g(x t)

#
=

VP [g(x)]

T

Thus, variance of the estimator can be reduced by increasing the
number of samples.
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Example

Single variable example: A biased coin

Two outcomes: heads (H) and tails (T )

Data set: Tosses of the biased coin, e.g., D = {H,H,T ,H,T}
Assumption: the process is controlled by a probability distribution
Pdata(x) where x 2 {H,T}
Class of models M: all probability distributions over x 2 {H,T}.
Example learning task: How should we choose P✓(x) from M if 60
out of 100 tosses are heads in D?
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MLE scoring for the coin example

We represent our model: P✓(x = H) = ✓ and bp(x = T ) = 1� ✓

Example data: D = {H,H,T ,H,T}
Likelihood of data =

Q
i P✓(xi ) = ✓ · ✓ · (1� ✓) · ✓ · (1� ✓)

Optimize for ✓ which makes D most likely. What is the solution in
this case?
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MLE scoring for the coin example: Analytical derivation

Distribution: bp(x = H) = ✓ and bp(x = T ) = 1� ✓

More generally, log-likelihood function

L(✓) = ✓#heads · (1� ✓)#tails

log L(✓) = log(✓#heads · (1� ✓)#tails)

= #heads · log(✓) + #tails · log(1� ✓)

MLE Goal: Find ✓⇤ 2 [0, 1] such that log L(✓⇤) is maximum.

Di↵erentiate the log-likelihood function with respect to ✓ and set the
derivative to zero. We get:

✓⇤ =
#heads

#heads +#tails

Stefano Ermon, Aditya Grover (AI Lab) Deep Generative Models Lecture 4 16 / 25



Extending the MLE principle to a Bayesian network

Given an autoregressive model with n variables and factorization

P✓(x) =
nY

i=1

pneural(xi |pa(xi ); ✓i )

Training data D = {x(1), · · · , x(m)}. Maximum likelihood estimate of the
parameters?

Decomposition of Likelihood function

L(✓,D) =
mY

j=1

P✓(x
(j)) =

mY

j=1

nY

i=1

pneural(x
(j)
i |pa(xi )(j); ✓i )

Goal : maximize argmax✓ L(✓,D) = argmax✓ log L(✓,D)

We no longer have a closed form solution
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MLE Learning: Gradient Descent

L(✓,D) =
mY

j=1

P✓(x
(j)) =

mY

j=1

nY

i=1

pneural(x
(j)
i |pa(xi )(j); ✓i )

Goal : maximize argmax✓ L(✓,D) = argmax✓ log L(✓,D)

`(✓) = log L(✓,D) =
mX

j=1

nX

i=1

log pneural(x
(j)
i |pa(xi )(j); ✓i )

1 Initialize ✓0 at random

2 Compute r✓`(✓) (by back propagation)

3 ✓t+1 = ✓t + ↵tr✓`(✓)

Non-convex optimization problem, but often works well in practice
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MLE Learning: Stochastic Gradient Descent

`(✓) = log L(✓,D) =
mX

j=1

nX

i=1

log pneural(x
(j)
i |pa(xi )(j); ✓i )

1 Initialize ✓0 at random

2 Compute r✓`(✓) (by back propagation)

3 ✓t+1 = ✓t + ↵tr✓`(✓)

r✓`(✓) =
mX

j=1

nX

i=1

r✓ log pneural(x
(j)
i |pa(xi )(j); ✓i )

What if m = |D| is huge?

r✓`(✓) = m

mX

j=1

1

m

nX

i=1

r✓ log pneural(x
(j)
i |pa(xi )(j); ✓i )

= mEx (j)⇠D

"
nX

i=1

r✓ log pneural(x
(j)
i |pa(xi )(j); ✓i )

#

Monte Carlo: Sample x
(j) ⇠ D;r✓`(✓) ⇡ m

Pn
i=1 r✓ log pneural(x

(j)
i |pa(xi )(j); ✓i )
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Empirical Risk and Overfitting

Empirical risk minimization can easily overfit the data

Extreme example: The data is the model (remember all training data).

Generalization: the data is a sample, usually there is vast amount of samples
that you have never seen. Your model should generalize well to these
“never-seen” samples.

Thus, we typically restrict the hypothesis space of distributions that we
search over
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Bias-Variance trade o↵

If the hypothesis space is very limited, it might not be able to represent
Pdata, even with unlimited data

This type of limitation is called bias, as the learning is limited on how
close it can approximate the target distribution

If we select a highly expressive hypothesis class, we might represent better
the data

When we have small amount of data, multiple models can fit well, or
even better than the true model. Moreover, small perturbations on D
will result in very di↵erent estimates
This limitation is call the variance.

Stefano Ermon, Aditya Grover (AI Lab) Deep Generative Models Lecture 4 21 / 25



Bias-Variance trade o↵

There is an inherent bias-variance trade o↵ when selecting the hypothesis
class. Error in learning due to both things: bias and variance.

Hypothesis space: linear relationship

Does it fit well? Underfits

Hypothesis space: high degree polynomial

Overfits

Hypothesis space: low degree polynomial

Right tradeo↵
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How to avoid overfitting?

Hard constraints, e.g. by selecting a less expressive hypothesis class:

Bayesian networks with at most d parents
Smaller neural networks with less parameters
Weight sharing

Soft preference for “simpler” models: Occam Razor.

Augment the objective function with regularization:

objective(x,M) = loss(x,M) + R(M)

Evaluate generalization performance on a held-out validation set
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Conditional generative models

Suppose we want to generate a set of variables Y given some others
X, e.g., text to speech

We concentrate on modeling p(Y|X), and use a conditional loss
function

� logP✓(y | x).

Since the loss function only depends on P✓(y | x), su�ces to estimate
the conditional distribution, not the joint
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Recap

For autoregressive models, it is easy to compute p✓(x)

Ideally, evaluate in parallel each conditional

log pneural(x
(j)
i |pa(xi )(j); ✓i ). Not like RNNs.

Natural to train them via maximum likelihood

Higher log-likelihood doesn’t necessarily mean better looking samples

Other ways of measuring similarity are possible (Generative Adversarial
Networks, GANs)
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