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Overview of MCMC 2/36

I Simple MCMC methods, such as Metropolis algorithm and
Gibbs sampler explore the posterior distribution using
simple mechanism (e.g., a random walk)

I While this strategy might work well for low-dimensional
distributions, it could become very inefficient (e.g., high
autocorrelation, missing isolated modes) for
high-dimensional distributions

I In this lecture, we discuss several advanced techniques to
improve the efficiency of Markov chain Monte Carlo
methods



Simple MCMC is Not Enough 3/36

Random walk Metropolis (RWM) is struggling with a
banana-shaped distribution
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How to Improve Simple MCMC Methods 4/36

I Random proposals are likely to be inefficient, since they
completely ignore the target distribution

I A better way would be to use information from the target
distribution to guide our proposals

I Note that in optimization, the gradient points to a descent
direction, which would also be useful when designing the
proposal distributions

x′ = x+ ε∇ log p(x)

when ε is small,

log p(x′) > log p(x)



Metropolis Adjusted Langevin Algorithm 5/36

I We can incorporate the gradient information into our
proposal distribution

I Let x be the current state, instead of using a random
perturbation centered at x (e.g., N (x, σ2)), we can shift
toward the gradient direction which leads to the following
proposal distribution

Q(x′|x) = N (x+
σ2

2
∇ log p(x), σ2I)

This looks like GD with noise!

I No longer symmetric, use Metropolis-Hasting instead

I This is called Metropolis Adjusted Langevin Algorithm
(MALA)
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Hamiltonian Monte Carlo 7/36

I It turns out that we can combine multiple MALA together,
resulting in an algorithm that can generate distant
proposals with high acceptance rate

I The new algorithm is based on Hamiltonian dynamics, a
system introduced by Alder and Wainwright (1959) to
simulate motion of molecules deterministically based on
Newton’s law of motion

I In 1987, Duane et al. combine the standard MCMC and
the Hamiltonian dynamics, and derived a method they
called Hybrid Monte Carlo (HMC)

I Nowadays, this abbreviation has also been used for
Hamiltonian Monte Carlo



Hamiltonian Dynamics 8/36

I Construct a landscape with potential energy U(x)

p(x) ∝ e−U(x), U(x) = − logP (x)

I Introduce momentum r carrying kinetic energy
K(r) = 1

2r
TM−1r, and define total energy or

Hamiltonian H(x, r) = U(x) +K(r)

I Hamiltonian equations

dx

dt
=
∂H

∂r
,

dr

dt
= −∂H

∂x

I Some physics:
I The two equations are about velocity and force, respectively.
I Frictionless ball rolling (x, r)→ (x′, r′) satisfies

H(x′, r′) = H(x, r)



Hamiltonian Monte Carlo 9/36

I The joint probability of (x, r) is

p(x, r) ∝ exp(−H(x, r)) ∝ p(x) · N (r|0,M)

I x and r are independent and r follows a Gaussian
distribution

I The marginal distribution is the target distribution p(x)

I We then use MH to sample from the joint parameter space
and x samples are collected as samples from the target
distribution

I HMC is an auxiliary variable method



Proposing Mechanism 10/36

We follow two steps to make proposals in the joint parameter
space

I Gibbs sample momentum: r ∼ N (0,M)

I Simulate Hamiltonian dynamics and flip the sign of the
momentum

(x, r) = (x(0), r(0))
HD−−→ (x(t), r(t)), (x′, r′) = (x(t),−r(t))

Important Properties

I Time reversibility: The trajectory is time reversible

I Volume preservation: Hamiltonian flow does not change
the volume - the jacobin determinant is 1

I Conservation of Hamiltonian: Total energy is conserved,
meaning the proposal will always be accepted



Numerical Integration 11/36

I In practice, Hamiltonian dynamics can not be simulated
exactly. We need to use numerical integrators

I Leap-frog scheme

r(t+
ε

2
) = r(t)− ε

2

∂U

∂x
(x(t))

x(t+ ε) = x(t) + ε
∂K

∂r
(r(t+

ε

2
))

r(t+ ε) = r(t+ ε/2)− ε

2

∂U

∂x
(x(t+ ε))

Important Properties

I Reversibility and volume preservation: still hold

I Conservation of Hamiltonian: broken. Acceptance
probability becomes

a(x′, r′|x, r) = min
(
1, exp(−H(x′, r′) +H(x, r))

)



Comparison of Numerical Integrators 12/36

H(x, r) =
x2

2
+
r2

2

Euler, ε = 0.3 Leap-frog, ε = 0.3

Adapted from Neal (2011)
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HMC in one iteration

I Sample momentum r ∼ N (0,M)

