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Introduction 2/33

I So far, we have only used the KL divergence as a distance
measure in VI.

I Other than the KL divergence, there are many alternative
statistical distance measures between distributions that
admit a variety of statistical properties.

I In this lecture, we will introduce several alternative
divergence measures to KL, and discuss their statistical
properties, with applications in VI.



Potential Problems with The KL Divergence 3/33

I VI does not work well for non-smooth potentials

I This is largely due to the zero-avoiding behaviour
I The area where p(θ) is close to zero has very negative log p,

so does the variational distribution q distribution when
trained to minimize the KL.

I In this truncated normal example, VI will fit a delta
function!
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I Recall that the KL divergence from q to p is

DKL(q‖p) = Eq log
q(x)

p(x)
=

∫
q(x) log

q(x)

p(x)
dx

I An alternative: the reverse KL divergence

DRev
KL (p‖q) = Ep log

p(x)

q(x)
=

∫
p(x) log

p(x)

q(x)
dx

Reverse KL KL
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I The f -divergence from q to p is defined as

Df (q‖p) =

∫
p(x)f

(
q(x)

p(x)

)
dx

where f is a convex function such that f(1) = 0.

I The f -divergence defines a family of valid divergences

Df (q‖p) =

∫
p(x)f

(
q(x)

p(x)

)
dx

≥ f
(∫

p(x)
q(x)

p(x)
dx

)
= f(1) = 0

and
Df (q‖p) = 0⇒ q(x) = p(x) a.s.



The f -Divergence 6/33

Many common divergences are special cases of f -divergence,
with different choices of f .

I KL divergence. f(t) = t log t

I reverse KL divergence. f(t) = − log t

I Hellinger distance. f(t) = 1
2(
√
t− 1)2

H2(p, q) =
1

2

∫
(
√
q(x)−

√
p(x))2dx =

1

2

∫
p(x)

(√
q(x)

p(x)
− 1

)2

dx

I Total variation distance. f(t) = 1
2 |t− 1|

dTV(p, q) =
1

2

∫
|p(x)− q(x)|dx =

1

2

∫
p(x)

∣∣∣∣q(x)

p(x)
− 1

∣∣∣∣ dx



Amari’s α-Divergence 7/33

When f(t) = tα−t
α(α−1) , we have the Amari’s α-divergence (Amari,

1985; Zhu and Rohwer, 1995)

Dα(p‖q) =
1

α(1− α)

(
1−

∫
p(θ)αq(θ)1−α dθ

)

Adapted from Hernández-Lobato et al.

DKL(q‖p) = lim
α→0

Dα(p‖q)

DKL(p‖q) = lim
α→1

Dα(p‖q)



Rényi’s α-Divergence 8/33

Dα(q‖p) =
1

α− 1
log

∫
q(θ)αp(θ)1−α dθ

I Some special cases of Rényi’s α-divergence
I D1(q‖p) := limα→1Dα(q‖p) = DKL(q‖p)
I D0(q‖p) = − log

∫
q(θ)>0

p(θ)dθ = 0 iff supp(p) ⊂ supp(q).
I D+∞(q‖p) = log maxθ

q(θ)
p(θ)

I D 1
2
(q‖p) = −2 log

(
1−Hel2(q‖p)

)
I Importance properties

I Rényi divergence is non-decreasing in α

Dα1
(q‖p) ≥ Dα2

(q‖p), if α1 ≥ α2

I Skew symmetry: D1−α(q‖p) = 1−α
α Dα(p‖q)



The Rényi Lower Bound 9/33

I Consider approximating the exact posterior p(θ|x) by
minimizing Rényi’s α-divergence Dα(q(θ)‖p(θ|x)) for some
selected α > 0

I Using p(θ|x) = p(θ, x)/p(x), we have

Dα(q(θ)‖p(θ|x)) =
1

α− 1
log

∫
q(θ)αp(θ|x)1−α dθ

= log p(x)− 1

1− α
log

∫
q(θ)αp(θ, x)1−α dθ

= log p(x)− 1

1− α
logEq

(
p(θ, x)

q(θ)

)1−α

I The Rényi lower bound (Li and Turner, 2016)

Lα(q) ,
1

1− α
logEq

(
p(θ, x)

q(θ)

)1−α



The Rényi Lower Bound 10/33

I Theorem(Li and Turner 2016). The Rényi lower bound is
continuous and non-increasing on α ∈ [0, 1] ∪ {|Lα| < +∞}.
Especially for all 0 < α < 1

LVI(q) = lim
α→1

Lα(q) ≤ Lα(q) ≤ L0(q)

L0(q) = log p(x) iff supp(p(θ|x)) ⊂ supp(q(θ)).



