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Overview 2/30

» Statistical inference often depends on intractable integrals
I(f) = Jo f(x)dx

» This is especially true in Bayesian statistics, where a
posterior distribution is usually non-trivial.

» In some situations, the likelihood itself may depend on

intractable integrals so frequentist methods would also
require numerical integration

» In this lecture, we start by discussing some simple
numerical methods that can be easily used in low
dimensional problems

» Next, we will discuss several Monte Carlo strategies that
could be implemented even when the dimension is high
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Newton-Cotes Quadrature 3/30

» Consider a one-dimensional integral of the form
1(f) = J; f(x)dz

» A common strategy for approximating this integral is to
use a tractable approximating function f(z) that can be
integrated easily

» We typically constrain the approximating function to agree
with f on a grid of points: z1,29,..., 2,

f(x)
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Newton-Cotes Quadrature 4/30

» Newton-Cotes methods use equally-spaced grids
» The approximating function is a polynomial

» The integral then is approximated with a weighted sum as
follows

I= Z w; f(;)
i—1

» In its simplest case, we can use the Riemann rule by
partitioning the interval [a,b] into n subintervals of length
h = 1’77“; then

This is obtained using a piecewise constant function f that
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Newton-Cotes Quadrature 5/30

» Alternatively, the approximating function could agree with
the integrand at the right or middle point of each
subinterval

n n—1
in=h " fa+in), Dy=hS flat(i+2)h)

, ; 2
=1 =0
» In either case, the approximating function is a zero-order
polynomial
» To improve the approximation, we can use the trapzoidal

rule by using a piecewise linear function that agrees with
f(x) at both ends of subintervals

R h n—1 h
=@ +hY fG) +550)
=1
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Newton-Cotes Quadrature 6/30

» We would further improve the approximation by using
higher order polynomials

» Simpson’s rule uses a quadratic approximation over each
subinterval

/%Hl f(x)d:li ~ y <f($z) + 4f(%) + f(CCH—l))

» In general, we can use any polynomial of degree k
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Gaussian Quadrature 7/30

» Newton-Cotes rules require equally spaced grids

» With a suitably flexible choice of n + 1 nodes,
o, X1, - - -, Ty, and corresponding weights, Ag, A1, ..., Ap,

> Aif(x)
i=0

gives the exact integration for all polynomials with degree
less than or equal to 2n + 1

» This is called Gaussian quadrature, which is especially
useful for the following type of integrals ff f(@)w(z)dr
Where w(w) is a nonnegative function and
f x)dr < oo for all k >0
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Orthogonal Functions 8/30

» In general, for squared integrable functions,

/f x)dx < oo

denoted as f € Efy (b W€ define the inner product as

b
(. Gwjas] = / F(2)g(@)w(x)dz

where f,g € Ei} (]

» We said two functions to be orthogonal if (f, g)w a4 = 0. If
f and g are also scaled so that (f, f>w’[a7b] =1,
<979>w,[a,b} =1, then f and g are orthonormal
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Orthogonal Polynomials 9/30

» We can define a sequence of orthogonal polynomials by a
recursive rule

Tiet1(2) = (kg1 + Brr12) Tie(2) — Y1 Th—1(2)
» Example: Chebyshev polynomials (first kind).

T()((L')
Thy1(x)

1, Ti(z)==
22T, (z) — Ty—1(x)

» T, (z) are orthogonal with respect to w(z) = \/1177 and
1

[_17 ]
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Orthogonal Polynomials 10/30

» In general orthogonal polynomials are note unique since
(f,g) = 0 implies (cf,dg) =0
» To make the orthogonal polynomial unique, we can use the
following standarizations
» make the polynomial orthonormal: (f, f) =0
» set the leading coefficient of T} (x) to 1

2

» Orthogonal polynomials form a basis for £ [

o] SO ANy
function in this space can be written as

f(z) = ZanTn(x)
n=0

where a,, = %
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Gaussian Quadrature 11/30

» Let {T,,(z)}72, be a sequence of orthogonal polynomials
with respect to w on [a, b].

