Modern Computational Statistics

Lecture 15: Training Objectives in VI

Cheng Zhang

School of Mathematical Sciences, Peking University

November 18, 2019

Introduction 2/33

- \triangleright So far, we have only used the KL divergence as a distance measure in VI.
- \triangleright Other than the KL divergence, there are many alternative statistical distance measures between distributions that admit a variety of statistical properties.
- \blacktriangleright In this lecture, we will introduce several alternative divergence measures to KL, and discuss their statistical properties, with applications in VI.

Potential Problems with The KL Divergence $3/33$

- ▶ VI does not work well for non-smooth potentials
- \blacktriangleright This is largely due to the zero-avoiding behaviour
	- \blacktriangleright The area where $p(\theta)$ is close to zero has very negative log p, so does the variational distribution q distribution when trained to minimize the KL.
- \blacktriangleright In this truncated normal example, VI will fit a delta function!

Potential Problems with The KL Divergence $3/33$

- ▶ VI does not work well for non-smooth potentials
- \blacktriangleright This is largely due to the zero-avoiding behaviour
	- \blacktriangleright The area where $p(\theta)$ is close to zero has very negative log p, so does the variational distribution q distribution when trained to minimize the KL.
- \blacktriangleright In this truncated normal example, VI will fit a delta function!

Beyond The KL Divergence 4/33

 \blacktriangleright Recall that the KL divergence from q to p is

$$
D_{\mathrm{KL}}(q||p) = \mathbb{E}_q \log \frac{q(x)}{p(x)} = \int q(x) \log \frac{q(x)}{p(x)} dx
$$

 \triangleright An alternative: the reverse KL divergence

$$
D_{\text{KL}}^{\text{Rev}}(p||q) = \mathbb{E}_p \log \frac{p(x)}{q(x)} = \int p(x) \log \frac{p(x)}{q(x)} dx
$$

Reverse KL KL

The f -Divergence $5/33$

 \blacktriangleright The *f*-divergence from *q* to *p* is defined as

$$
D_f(q||p) = \int p(x)f\left(\frac{q(x)}{p(x)}\right) dx
$$

where f is a convex function such that $f(1) = 0$. \blacktriangleright The *f*-divergence defines a family of valid divergences

$$
D_f(q||p) = \int p(x)f\left(\frac{q(x)}{p(x)}\right) dx
$$

$$
\geq f\left(\int p(x)\frac{q(x)}{p(x)} dx\right) = f(1) = 0
$$

and

$$
D_f(q||p) = 0 \Rightarrow q(x) = p(x) \text{ a.s.}
$$

The f -Divergence 6/33

Many common divergences are special cases of f-divergence, with different choices of f.

- \blacktriangleright KL divergence. $f(t) = t \log t$
- \blacktriangleright reverse KL divergence. $f(t) = -\log t$
- \blacktriangleright Hellinger distance. $f(t) = \frac{1}{2}$ $\sqrt{t} - 1$ ²

$$
H^{2}(p,q) = \frac{1}{2} \int (\sqrt{q(x)} - \sqrt{p(x)})^{2} dx = \frac{1}{2} \int p(x) \left(\sqrt{\frac{q(x)}{p(x)}} - 1 \right)^{2} dx
$$

► Total variation distance. $f(t) = \frac{1}{2}|t-1|$

$$
d_{\text{TV}}(p,q) = \frac{1}{2} \int |p(x) - q(x)| dx = \frac{1}{2} \int p(x) \left| \frac{q(x)}{p(x)} - 1 \right| dx
$$

Amari's α -Divergence 7/33

When $f(t) = \frac{t^{\alpha} - t}{\alpha(\alpha - 1)}$, we have the Amari's α -divergence (Amari, 1985; Zhu and Rohwer, 1995)

$$
D_{\alpha}(p||q) = \frac{1}{\alpha(1-\alpha)} \left(1 - \int p(\theta)^{\alpha} q(\theta)^{1-\alpha} d\theta\right)
$$

Adapted from Hernández-Lobato et al.