Monte Carlo Estimation 11/33

I Monte Carlo estimation of the Rényi lower bound

L̂α,K(q) =
1

1− α
log

1

K

K∑
i=1

(
p(θi, x)

q(θi)

)1−α
, θi ∼ q(θ)

I Unlike traditional VI, here the Monte Carlo estimate is
biased. Fortunately, the bias can be characterized by the
following theorem

I Theorem(Li and Turner, 2016). E{θi}Ki=1
(L̂α,K(q)) as a

function of α and K is
I non-decreasing in K for fixed α ≤ 1, and converges to Lα(q)

as K → +∞ if supp(p(θ|x)) ⊂ supp(q(θ)).
I continuous and non-increasing in α on [0, 1] ∪ {|Lα| < +∞}



Multiple Sample ELBO 12/33

I When α = 0, the Monte Carlo estimate reduces to the
multiple sample lower bound (Burda et al., 2015)

L̂K(q) = log

(
1

K

K∑
i=1

p(x, θi)

q(θi)

)
, θi ∼ q(θ)

I This recovers the standard ELBO when K = 1.

I Using more samples improves the tightness of the bound
(Burda et al., 2015)

log p(x) ≥ E(L̂K+1(q)) ≥ E(L̂K(q))

Moreover, if p(x, θ)/q(θ) is bounded, then

E(L̂K(q))→ log p(x), as K → +∞



Lower Bound Maximization 13/33

Using the reparameterization trick

θ ∼ qφ(θ)⇔ θ = gφ(ε), ε ∼ qε(ε)

∇φL̂α,K(qφ) =

K∑
i=1

(
ŵα,i∇φ log

p(gφ(εi), x)

qφ(gφ(εi))

)
, εi ∼ qε(ε)

where

ŵα,i ∝
(
p(gφ(εi), x)

qφ(gφ(εi))

)1−α
,

the normalized importance weight with finite samples. This is a
biased estimate of ∇φLα(qφ) (except α = 1).

I α = 1: Standard VI with the reparamterization trick

I α = 0: Importance weighted VI (Burda et al., 2015)
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I Full batch training for maximizing the Rényi lower bound
could be very inefficient for large datasets

I Stochastic optimization is non-trivial since the Rényi lower
bound can not be represented as an expectation on a
datapoint-wise loss, except for α = 1.

I Two possible methods:
I derive the fixed point iteration on the whole dataset, then

use the minibatch data to approximately compute it (Li et
al., 2015)

I approximate the bound using the minibatch data, then
derive the gradient on this approximate objective
(Hernández-Lobato et al., 2016)

Remark: the two methods are equivalent when α = 1
(standard VI).



Minibatch Training: Energy Approximation 15/33

I Suppose the true likelihood is

p(x|θ) =

N∏
n=1

p(xn|θ)

I Approximate the likelihood as

p(x|θ) ≈

(∏
n∈S

p(xn|θ)

) N
|S|

, f̄S(θ)N

I Use this approximation for the energy function

L̃α(q,S) =
1

1− α
logEq

(
p0(θ)f̄S(θ)N

q(θ)

)1−α



Example: Bayesian Neural Network 16/33

Adapted from Li and Turner, 2016

I The optimal α may vary for different data sets.

I Large α improves the predictive error, while small α
provides better test log-likelihood.

I α = 0.5 seems to produce overall good results for both test
LL and RMSE.



Expectation Propagation 17/33

I In standard VI, we often minimize DKL(q‖p). Sometimes,
we can also minimize DKL(p‖q) (can be viewed as MLE).

q∗ = arg min
q

DKL(p‖q) = arg max
q

Ep log q(θ)

I Assume q is from the exponential family

q(θ|η) = h(θ) exp
(
η>T (θ)−A(η)

)
I The optimal η∗ satisfies

η∗ = arg max
η

Ep log q(θ|η)

= arg max
η

(
η>Ep (T (θ))−A(η)

)
+ Const



Moment Matching 18/33

I Differentiate with respect to η

Ep (T (θ)) = ∇ηA(η∗)

I Note that q(θ|η) is a valid distribution ∀η

0 = ∇η
∫
h(θ) exp

(
η>T (θ)−A(η)

)
dθ

=

∫
q(θ|η) (T (θ)−∇ηA(η)) dθ

= Eq (T (θ))−∇ηA(η)

I The KL divergence is minimized if the expected sufficient
statistics are the same

Eq (T (θ)) = Ep (T (θ))



Expectation Propagation 19/33

I An approximate inference method proposed by Minka 2001.

I Suitable for approximating product forms. For example,
with iid observations, the posterior takes the following form

p(θ|x) ∝ p(θ)
n∏
i=1

p(xi|θ) =

n∏
i=0

fi(θ)

I We use an approximation

q(θ) ∝
n∏
i=0

f̃i(θ)

One common choice for f̃i is the exponential family

f̃i(θ) = h(θ) exp
(
η>i T (θ)−A(ηi)

)
I Iteratively refinement of the terms f̃i(θ)



Iterative Updating 20/33

I Take out term approximation i

q\i(θ) ∝
∏
j 6=i

f̃j(θ)

I Put back in term i

p̂(θ) ∝ fi(θ)
∏
j 6=i

f̃j(θ)

I Match moments. Find q such that

Eq(T (θ)) = Ep̂(T (θ))

I Update the new term approximation

f̃newi (θ) ∝ q(θ)

q\i(θ)



How Does EP Work? 21/33

I Minimize the KL divergence from p̂ to q

DKL(p̂‖q) = Ep̂ log

(
p̂(θ)

q(θ)

)
I Equivalent to moment matching when q is in the

exponential family.



