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Introduction 2/33

» So far, we have only used the KL divergence as a distance
measure in VL.

» Other than the KL divergence, there are many alternative
statistical distance measures between distributions that
admit a variety of statistical properties.

» In this lecture, we will introduce several alternative
divergence measures to KL, and discuss their statistical
properties, with applications in VI.
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Potential Problems with The KL Divergence 3/33

» VI does not work well for non-smooth potentials
» This is largely due to the zero-avoiding behaviour

» The area where p(0) is close to zero has very negative log p,
so does the variational distribution ¢ distribution when
trained to minimize the KL.

» In this truncated normal example, VI will fit a delta
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Potential Problems with The KL Divergence 3/33
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Beyond The KL Divergence 4/33

> Recall that the KL divergence from ¢ to p is

Dxr(qllp) = Eq log% = /Q(x) log% dzx

» An alternative: the reverse KL divergence

DY (pllg) = E, log% = /p(fc) logz% da

o)
<k,

Reverse KL KL P
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The f-Divergence 5/33

» The f-divergence from ¢ to p is defined as

Dy(qllp) = / p(@)f (%) »

where f is a convex function such that f(1) = 0.

» The f-divergence defines a family of valid divergences

Dy (qllp) = /p(fL‘)f (qg) dx
q(z)

> 1 (o085 dr) = ) =0

D¢(qllp) = 0= q(x) = p(x) as.

and
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The f-Divergence 6/33

Many common divergences are special cases of f-divergence,
with different choices of f.

» KL divergence. f(t) =tlogt
» reverse KL divergence. f(t) = —logt
> Hellinger distance. f(t) = (vt — 1)

H?(p /F F%x_;/ ()( ax) >dx

> Total variation distance. f(t) = 3|t — 1|

drv(p; q) /Ip —q(2)|dz = 5 /()

p(z) o
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Amari’s a-Divergence 7/33

When f(t) = aiz:tl), we have the Amari’s a-divergence (Amari,

1985; Zhu and Rohwer, 1995)

Da(pllg) = a(ll_a) <1 - /p(G)O‘Q(G)l‘a d9>

& KL(q | p) VBm D1 (qllp) = iinga(qu)
A Dk (pllg) = lim Dq(pllq)
a=1 o = oo a—1

KL(p|lq) EP

Adapted from Herndndez-Lobato et al. .
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Rényi’s a-Divergence 8/33

Dalalp) = - log [ a(0)p(6)' ds
> Some special cases of Rényi’s a-divergence

» Di(g|lp) := lima—1 Da(qllp) = Dxr(qllp)

> Do(qllp) = —1log [, 5~ (0)d0 = 0 iff supp(p) C supp(q).

> Dyoo(qllp) = log maxy 43

> D1 (qllp) = —2log (1 — Hel?(q||p))
» Importance properties

» Rényi divergence is non-decreasing in «
Da1 (qu) 2 Doéz (q”p), if aq > oo

» Skew symmetry: Di_o(qllp) = 5% Da(pllq)
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The Rényi Lower Bound 9/33

» Consider approximating the exact posterior p(f|z) by
minimizing Rényi’s a-divergence D, (q(0)||p(0|z)) for some
selected o > 0

» Using p(6|z) = p(8,x)/p(x), we have

Dala(®)p(6l2)) = -+ log [ a(6)p(64e)'~* a8
= logp(z) — 7 !

log / q(0)*p(6,z)' = db
—

l—«a
= log p(x) — ﬁ log E, <p((19(,09)c)>

» The Rényi lower bound (Li and Turner, 2016)
1 p(0,2)\'"*
Lo(q) & ——1logE ’
@)= =g le q< q(0)
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The Rényi Lower Bound 10/33

» Theorem(Li and Turner 2016). The Rényi lower bound is
continuous and non-increasing on « € [0, 1] U {|Lqy| < +00}.
Especially for all 0 < ae < 1

Lvi(q) = lim La(q) < La(q) < Lo(q)
a—1

Lo(q) = log p(z) iff supp(p(f|z)) C supp(q(h)).
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(a) Approximated posterior. (b) Hyper-parameter optimisation.
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Monte Carlo Estimation 11/33

» Monte Carlo estimation of the Rényi lower bound

-«

K .
L@ = g lon e 3o (B) o 0

» Unlike traditional VI, here the Monte Carlo estimate is
biased. Fortunately, the bias can be characterized by the
following theorem