$Rényi's \alpha-Divergence$ 8/33

$$
D_{\alpha}(q||p) = \frac{1}{\alpha - 1} \log \int q(\theta)^{\alpha} p(\theta)^{1-\alpha} d\theta
$$

 \triangleright Some special cases of Rényi's α -divergence

\n- ▶
$$
D_1(q||p) := \lim_{\alpha \to 1} D_{\alpha}(q||p) = D_{\text{KL}}(q||p)
$$
\n- ▶ $D_0(q||p) = -\log \int_{q(\theta) > 0} p(\theta) d\theta = 0$ iff $supp(p) \subset supp(q)$.
\n- ▶ $D_{+\infty}(q||p) = \log \max_{\theta} \frac{q(\theta)}{p(\theta)}$
\n- ▶ $D_{\frac{1}{2}}(q||p) = -2\log(1 - \text{Hel}^2(q||p))$
\n

 \blacktriangleright Importance properties

2

 \blacktriangleright Rényi divergence is non-decreasing in α

$$
D_{\alpha_1}(q||p) \ge D_{\alpha_2}(q||p), \quad \text{if } \alpha_1 \ge \alpha_2
$$

$$
\blacktriangleright \text{ Skew symmetry: } D_{1-\alpha}(q||p) = \frac{1-\alpha}{\alpha}D_{\alpha}(p||q)
$$

The Rényi Lower Bound 9/33

 \blacktriangleright Consider approximating the exact posterior $p(\theta|x)$ by minimizing Rényi's α -divergence $D_{\alpha}(q(\theta)||p(\theta|x))$ for some selected $\alpha > 0$

$$
\triangleright \text{ Using } p(\theta|x) = p(\theta, x)/p(x), \text{ we have}
$$

$$
D_{\alpha}(q(\theta)||p(\theta|x)) = \frac{1}{\alpha - 1} \log \int q(\theta)^{\alpha} p(\theta|x)^{1-\alpha} d\theta
$$

$$
= \log p(x) - \frac{1}{1-\alpha} \log \int q(\theta)^{\alpha} p(\theta, x)^{1-\alpha} d\theta
$$

$$
= \log p(x) - \frac{1}{1-\alpha} \log \mathbb{E}_{q} \left(\frac{p(\theta, x)}{q(\theta)}\right)^{1-\alpha}
$$

 \blacktriangleright The Rényi lower bound (Li and Turner, 2016)

$$
L_{\alpha}(q) \triangleq \frac{1}{1-\alpha} \log \mathbb{E}_{q} \left(\frac{p(\theta, x)}{q(\theta)} \right)^{1-\alpha}
$$

The Rényi Lower Bound 10/33

 \blacktriangleright Theorem(Li and Turner 2016). The Rényi lower bound is continuous and non-increasing on $\alpha \in [0, 1] \cup \{|L_{\alpha}| < +\infty\}.$ Especially for all $0 < \alpha < 1$

$$
L_{\text{VI}}(q) = \lim_{\alpha \to 1} L_{\alpha}(q) \le L_{\alpha}(q) \le L_0(q)
$$

 $L_0(q) = \log p(x)$ iff $supp(p(\theta|x)) \subset supp(q(\theta)).$

Monte Carlo Estimation 11/33

 \triangleright Monte Carlo estimation of the Rényi lower bound

$$
\hat{L}_{\alpha,K}(q) = \frac{1}{1-\alpha} \log \frac{1}{K} \sum_{i=1}^{K} \left(\frac{p(\theta_i, x)}{q(\theta_i)} \right)^{1-\alpha}, \quad \theta_i \sim q(\theta)
$$

- ▶ Unlike traditional VI, here the Monte Carlo estimate is biased. Fortunately, the bias can be characterized by the following theorem
- **I Theorem** (Li and Turner, 2016). $\mathbb{E}_{\{\theta_i\}_{i=1}^K}(\hat{L}_{\alpha,K}(q))$ as a function of α and K is
	- ightharpoonup in K for fixed $\alpha \leq 1$, and converges to $L_{\alpha}(q)$ as $K \to +\infty$ if $supp(p(\theta|x)) \subset supp(q(\theta)).$
	- \triangleright continuous and non-increasing in α on $[0, 1] \cup \{|L_{\alpha}| < +\infty\}$