» Denote the n + 1 roots of T}, 11(z) by
a<zrog<a1<...<xp <b
» We can find weights Ay, As, ..., Apy1 such that
b n
/ P(x)w(x)dr =Y AiP(z;), Vdeg(P)<2n+1
a i=0

» To do that, we first show: there exists weights
Ay, Ag, ..., Aptq such that

/b P(z)w(z)dzr = zn:AiP(:c,-), Vdeg(P)<n+1

=0 Gy ez ) S
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Gaussian Quadrature 12/30

» Sketch of proof. We only need to satisfy
b n
/ 2w (x)dr = ZAiJ:f, Vk=0,1,...,n
a i=0

This leads to a system of linear equations

1 1 1 Ag Iy
To T Tn| | A1 I
zh x| |An In

where [}, = f; x*w(x)dz. The determinant of the
coefficient matrix is a Vandermonde determinant, and is
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Gaussian Quadrature 13/30

» Now we show that the above Gaussian Quadrature can be
exact for polynomials of degree < 2n + 1

» Let P(z) be a polynomial with deg(P) < 2n + 1, there
exist polynomials g(x) and r(z) such that

P(z) = g(@)Tn1(x) + ()

with deg(g) < n,deg(r) < n, Therefore,
b b
/ P(zx)w(z)dr = / r(x)w(z)dr = ZAZT(%)

i=0
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Monte Carlo Method 14/30

» We now discuss the Monte Carlo method mainly in the
context of statistical inference

» As before, suppose we are interested in estimating
I(h) = [?h(x)dz

» If we can draw iid samples, (1), 23, .. 2 uniformly
from (a,b), we can approximate the integral as

. 1 & .
In=0b-—a)=> hz®
(-0 3t
» Note that we can think about the integral as

b
(b—a)/ h(x)-biadx

is the density of Uniform(a,b)

1

where y—
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Monte Carlo Method 15/30

» In general we are interested in integrals of the form
Sl x)dx, where f(x) is a probability density function

> Analogous to the above argument, we can approximate this
integral (or expectation) by drawing iid samples
M 2@ 2 from the density f(z) and then

1 n
== (4)
- Z h(x
=1
» Based on the law of large numbers, we know that
lim I, %1
n—oo
» And based on the central limit theorem

VoL, —I) = N(0,0%), o°= Var(h(X))
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Example: estimating 16/30

dx

» Let h(x) = 1p(p,1)(2), then 7 = 4f[_171]2 h(x) -

» Monte Carlo estimate of 7

e L

I g ;
I, = 5213(0,1)(95( ))
i=1

2% ~ Uniform([—1,1]?)
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Example: estimating 17/30

Monte Carlo estimate of 7 (with 90% confidence interval)

Estimate of

2.0

0 500 1000 1500 2000

Sample size
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Monte Carlo vs Quadrature 18/30

v

Convergence rate for Monte Carlo: O(n~1/2)

9
NG

often slower than quadrature methods (O(n~2) or better)

p(!fn—flg )21—6, Vs

However, the convergence rate of Monte Carlo does not
depend on dimensionality

On the other hand, quadrature methods are difficult to
extend to multidimensional problems, because of the curse
of dimensionality. The actual convergence rate becomes
O(n~*/4), for any order k method in dimension d

This makes Monte Carlo strategy very attractive for high
dimensional problems
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Exact Simulation 19/30

» Monte Carlo methods require sampling a set of points
chosen randomly from a probability distribution

» For simple distribution f(z) whose inverse cumulative
distribution functions (CDF) exists, we can sampling x
from f as follows

= F'(u), wu~ Uniform(0,1)

where F~! is the inverse CDF of f

» Proof.

pla <z <b)=p(F(a) <u<F(b) =F()— F(a)
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Examples 20/30

» Exponential distribution: f(z) = 0exp(—6x). The CDF is
F(a) = / 0 exp(—0z) =1 — exp(—fa)
0

therefore, z = F~*(u) = —5log(1 — u) ~ f(z). Since 1 —u
also follows the uniform distribution, we often use

x = —4 log(u) instead
2
» Normal distribution: f(z) = \/%7 exp(—%). Box-Muller
Transform
X = +/—2logUj cos 2nUs

Y =+/—2log U sin 27U,

where Uy ~ Uniform(0,1), Us ~ Uniform(0,1)
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Intuition for Box-Muller Transform 21/30