A

» Theorem(Li and Turner, 2016). E{ei}fil(La,K(Q)) as a
function of o and K is -

» non-decreasing in K for fixed o < 1, and converges to L, (q)
as K — +oo if supp(p(0|z)) C supp(q(0)).
» continuous and non-increasing in « on [0, 1] U {|Ly| < 400}
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Multiple Sample ELBO 12/33

» When a = 0, the Monte Carlo estimate reduces to the
multiple sample lower bound (Burda et al., 2015)

L (q) =log ( plz ) 0; ~ q(0)

» This recovers the standard ELBO when K = 1.

» Using more samples improves the tightness of the bound
(Burda et al., 2015)

log p(z) > E(Lk+1(q)) > E(Lk(q))

Moreover, if p(x,6)/q(#) is bounded, then

E(Lk(q)) — logp(x), as K — +o0
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Lower Bound Maximization 13/33

Using the reparameterization trick

0~ qy(0) < 0 = gp(e), €~ ge(e)

bV log POs(G )
Veleastae) = Zxaﬂwg%mw»» o

l—a
), @
s o (P2ELEL2Y'
q5(9s(€:))
the normalized importance weight with finite samples. This is a
biased estimate of V4L, (qg) (except av = 1).

where

» o = 1: Standard VI with the reparamterization trick
» o = 0: Importance weighted VI (Burda et al., 2015)
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Minibatch Training 14/33

» Full batch training for maximizing the Rényi lower bound
could be very inefficient for large datasets

» Stochastic optimization is non-trivial since the Rényi lower
bound can not be represented as an expectation on a
datapoint-wise loss, except for a = 1.

» Two possible methods:

» derive the fixed point iteration on the whole dataset, then
use the minibatch data to approximately compute it (Li et
al., 2015)

» approximate the bound using the minibatch data, then
derive the gradient on this approximate objective
(Hernandez-Lobato et al., 2016)

Remark: the two methods are equivalent when o = 1
(standard VI).
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Minibatch Training: Energy Approximation 15/33

» Suppose the true likelihood is

N
p(al6) = T] p(al0)
n=1

» Approximate the likelihood as

[S]
(Hp%w> 2 fs(o)

nes

» Use this approximation for the energy function

La(q,8) = ;—logE, (w)
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Example: Bayesian Neural Network 16/33

mass-covering < » zero-forcing
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Adapted from Li and Turner, 2016

» The optimal o may vary for different data sets.

» Large « improves the predictive error, while small «
provides better test log-likelihood.

» o = 0.5 seems to produce overall good results for both test

LL MSE. N
and RMS @ e




Expectation Propagation 17/33

» In standard VI, we often minimize Dk, (¢||p). Sometimes,
we can also minimize Dk, (pl|¢) (can be viewed as MLE).

¢" = argmin Dy,(p||q) = arg maxE, log ¢(6)
q q

» Assume ¢ is from the exponential family

a(6l) = 1(8) exp (0 T(0) — A(n))
» The optimal n* satisfies
n* = argmax E, log ¢(6|n)
n

= arg max <77TIEp (T(9)) — A(n)> + Const
U

ez x Y

@

PEKING UNIVERSITY




Moment Matching 18/33

» Differentiate with respect to n
E, (T(0)) = VyA(n7)

» Note that ¢(f|n) is a valid distribution Vn

0=V / exp TT(9) — A(n)) df

= [ atéln) (x(®) - v,4w) a0
=E, (T(0)) — V,A(n)

» The KL divergence is minimized if the expected sufficient
statistics are the same
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Expectation Propagation 19/33

» An approximate inference method proposed by Minka 2001.