Multiple Sample ELBO 12/33

 \blacktriangleright When $\alpha = 0$, the Monte Carlo estimate reduces to the multiple sample lower bound (Burda et al., 2015)

$$
\hat{L}_K(q) = \log \left(\frac{1}{K} \sum_{i=1}^K \frac{p(x, \theta_i)}{q(\theta_i)} \right), \quad \theta_i \sim q(\theta)
$$

- \blacktriangleright This recovers the standard ELBO when $K = 1$.
- \triangleright Using more samples improves the tightness of the bound (Burda et al., 2015)

$$
\log p(x) \geq \mathbb{E}(\hat{L}_{K+1}(q)) \geq \mathbb{E}(\hat{L}_K(q))
$$

Moreover, if $p(x, \theta)/q(\theta)$ is bounded, then

$$
\mathbb{E}(\hat{L}_K(q)) \to \log p(x), \quad \text{as } K \to +\infty
$$

Lower Bound Maximization 13/33

Using the reparameterization trick

$$
\theta \sim q_{\phi}(\theta) \Leftrightarrow \theta = g_{\phi}(\epsilon), \ \epsilon \sim q_{\epsilon}(\epsilon)
$$

$$
\nabla_{\phi}\hat{L}_{\alpha,K}(q_{\phi}) = \sum_{i=1}^{K} \left(\hat{w}_{\alpha,i} \nabla_{\phi} \log \frac{p(g_{\phi}(\epsilon_i), x)}{q_{\phi}(g_{\phi}(\epsilon_i))} \right), \quad \epsilon_i \sim q_{\epsilon}(\epsilon)
$$

where

$$
\hat{w}_{\alpha,i} \propto \left(\frac{p(g_{\phi}(\epsilon_i),x)}{q_{\phi}(g_{\phi}(\epsilon_i))}\right)^{1-\alpha},\,
$$

the normalized importance weight with finite samples. This is a biased estimate of $\nabla_{\phi}L_{\alpha}(q_{\phi})$ (except $\alpha = 1$).

- $\triangleright \alpha = 1$: Standard VI with the reparamterization trick
- $\blacktriangleright \alpha = 0$: Importance weighted VI (Burda et al., 2015)

Minibatch Training 14/33

- \blacktriangleright Full batch training for maximizing the Rényi lower bound could be very inefficient for large datasets
- \triangleright Stochastic optimization is non-trivial since the Rényi lower bound can not be represented as an expectation on a datapoint-wise loss, except for $\alpha = 1$.
- \blacktriangleright Two possible methods:
	- \blacktriangleright derive the fixed point iteration on the whole dataset, then use the minibatch data to approximately compute it (Li et al., 2015)
	- \blacktriangleright approximate the bound using the minibatch data, then derive the gradient on this approximate objective (Hernández-Lobato et al., 2016)

Remark: the two methods are equivalent when $\alpha = 1$ (standard VI).

Minibatch Training: Energy Approximation 15/33

 \blacktriangleright Suppose the true likelihood is

$$
p(x|\theta) = \prod_{n=1}^{N} p(x_n|\theta)
$$

 \blacktriangleright Approximate the likelihood as

$$
p(x|\theta) \approx \left(\prod_{n \in S} p(x_n|\theta)\right)^{\frac{N}{|S|}} \triangleq \bar{f}_{\mathcal{S}}(\theta)^N
$$

 \triangleright Use this approximation for the energy function

$$
\tilde{L}_{\alpha}(q, S) = \frac{1}{1 - \alpha} \log \mathbb{E}_{q} \left(\frac{p_0(\theta) \bar{f}_{S}(\theta)^N}{q(\theta)} \right)^{1 - \alpha}
$$

Example: Bayesian Neural Network 16/33

- \blacktriangleright The optimal α may vary for different data sets.
- \blacktriangleright Large α improves the predictive error, while small α provides better test log-likelihood.
- \triangleright $\alpha = 0.5$ seems to produce overall good results for both test LL and RMSE.

