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Overview 2/31

» While Monte Carlo estimation is attractive for high
dimension integration, it may suffer from lots of problems,
such as rare events, and irregular integrands, etc.

» In this lecture, we will discuss various methods to improve
Monte Carlo approaches, with an emphasis on variance
reduction techniques
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What’s Wrong with Simple Monte Carlo? 3/31

» The simple Monte Carlo estimator of ff h(z)f(x)dx is

. 1 & ;
I, = n;h(:c())

2)

where 21, 2@ . 2™

are randomly sampled from f

» A potential problem is the mismatch of the concentration
of h(z)f(x) and f(x). More specifically, if there is a region
A of relatively small probability under f(x) that dominates
the integral, we would not get enough data from the
important region A by sampling from f(x)

» Main idea: Get more data from A, and then correct the
bias
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Importance Sampling 4/31

» Importance sampling (IS) uses importance distribution
q(x) to adapt to the true integrands h(x)f(x), rather than
the target distribution f(x)

» By correcting for this bias, importance sampling can
greatly reduce the variance in Monte Carlo estimation

» Unlike the rejection sampling, we do not need the envelop
property
» The only requirement is that ¢(z) > 0 whenever

h(z)f(x) # 0

» IS also applies when f(z) is not a probability density
function
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Importance Sampling 5/31

» Now we can rewrite I = Eg(h(z)) = [} h(z)f(x) dz as

I=Ey(ha) = [ h@)f(z) do

f(x)

where w(z) = is the importance weight function

q(x)




Importance Sampling 6/31

We can then approximate the original expectation as follows
» Draw samples (1. .. 2" from ¢(z)

» Monte Carlo estimate
1 & . .
IS = 2N (2@ ()
P = L M)

; (©) . .
where w(z(®) = f(xi(l)) are called importance ratios.

q(z(*)
» Note that, now we only require sampling from ¢ and do not
require sampling from f
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7/31

Examples
» We want to approximate a A/(0,1) distribution with ¢(3)

distribution
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» We generate 500 samples and estimated I = E(2?) as 0.97,
APITEES

which is close to the true value 1.




Mean and Variance of IS 8/31

» Let t(z) = h(z)w(x). Then E,(t(X)) =1,X ~¢q

E(IS) = Z E(t

» Similarly, the variance is
Var, (I°) = —Varq( (X))
By Tl o
X

n q(z)

1 (h(x)f(x) — Iq(x))? .
_ /X d

n




Variance Does Matter 9/31

» Recall the convergence rate for Monte Carlo is

g

NGT;

For IS, o = /Var,(t(X)). A good importance distribution
q(x) would make Varg(t(X)) small.

p(!fn—lls )21—5, v

» What can we learn from equations (1) and (2)?

» Optimal choice: ¢(z) x h(z)f(z)
» ¢(z) near 0 can be dangerous

(h(z) f(x))?

is useful theoretically
q(x)

» Bounding
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Examples 10/31
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Vary(t(X)) =0
Gaussian h and f = Gaussian optimal ¢ lies between.
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Self-normalized Importance Sampling 11/31

» When f or/and ¢ are unnormalized, we can esitmate the
expectation as follows

I— Sy h(@)f(2) dv fx q *(x) dx
fX f(z) dx f fT “(x) dx
where ¢*(z) = q(x)/cq
» Monte Carlo estimate
ISNIS 2ic1 h(zD)w(z) OB q(z)

Y w(z@)

» Requires a stronger condition: ¢(x) > 0 whenever f(z) > 0
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SNIS is Consistent 12/31

» Unfortunately, IENIS is biased. However, the bias is
asymptotically negligible.