» Suitable for approximating product forms. For example,
with iid observations, the posterior takes the following form

p(0)x) o< p(6) H (x4]0) = Hfl

=1

» We use an approximation

One common choice for fz is the exponential family

7:(6) = h(6) exp (0] T(0) - A(m))

> Tteratively refinement of the terms f;(6)
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[terative Updating 20/33

» Take out term approximation ¢
V() o [T 50
J#i
» Put back in term 4

Osz Hf]

J#
» Match moments. Find ¢ such that

Ey(T(0)) = Ex(T(0))

» Update the new term approximation

']EineW(e) o
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How Does EP Work? 21/33

f" substitute E W o
=
<

project e

» Minimize the KL divergence from p to ¢

D1 (pllg) = Eplog (%)

» Equivalent to moment matching when ¢ is in the
exponential family.
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Example: The Clutter Problem 22/33

» Goal: fit a multivariate Gaussian into data in the presence
of background clutter (also Gaussian)

p(z]0) = (1 — w)N (210, ) + wN (2|0, al)
» The prior is Gaussian: p(6) = N (6]0,b1).
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Example: The Clutter Problem 23/33

» The joint distribution

p(0, ) = p(0) [ [ p(x:10)
=1

is a mixture of 2" Gaussians, intractable for large n.

> We approximate it using a spherical Gaussian
q(0) = N(6|m, vI)

» This is an exponential family with

» sufficient statistics 7'(0) = (9 670)
» natural parameters n = (v=1m, %v_l)

» normalizing constant Z(n) = (2mv)%? exp (m;jm)
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Initialization 24/33

» For the clutter problem, we have

fo(0) = p(0)
fz(é?) :p(.%'ile), 1= 1, oy

» The approxmation is of the form

fo(0) = fo(0) = p(0)
fi(0) = siexp(n; T(0)), i=1,....n

ochz ) = sN(6;m)

» Initialize n; = (0,0) for i =1,...,n
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Take Out and Put Back 25/33

> With natural parameters, taking out term approximation ¢

is trivial.
20) o L0 o N (9:)
fi(0)
where ‘
N\ =n—mn

» Now we put back in term

PO) o< (1 — w)N ()0, 1) + wN (4]0, al)) N'(0;7\)
(1w Z(n")
Z(n=) Z(n\t)

o rN'(0;n7) + (1 — )N (00"

N(O;7F) + wN (2|0, al )N (0;7V)

where nt = n\l + 9%, T = (2, —3).
e 7 F
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Match Moments and Update 26/33

» Now we match the sufficient statistics of the Gaussian
mixture

() = rN(8; ") + (1 — )N (651")
From E4(T(6)) = E5(T(0)), we have
m=rm* + (1 —r)m"

v+m'm=r (v+ + (m+)Tm+> +(1-7) (’U\i + (m\i)Tm\i)
» Similarly, the update of f; is trivial

z q(f) .
fi(0) o< m o< N(6;m;)

where '
m=n—n" .
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Marginal Likelihood by EP 27/33

» We can use EP to evaluate the marginal likelihood p(x)

» To do this, we include a scale on f;(6)

o o, 4(0)

where ¢*(#) is a normalized version of ¢(f) and

a:/ﬁ@mmw

» Use the normalizing constant of ¢(z) to approximate p(x)

po)~ [ T[ 70 as
=0
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Marginal Likelihood For The Clutter Problem 28/33

» For the clutter problem

()
siexp(n] T(6)) = fi(0) = Zi 5 0)
implies
L Z(nY)
=W
N
Zi=(1- w)Z(nzz()nZ()n\l) + wN (2;|0,al)

» The marginal likelihood estimate is
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An Energy Function For EP 29/33

» The EP iterations can be shown to always have a fixed
point when the approximations are in an exponential
family.

» With an exact prior, the final approximation is
a(0) o p(0) exp (v T(0))
» The leave-one-out approximations

0(0) < p(0) exp (A T(0))
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An Energy Function For EP 30/33

» EP fixed points correspond to stationary points of the
objective

myin m)ffmx(n —1)log /p(&) exp(v' T(0)) do
— Zlog/fz 0) exp(\; T(6)) df

such that (n — 1)v; = >, Aij
» Taking derivatives we get the stationary conditions
Eq(T'(0)) = Es(T'(0))

> Note that this is a non-convex optimization problem.
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Summary 31/33

» Other than the standard KL divergence, there are many
alternative distance measures for VI (e.g., f-divergence,
Rényi a-divergence).

» The Rényi a-divergences allow tractable lower bound and
promote different learning behaviors through the choice of
a (from mode-covering to model-seeking as a goes from
—00 to 00), which can be adapted to specific learning tasks.

» We also introduced another approximate inference method,
expectation propagation (EP), that uses the reversed KL.
More recent development on EP (Li et al., 2015,
Hernandez-Lobato et al., 2016).
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