Expectation Propagation 17/33

In standard VI, we often minimize $D_{\text{KL}}(q||p)$. Sometimes, we can also minimize $D_{\text{KL}}(p||q)$ (can be viewed as MLE).

$$
q^* = \arg\min_q D_{\text{KL}}(p||q) = \arg\max_q \mathbb{E}_p \log q(\theta)
$$

 \blacktriangleright Assume q is from the exponential family

$$
q(\theta|\eta) = h(\theta) \exp\left(\eta^{\top}T(\theta) - A(\eta)\right)
$$

 \blacktriangleright The optimal η^* satisfies

$$
\eta^* = \arg\max_{\eta} \mathbb{E}_p \log q(\theta | \eta)
$$

=
$$
\arg\max_{\eta} \left(\eta^\top \mathbb{E}_p (T(\theta)) - A(\eta) \right) + \text{Const}
$$

Moment Matching 18/33

 \triangleright Differentiate with respect to η

$$
\mathbb{E}_p(T(\theta)) = \nabla_\eta A(\eta^*)
$$

 \triangleright Note that $q(\theta|\eta)$ is a valid distribution $\forall \eta$

$$
0 = \nabla_{\eta} \int h(\theta) \exp \left(\eta^{\top} T(\theta) - A(\eta) \right) d\theta
$$

$$
= \int q(\theta | \eta) \left(T(\theta) - \nabla_{\eta} A(\eta) \right) d\theta
$$

$$
= \mathbb{E}_{q} \left(T(\theta) \right) - \nabla_{\eta} A(\eta)
$$

 \blacktriangleright The KL divergence is minimized if the expected sufficient statistics are the same

$$
\mathbb{E}_q(T(\theta)) = \mathbb{E}_p(T(\theta))
$$

Expectation Propagation 19/33

- An approximate inference method proposed by Minka 2001.
- \triangleright Suitable for approximating product forms. For example, with iid observations, the posterior takes the following form

$$
p(\theta|x) \propto p(\theta) \prod_{i=1}^{n} p(x_i|\theta) = \prod_{i=0}^{n} f_i(\theta)
$$

 \blacktriangleright We use an approximation

$$
q(\theta) \propto \prod_{i=0}^{n} \tilde{f}_i(\theta)
$$

One common choice for \tilde{f}_i is the exponential family

$$
\tilde{f}_i(\theta) = h(\theta) \exp\left(\eta_i^{\top} T(\theta) - A(\eta_i)\right)
$$

Iteratively refinement of the terms $\tilde{f}_i(\theta)$

Iterative Updating 20/33

 \blacktriangleright Take out term approximation *i*

$$
q^{\setminus i}(\theta) \propto \prod_{j \neq i} \tilde{f}_j(\theta)
$$

 \blacktriangleright Put back in term i

$$
\hat{p}(\theta) \propto f_i(\theta) \prod_{j \neq i} \tilde{f}_j(\theta)
$$

 \blacktriangleright Match moments. Find q such that

$$
\mathbb{E}_q(T(\theta)) = \mathbb{E}_{\hat{p}}(T(\theta))
$$

 \triangleright Update the new term approximation

$$
\tilde{f}_i^{\text{new}}(\theta) \propto \frac{q(\theta)}{q^{\backslash i}(\theta)}
$$

 \blacktriangleright Minimize the KL divergence from \hat{p} to q

$$
D_{\mathrm{KL}}(\hat{p}||q) = \mathbb{E}_{\hat{p}} \log \left(\frac{\hat{p}(\theta)}{q(\theta)}\right)
$$

 \blacktriangleright Equivalent to moment matching when q is in the exponential family.

Example: The Clutter Problem 22/33

 \triangleright Goal: fit a multivariate Gaussian into data in the presence of background clutter (also Gaussian)

$$
p(x|\theta) = (1 - w)\mathcal{N}(x|\theta, I) + w\mathcal{N}(x|0, aI)
$$

 \blacktriangleright The prior is Gaussian: $p(\theta) = \mathcal{N}(\theta|0, bI)$.

Example: The Clutter Problem 23/33

 \blacktriangleright The joint distribution

$$
p(\theta, x) = p(\theta) \prod_{i=1}^{n} p(x_i | \theta)
$$

is a mixture of 2^n Gaussians, intractable for large n.