ITSLNIS Z h (1 (z /C] Z f

/X W) f(@)/a(w)q" (@) da / /X F(@)fae)" () da
/ dx

[ o)1) / |t as

,

I
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SNIS Variance 13/31

v

We use delta method for the variance of SNIS, which is a
ratio estimate

Var(ISN19) ~ Ogsn _ Eq(w(2)*(h(x) — 1)%)

n n

v

We can rewrite the variance o2 .. as

2 _ f(ﬂf)2 ) — D2 de
q,sn e q(a:) (h( ) I) d
-/ (h()f (@) = If(2)?
X q(z)

> For comparison, o7 = Var,(t(X)) = [, W dx

v

No ¢ can make Uisn = 0 (unless h is constant)
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Optimial SNIS 14/31

» The optimal density for self-normalized importance
sampling has the form (Hesterberg, 1988)

q(z) o< [h(x) — I[f(x)

» Using this formula we find that

Ogsn = (Eg(h(z) — 1)))*

which is zero only for constant h(z)

» Note that the simple Monte Carlo has variance
0? =E¢((h(z) — I)?), this means SNIS can not reduce the
variance by
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Importance Sampling Diagnostics 15/31

» The importance weights in IS may be problematic, we
would like to have a diagnostic to tell us when it happens.

» Unequal weighting raises variance (Kong, 1992). For IID Y;
with variance o2 and fixed weight w; > 0

w;Y; w?o?
Var <ZZ v > = 721 Wi 02
D Wi (D2 wi)
» Write this as

2 2
o W
— where n, = (2 wi)” 12)
Ne WA
» n. is the effective sample size and n. < n if the weights
are too imbalanced.
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Importance Sampling vs Rejection Sampling 16/31

» Rejection Sampling requires bounded w(z) = f(x)/q(x)
» We also have to know a bound for the envelop distribution

» Therefore, importance sampling is generally easier to
implement

» IS and SNIS require us to keep track of weights
» Plain IS requires normalized p/q

» Rejection sampling could be sample inefficient (due to
rejections)
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Exponential Tilting 17/31

v

Consider that f(x) = p(x;0p) is from a family of
distributions py(x), 0 € ©

A simple importance sampling distribution would be
q(x) = p(z;0) for some 0 € O.

v

v

Suppose f(x) belongs to an exponential family

f(z) = g(x) exp(n(0o)" T(z) — A(6p))

» Use q(z) = g(z) exp(n(0)TT(z) — A(6)), the IS estimate is

LY = exp(A(6)~A(b0))-— Zh ) exp((n(60) —n(9))" T(«")
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Hessian and Gaussian 18/31

» Suppose that we find the mode z* of k(z) = h(z)f(x)

» We can use Taylor approximation

log(k(x)) =~ log(k(z")) — %(w — ") H (z — )

k(z) ~ k(z") exp (—;(:c YT H (2 — x*)>

which suggests g(z) = N (x*, (H*)™1)
» This requires positive definite H*

» Can be viewed as an IS version of the Laplace
approximation
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Mixture Distributions 19/31

» Suppose we have K importance distributions ¢1,...,qx, we
can combine them into a mixture of distributions with
probability ai,...,ak, Y o0 =1

K
= Z a;q;i(z)
i=1

; (@)
J

» An alternative. Suppose z(*) came from component j(1), we

could use
- Z

Remark: This alternative is faster to compute, but has

x(z))
qj(l ())

higher variance : @ Je kX
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Adaptive Importance Sampling 20/31

» Designing importance distribution directly would be
challenging. A better way would be to adapt some
candidate distribution to our task through a learning
process

» To do that, we first need to pick a family Q of proposal
distributions

» We have to choose a termination criterion, e.g., maximum
steps, total number of observations, etc.

» Most importantly, we need a way to choose qr11 € Q based
on the observed information
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Variance Minimization 21/31

» Suppose now we have a family of distributions (e.g.,
exponential family) gp(z) = q(z;0), 0 € ©

» Recall that the variance of IS estimate is

R ICOVLCo)
/ dr I,

therefore, we would like
n q(x)

= arg min M x
0= Geo /X q0(z) !