» Assume Z = (X,Y) follows the standard bivariate normal
distribution. Consider the following transform

X =Rcos®, Y =Rsin®
» From symmetry, clearly © follows the uniform distribution

on the interval (0,27) and is independent of R

» What distribution does R follow? Let’s take a look at its
CDF

p(R<r)=p(X?>+Y? <r?)
T 2

L[ exp (= )dt/%de 1 — exp(
= — expl—— = — exX
27T 0 P 2 0 P

7“2

5)

Therefore, using the inverse CDF rule, R = /—2log U,

ANEIE T

PEKING UNIVERSITY




Rejection Sampling 22/30

» If it is difficult or computationally intensive to sample
directly from f(z) (as described above), we need to use
other strategies

» Although it is difficult to sample from f(x), suppose that
we can evaluate the density at any given point up to a
constant f(z) = f*(x)/Z, where Z could be unknown
(remember that this make Bayesian inference convenient
since we usually know the posterior distribution only up to
a constant)

» Furthermore, assume that we can easily sample from
another distribution with the density g(z) = ¢*(x)/Q,
where () is also a constant
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Rejection Sampling 23/30

» Now we choose the constants ¢ such that cg*(x) becomes
the envelope (blanket) function for f*(z):

cg*(z) > f*(x), Yz

» Then, we can use a strategy known as rejection sampling in
order to sample from f(z) indirectly

» The rejection sampling method works as follows

1.
2.

3.

draw a sample = from g(x)
generate u ~ Uniform(0, 1)

if u < cfg Z((g;)) we accept = as the new sample, otherwise,
reject x (discard it)

return to step 1
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Rejection Sampling 24/30

Rejection sampling generates samples from the target density,
no approximation involved

p(XT <y) =p(X9 <y|U <

=p(X9 <y, U<

f*(2)
B fi/oo focg ) dug(z)dz
- f*(z)
J250 o7 dug(2)dz

= /?; f(2)dz
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Example 25/30

» Assume that it is difficult to sample from the Beta(3, 10)
distribution (this is not the case of course)

» We use the Uniform(0, 1) distribution with
g(x) =1, Yz € [0, 1], which has the envelop proporty:
4g(x) > f(x), Vo € [0,1]. The following graph shows the
result after 3000 iterations
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Advanced Rejection Sampling 26/30

Rejection sampling becomes challenging as the dimension of x
increases. A good rejection sampling algorithm must have three
properties

» It should be easy to construct envelops that exceed the
target everywhere

» The envelop distributions should be easy to sample

» It should have a low rejection rate
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Squeezed Rejection Sampling 27/30

» When evaluating f* is computationally expensive, we can
improve the simulation speed of rejection sampling via

squeezed rejection sampling

» Squeezed rejection sampling reduces the evaluation of f via
a nonnegative squeezing function s that does not exceed f*
anywhere on the support of f: s(z) < f*(x),Vx

» The algorithm proceeds as follows:

1.
2.

3.

. otherwise, determine whether u <

draw a sample z from g(z)
generate u ~ Uniform(0, 1)

ifu< czgi), we accept x as the new sample, return to step

(@)
cg*(x) . :
holds, we accept x as the new sample, otherwise, we reject
it.

return to step 1

. If this inequality
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Squeezed Rejection Sampling 28,30

e(y) 4

Keep First  KeepLater

Remark: The proportion of iterations in which evaluation of f
is avoided is [ s(z)dz/ [e(z




Adaptive Rejection Sampling 29/30

» For a continuous, differentiable, log-concave density on a
connected region of support, we can adapt the envelope
construction (Gilks and Wild, 1992)

» Let T = {x1,...,x} be the set of k starting points.

» We first sample z* from the piecewise linear upper envelop
e(z), formed by the tangents to the log-likelihood ¢ at each
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Adaptive Rejection Sampling 29/30

» To sample from the upper envelop, we need to transform
from log space by exponentiating and using properties of
the exponential distribution

» We then either accept or reject z* as in squeeze rejection
sampling, with s(x) being the piecewise linear lower bound
formed from the chords between adjacent points in T’

» Add z* to T whenever the squeezing test fails. .
AL TR
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