 \triangleright We approximate it using a spherical Gaussian

$$
q(\theta) = \mathcal{N}(\theta|m, vI)
$$

 \blacktriangleright This is an exponential family with

- \blacktriangleright sufficient statistics $T(\theta) = (\theta, \theta^{\top}\theta)$
- ► natural parameters $\eta = (v^{-1}m, -\frac{1}{2}v^{-1})$

normalizing constant $Z(\eta) = (2\pi v)^{d/2} \exp\left(\frac{m \bar{\tau} m}{2v}\right)$

Initialization 24/33

 \blacktriangleright For the clutter problem, we have

$$
f_0(\theta) = p(\theta)
$$

$$
f_i(\theta) = p(x_i|\theta), i = 1,..., n
$$

 \blacktriangleright The approxmation is of the form

$$
\tilde{f}_0(\theta) = f_0(\theta) = p(\theta)
$$

\n
$$
\tilde{f}_i(\theta) = s_i \exp(\eta_i^\top T(\theta)), \ i = 1, ..., n
$$

\n
$$
q(\theta) \propto \prod_{i=0}^n \tilde{f}_i(\theta) = s\mathcal{N}(\theta; \eta)
$$

 \blacktriangleright Initialize $\eta_i = (0,0)$ for $i = 1, \ldots, n$

Take Out and Put Back 25/33

 \blacktriangleright With natural parameters, taking out term approximation i is trivial.

$$
q^{\setminus i}(\theta) \propto \frac{q(\theta)}{\tilde{f}_i(\theta)} \propto \mathcal{N}(\theta; \eta^{\setminus i})
$$

where

$$
\eta^{\backslash i}=\eta-\eta_i
$$

 \blacktriangleright Now we put back in term i

$$
\hat{p}(\theta) \propto ((1 - w)\mathcal{N}(x_i|\theta, I) + w\mathcal{N}(x_i|0, aI))\mathcal{N}(\theta; \eta^{\backslash i})
$$
\n
$$
= (1 - w)\frac{Z(\eta^+)}{Z(\eta^{x_i})Z(\eta^{\backslash i})}\mathcal{N}(\theta; \eta^+) + w\mathcal{N}(x_i|0, aI)\mathcal{N}(\theta; \eta^{\backslash i})
$$
\n
$$
\propto r\mathcal{N}(\theta; \eta^+) + (1 - r)\mathcal{N}(\theta; \eta^{\backslash i})
$$
\nwhere $\eta^+ = \eta^{\backslash i} + \eta^{x_i}, \quad \eta^{x_i} = (x_i, -\frac{1}{2}).$

Match Moments and Update 26/33

 \triangleright Now we match the sufficient statistics of the Gaussian mixture

$$
\hat{p}(\theta) = r\mathcal{N}(\theta; \eta^+) + (1 - r)\mathcal{N}(\theta; \eta^{\backslash i})
$$

From
$$
\mathbb{E}_q(T(\theta)) = \mathbb{E}_{\hat{p}}(T(\theta))
$$
, we have
\n
$$
m = rm^+ + (1 - r)m^{\backslash i}
$$
\n
$$
v + m^{\top}m = r\left(v^+ + (m^+)^{\top}m^+\right) + (1 - r)\left(v^{\backslash i} + (m^{\backslash i})^{\top}m^{\backslash i}\right)
$$

Similarly, the update of \tilde{f}_i is trivial

$$
\tilde{f}_i(\theta) \propto \frac{q(\theta)}{q^{\backslash i}(\theta)} \propto \mathcal{N}(\theta; \eta_i)
$$