I Run numerical integrators (e.g., leapfrog) for L steps

I Accept new position with probability

min
(
1, exp(−H(x′, r′) +H(x, r))

)
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The Geometry of Phase Space 14/36

I Since Hamiltonian is conserved, every Hamiltonian
trajectory is confined to an energy level set

H−1(E) = {x, r|H(x, r) = E}

Adapted from Betancourt (2017)
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Choice of Kinetic Energy 15/36

I The choice of the conditional probability distribution over
the momentum, or equivalently, the kinetic energy, affects
HMC’s behavior over different energy level sets

I Ideally, the kinectic energy will interact with the target
distribution to ensure that the energy level sets are
uniformly distributed

I In HMC, we often use Euclidean-Gaussain kinetic energy
K(r) = rT r

2 . This sets M = I and completely ignore local
geometric information of the target distribution

I Preconditioning mass matrix may help, but it is also quite
limited

I Instead of using a fixed M , how about using an adaptive
one?



Fisher Information and Riemannian Manifold 16/36

I Consider the symmetric KL divergence between two
densities p and q

DSKL(p‖q) = DKL(p‖q) +DKL(q‖p)

I Let p(y|x) be the likelihood. Then
DSKL(p(y|x+ δx)‖p(y|x)) is approximately

δxTEy|x
(
∇x log p(y|x)∇x log p(y|x)T

)
δx = δxTG(x)δx

where G(x) is the Fisher Information matrix

I This induces a Riemannian manifold (Amari 2000) over
the parameter space of a statistical model, which defines
the natural geometric structure of density p(x)



Riemannian Manifold Hamiltonian Monte Carlo 17/36

I Based on the Riemannian manifold formulation, Girolami
and Calderhead (2011) introduce a new method, called
Riemannian manifold HMC (RMHMC)

I Hamiltonian on a Riemannian manifold

H(x, r) = U(x) +
1

2
log((2π)d|G(x)|) +

1

2
rTG(x)−1r

I The joint probability is

p(x, r) ∝ exp(−H(x, r)) ∝ p(x) · N (r|0, G(x))

I x and r now are correlated, and the conditional
distribution of r given x follows a Gaussian distribution

I The marginal distribution is the target distribution



RMHMC in Practice 18/36

I The resulting dynamics is non-separable, so instead of the
standard leapfrog we need to use the generalized leapfrog
method (Leimkuhler and Reich, 2004)

I The generalized leapfrog scheme

r(t+
ε

2
) = r(t)− ε

2
∇xH(x(t), r(t+

ε

2
))

x(t+ ε) = x(t) +
ε

2

(
G(x(t))−1 +G(x(t+ ε))−1

)
r(t+

ε

2
)

r(t+ ε) = r(t+
ε

2
)− ε

2
∇xH(x(t+ ε), r(t+

ε

2
))

I The above scheme is time reversible and volume preserving.
However, the first two equations are defined implicitly (can
be solved via several fixed point iterations)



Examples: Banana Shape Distribution 19/36

I Consider a 2D banana-shaped posterior distribution as
follows

yi ∼ N (θ1 + θ22, σ
2
y), θ = (θ1, θ2) ∼ N (0, σ2θ)

I the log-posterior is (up to an ignorable constant)

log p(θ|Y, σ2y , σ2θ) = −
∑

i(yi − θ1 − θ22)2

2σ2y
− θ21 + θ22

2σ2θ

I Fisher information for the joint likelihood

G(θ) = EY |θ
(
−∇2

θ log p(Y, θ)
)

=
n

σ2y

[
1 2θ2

2θ2 4θ22

]
+

1

σ2θ
I
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Examples: Bayesian Logistic Regression 21/36

I Consider a Bayesian logistic regression model with design
matrix X and regression coefficients β ∈ Rd, with a simple
prior β ∼ N (0, αId)

I Neglecting constants, the log-posterior is

log p(β|X,Y, α) = L(β)− 1

2α
βTβ

= βTXTY −
∑
i

log(1 + exp(xTi β))− 1

2α
βTβ

I Use the joint likelihood to compute the fisher information

G(β) = EY |X,β,α
(
−∇2

βL(β) +
1

α
Id

)
= XTWX +

1

α
Id



Examples: Bayesian Logistic Regression 22/36

Adapted form Girolami and Calderhead (2011)



Choice of Integration Time 23/36

I Integration time determines the exploration efficiency of
Hamiltonian trajectory in each energy level set
I Too short integration time lose the advantage of the

coherent exploration of the Hamiltonian trajectory (e.g.,
one step HMC is equivalent to MALA)

I Too long integration time wastes computation since
trajectories are likely to return to explored regions

I The No-U-Turn Sampler (Hoffman and Gelman, 2011).
I Idea: use the distance to the initial position as a criteria for

selecting integration time - avoid U-Turn
I Naive implementation is not time reversible. Use a strategy

similar to the doubling procedure in slice sampling (Neal
2003).