» Variance based update

1 5 () f(2))? ;
9+ — are min — - , 20 ~
beo T, ; qo(x")? 10

However, the optimization may be hard.
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Cross Entropy 22/31

» Consider an exponential family
go(x) = g(x) exp(6"x — A(6))

» Now, replace variance by KL divergence

Di1(kx|gp) = Ep, log (S;Eg)

» We seek 6 to minimize
D1 (ksllgp) = Eg, (log(k«(x)) — log(q(w;0)))

7.€., Maximize

E, (log(q(x;0)))
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Cross Entropy 23/31

» Rewrite the negative cross entropy as

B, loga(a:6))) = &, (U5 D))

_ 1 o (log(q(x;0))h(x) f(x)
- B ()

» Update # to maximize the above

Nk

1 h(x(i))f(x(i)) 4
(k+1) _ (@).
0 = argmax ;:1: (20 6) log(q(z'";6))

k
1 .
= argmax - >~ H;log(q(x1";0))
=1
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Cross Entropy 24/31

» The update often takes a simple moment matching form

00 > Hi
» Examples:
» g9 =N(0,1)
g+ _ i Hiw )
> Hi

> o = N(Gv E) ]
g1 _ 1 2o Hiz

Zi H;

» Other exponential family updates are typically closed form
functions of sample moments
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Example

Gaussian, Pr(min(x)>6)

T T T T T ]
6 -4 20 2 4 6
01 = (070)T

-5

25/31

Gaussian, Pr(max(x)>6)

Take K = 10 steps with n = 1000 each
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Example

Gaussian, Pr(min(x)>6)

1T T T T T T
-6 4 -2 0 2 4 6

-5

26/31

Gaussian, Pr(max(x)>6)

T T T T T
-6 4 -2 0 2 4 6

For min(z), #*) heads Northeast, which is OK.
For max(x),#*) heads North or East, and miss the other part
completely, leading to underestimates of I by about 1 / 2
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Control Variates 27/31

» The control variate strategy improves estimation of an
unknown integral by relating the estimate to some
correlated estimator with known integral

» A general class of unbiased estimators
Iy = Iuc — A(Jvc — J)

where E(Jyic) = J. It is easy to show Icy is unbiased, VA

» We can choose A to minimize the variance of Icy

Cov(Imc, Jmc)

A= Var(Juc)

where the related moments can be estimated using samples
from corresponding distributions
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Control Variate for Importance Sampling 28/31

» Recall that IS estimator is
1 & . .
IIS P h (%) (%)
P = 2 e utet)

» Note that h(z)w(z) and w(x) are correlated and

Ew(z) = 1, we can use the control variate
n

1 .
D= — (@)
w n;w(fv )

and the importance sampling control variate estimator is
ISV =15 \w 1)
A can be estimated from a regression of h(x)w(z) on w(x)
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Rao-Blackwellization 29/31

» Consider estimation of I = E(h(X,Y)) using a random
sample (z(M,yM), ... (2™ y™)) drawn from f

» Suppose the conditional expectation E(h(X,Y)|Y) can be
computed. Using E(h(X,Y)) = E(E(h(X,Y)[Y)), the
Rao-Blackwellized estimator can be defined as

IRB Z ]E ))
» Rao-Blackwellized estlmator gives smaller variance than
the ordinary Monte Carlo estimator

Var(IMC) = Var(E(h(X, Y)[Y) + %E(Var(h(X, Y)|Y)
> Var(IS‘B)

follows from the conditional variance formula
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Rao-Blackwellization for Rejection Sampling 30/31

» Suppose rejection sampling stops at a random time M with
acceptance of the nth draw, yielding 2™, ..., 2™ from all
M proposals yU), ..., yM)

» The ordinary Monte Carlo estimator can be expressed as

IMC Z h 1Uz<w(y( )
» Rao-Blackwellization estimator

M
1 ‘
I = =3 h(y )ty
=1

where
t:i(Y) = E(Ly, cpppyon| My, ,y<M>>
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