where

$$
\eta_i = \eta - \eta^{\backslash i}
$$

Marginal Likelihood by EP 27/33

 \blacktriangleright We can use EP to evaluate the marginal likelihood $p(x)$

 \blacktriangleright To do this, we include a scale on $\tilde{f}_i(\theta)$

$$
\tilde{f}_i(\theta) = Z_i \frac{q^*(\theta)}{q^{\backslash i}(\theta)}
$$

where $q^*(\theta)$ is a normalized version of $q(\theta)$ and

$$
Z_i = \int q^{\backslash i}(\theta) f_i(\theta) d\theta
$$

 \blacktriangleright Use the normalizing constant of $q(x)$ to approximate $p(x)$

$$
p(x) \approx \int \prod_{i=0}^{n} \tilde{f}_i(\theta) \ d\theta
$$

Marginal Likelihood For The Clutter Problem 28/33

 \blacktriangleright For the clutter problem

$$
s_i \exp(\eta_i^\top T(\theta)) = \tilde{f}_i(\theta) = Z_i \frac{q^*(\theta)}{q^{\backslash i}(\theta)}
$$

implies

$$
s_i = Z_i \frac{Z(\eta^{\backslash i})}{Z(\eta)}
$$

$$
Z_i = (1 - w) \frac{Z(\eta^+)}{Z(\eta^{x_i})Z(\eta^{\backslash i})} + w\mathcal{N}(x_i|0, aI)
$$

 \blacktriangleright The marginal likelihood estimate is

$$
p(x) \approx \int \prod_{i=0}^{n} \tilde{f}_i(\theta) \, d\theta = \frac{Z(\eta)}{Z(\eta_0)} \prod_{i=1}^{n} s_i
$$

An Energy Function For EP 29/33

- \blacktriangleright The EP iterations can be shown to always have a fixed point when the approximations are in an exponential family.
- \triangleright With an exact prior, the final approximation is

$$
q(\theta) \propto p(\theta) \exp\left(\nu^\top T(\theta)\right)
$$

 \blacktriangleright The leave-one-out approximations

$$
q^{\setminus i}(\theta) \propto p(\theta) \exp\left(\lambda_i^\top T(\theta)\right)
$$

An Energy Function For EP 30/33

 \blacktriangleright EP fixed points correspond to stationary points of the objective

$$
\min_{\nu} \max_{\lambda} (n-1) \log \int p(\theta) \exp(\nu^{\top} T(\theta)) \, d\theta
$$

$$
- \sum_{i=1}^{n} \log \int f_i(\theta) p(\theta) \exp(\lambda_i^{\top} T(\theta)) \, d\theta
$$

such that $(n-1)\nu_j = \sum_i \lambda_{ij}$

 \blacktriangleright Taking derivatives we get the stationary conditions

$$
\mathbb{E}_q(T(\theta)) = \mathbb{E}_{\hat{p}}(T(\theta))
$$

 \triangleright Note that this is a non-convex optimization problem.

Summary 31/33

- \triangleright Other than the standard KL divergence, there are many alternative distance measures for VI (e.g., f-divergence, Rényi α -divergence).
- \triangleright The Rényi α -divergences allow tractable lower bound and promote different learning behaviors through the choice of α (from mode-covering to model-seeking as α goes from $-\infty$ to ∞), which can be adapted to specific learning tasks.
- \blacktriangleright We also introduced another approximate inference method, expectation propagation (EP), that uses the reversed KL. More recent development on EP (Li et al., 2015, Hernández-Lobato et al., 2016).

References 32/33

- ▶ Amari, Shun-ichi. Differential-Geometrical Methods in Statistic. Springer, New York, 1985.
- ▶ Zhu, Huaiyu and Rohwer, Richard. Information geometric measurements of generalisation. Technical report, Technical Report NCRG/4350. Aston University., 1995.
- \blacktriangleright Y. Li and R. E. Turner. Rényi Divergence Variational Inference. NIPS, pages 1073–1081, 2016.
- I Y. Burda, R. Grosse, and R. Salakhutdinov. Importance weighted autoencoders. International Conference on Learning Representations (ICLR), 2016.

References 33/33

- ▶ Y. Li, J. M. Hernández-Lobato, and R. E. Turner. Stochastic expectation propagation. In Advances in Neural Information Processing Systems (NIPS), 2015.
- \blacktriangleright J. M. Hernández-Lobato, Y. Li, M. Rowland, D. Hernández-Lobato, T. Bui, and R. E. Turner. Black-box α -divergence minimization. In Proceedings of The 33rd International Conference on Machine Learning (ICML), 2016.