Adaptive MCMC 24/36

I Generally speaking, the efficiency of MCMC depends on its
proposal distribution, which usually involves several
hyper-parameters

I Most MCMC algorithms, therefore, need tuning to be
efficient and reliable in large scale applications

I However, tuning could be painful and sometimes not
practical (requires computing time, human time, and
typically expert knowledge, too many variables, when to
stop tuning, tuning criterion not clear, etc)

I Adaptive MCMC is about tuning MCMC without human
intervention

I It uses the trajectory so far to tune the sampling kernel on
the fly (so it is not a Markov chain anymore)



Examples: Random Walk Metropolis 25/36

I Proposal distribution:

x′ ∼ Qσ(·|x) = x+ σN (0, Id)

I Plots for different σ - Goldilock’s principle



Examples: Random Scan Gibbs Sampler 26/36

I Random Scan Gibbs Sampler for 50-d Truncated
Multivariate Normals. Are uniform 1/d selection
probabilities optimial?



How to Design Adaptive MCMC Algorithms? 27/36

I First, we need a parameterized family of proposal
distributions for a given MCMC class

I We also need an optimization rule that is mathematically
sound and computationally cheap

I We need it to work in practice

Ergodicity of Adaptive MCMC

I How do we know that the chain will converge to the target
distribution if it is not even Markovian?

I Two conditions (see Roberts and Rosenthal 2007):
I Diminishing adaption: the dependency on ealier states of

the chain goes to zero
I Bounded convergence: convergence times for all adapted

transition kernels are bounded in probablity



Adaptive Metropolis Algorithms 28/36

I Consider random walk Metropolis for a d-dimensional
target distribution with proposal Q(x′|xn) = N (xn, σ

2Σ(n))

I If the target distribution is Gaussian with covariance Σ,
the optimal proposal is N (xn,

2.382

d Σ), which leads to an
acceptance rate α∗ ≈ 0.23 (see Gelman et al 1996)

I This gives a simple criterion for random walk Metropolis in
practice

I We can use it to design an adaptive Metropolis algorithm



Adaptive Scaling Algorithm 29/36

I Draw proposal

x′ ∼ Q(·|xn) = xn + σnN (0, Id)

I select the value xn+1 according to the Metropolis
acceptance rate αn = α(x′|xn)

I Update scale by

log σn+1 = log σn + γn(αn − α∗)

where the adaptation parameter γn → 0



Adaptive Metropolis Algorithm 30/36

I Optimal scaling is not the whole story. In fact, the optimal
proposal suggests to learn the covariance matrix of the
target distribution (e.g., use the empirical estimates)

I The algorithm runs as follows:

I Sample a candidate value from N (xn,
2.382

d Σn)
I Select the value xn+1 as in the usual Metropolis (or MH)
I Update the proposal distribution in two steps:

µn+1 = µn + γn+1(xn+1 − µn)

Σn+1 = Σn + γn+1

(
(xn+1 − µn)(xn+1 − µn)T − Σn

)
where γn → 0

I Many variants exist (e.g., adapting the scale, block
updates, and batch adaption, etc)



Adaptive Hamiltonian Monte Carlo 31/36

I The performance of HMC would be sensitive to its
hyperparameters, mainly the stepsize ε and trajectory
length L



Adaptive Hamiltonian Monte Carlo 32/36

I Optimal acceptance rate strategy might not work well. The
example shown on the previous slides all have similar
acceptance rate

I Effective sample size is impractical since high order
auto-correlation are hard to estimate

I Wang et al (2013) uses normalized expected squared
jumping distance (ESJD)

ESJDγ = Eγ‖x(t+1) − x(t)‖2/
√
L

where γ = (ε, L)

I Update γ via Bayesian optimization, with an annealing
adapting rate



More Tricks on HMC 33/36

I Instead of using a fixed trajectory length L, we can sample
it from some distribution (e.g., U(1, Lmax))

I Split the Hamiltonian

H(x, r) = H1(x, r) +H2(x, r) + · · ·+Hk(x, r)

simulate Hamiltonian dynamics on each Hi (sequentially or
randomly) give the Hamiltonian dynamics on H. Can save
computation if some of the Hi are analytically solvable

I Partial momentum refreshment

I Acceptance using windows of states

I See Neal (2010) for more complete and detailed discussion
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