Example: The Clutter Problem 22/33

I Goal: fit a multivariate Gaussian into data in the presence
of background clutter (also Gaussian)

p(x|θ) = (1− w)N (x|θ, I) + wN (x|0, aI)

I The prior is Gaussian: p(θ) = N (θ|0, bI).



Example: The Clutter Problem 23/33

I The joint distribution

p(θ, x) = p(θ)

n∏
i=1

p(xi|θ)

is a mixture of 2n Gaussians, intractable for large n.

I We approximate it using a spherical Gaussian

q(θ) = N (θ|m, vI)

I This is an exponential family with
I sufficient statistics T (θ) = (θ, θ>θ)
I natural parameters η = (v−1m,− 1

2v
−1)

I normalizing constant Z(η) = (2πv)d/2 exp
(
m>m
2v

)



Initialization 24/33

I For the clutter problem, we have

f0(θ) = p(θ)

fi(θ) = p(xi|θ), i = 1, . . . , n

I The approxmation is of the form

f̃0(θ) = f0(θ) = p(θ)

f̃i(θ) = si exp(η>i T (θ)), i = 1, . . . , n

q(θ) ∝
n∏
i=0

f̃i(θ) = sN (θ; η)

I Initialize ηi = (0, 0) for i = 1, . . . , n



Take Out and Put Back 25/33

I With natural parameters, taking out term approximation i
is trivial.

q\i(θ) ∝ q(θ)

f̃i(θ)
∝ N (θ; η\i)

where
η\i = η − ηi

I Now we put back in term i

p̂(θ) ∝ ((1− w)N (xi|θ, I) + wN (xi|0, aI))N (θ; η\i)

= (1− w)
Z(η+)

Z(ηxi)Z(η\i)
N (θ; η+) + wN (xi|0, aI)N (θ; η\i)

∝ rN (θ; η+) + (1− r)N (θ; η\i)

where η+ = η\i + ηxi , ηxi = (xi,−1
2).



Match Moments and Update 26/33

I Now we match the sufficient statistics of the Gaussian
mixture

p̂(θ) = rN (θ; η+) + (1− r)N (θ; η\i)

From Eq(T (θ)) = Ep̂(T (θ)), we have

m = rm+ + (1− r)m\i

v +m>m = r
(
v+ + (m+)>m+

)
+ (1− r)

(
v\i + (m\i)>m\i

)
I Similarly, the update of f̃i is trivial

f̃i(θ) ∝
q(θ)

q\i(θ)
∝ N (θ; ηi)

where
ηi = η − η\i



Marginal Likelihood by EP 27/33

I We can use EP to evaluate the marginal likelihood p(x)

I To do this, we include a scale on f̃i(θ)

f̃i(θ) = Zi
q∗(θ)

q\i(θ)

where q∗(θ) is a normalized version of q(θ) and

Zi =

∫
q\i(θ)fi(θ) dθ

I Use the normalizing constant of q(x) to approximate p(x)

p(x) ≈
∫ n∏

i=0

f̃i(θ) dθ



Marginal Likelihood For The Clutter Problem 28/33

I For the clutter problem

si exp(η>i T (θ)) = f̃i(θ) = Zi
q∗(θ)

q\i(θ)

implies

si = Zi
Z(η\i)

Z(η)

Zi = (1− w)
Z(η+)

Z(ηxi)Z(η\i)
+ wN (xi|0, aI)

I The marginal likelihood estimate is

p(x) ≈
∫ n∏

i=0

f̃i(θ) dθ =
Z(η)

Z(η0)

n∏
i=1

si



An Energy Function For EP 29/33

I The EP iterations can be shown to always have a fixed
point when the approximations are in an exponential
family.

I With an exact prior, the final approximation is

q(θ) ∝ p(θ) exp
(
ν>T (θ)

)
I The leave-one-out approximations

q\i(θ) ∝ p(θ) exp
(
λ>i T (θ)

)



An Energy Function For EP 30/33

I EP fixed points correspond to stationary points of the
objective

min
ν

max
λ

(n− 1) log

∫
p(θ) exp(ν>T (θ)) dθ

−
n∑
i=1

log

∫
fi(θ)p(θ) exp(λ>i T (θ)) dθ

such that (n− 1)νj =
∑

i λij

I Taking derivatives we get the stationary conditions

Eq(T (θ)) = Ep̂(T (θ))

I Note that this is a non-convex optimization problem.



Summary 31/33

I Other than the standard KL divergence, there are many
alternative distance measures for VI (e.g., f -divergence,
Rényi α-divergence).

I The Rényi α-divergences allow tractable lower bound and
promote different learning behaviors through the choice of
α (from mode-covering to model-seeking as α goes from
−∞ to ∞), which can be adapted to specific learning tasks.

I We also introduced another approximate inference method,
expectation propagation (EP), that uses the reversed KL.
More recent development on EP (Li et al., 2015,
Hernández-Lobato et al., 2016).
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