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Least Square Regression Models 2/38

» Consider the following least square problem
1
minimize L(B) = §HY - X3|?

» Note that this is a quadratic problem, which can be solved
by setting the gradient to zero

VaL(B) = =X"(Y = XB3) =0
B=(XTxX)"'xTy

given that the Hessian is positive definite:
VAL(B) = XTX =0

which is true iff X has independent columns.
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Regularized Regression Models 3/38

» In practice, we would like to solve the least square
problems with some constraints on the parameters to
control the complexity of the resulting model

» One common approach is to use Bridge regression models
(Frank and Friedman, 1993)

1
minimize L(8) = §||Y — XB|?

P
subject to Z 167 < s
j=1

» Two important special cases are ridge regression (Hoerl and
Kennard, 1970) v = 2 and Lasso (Tibshirani, 1996) v = 1

ez x Y

@

PEKING UNIVERSITY




General Optimization Problems 4/38

» In general, optimization problems take the following form:

minimize fo(x)
subject to  fi(z) <0, i=1,...,m
h]([L‘) 07 j:17)p

» We are mostly interested in convex optimization
problems, where the objective function fy(x), the
inequality constraints f;(x) and the equality constraints
hj(x) are all convex functions.
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Convex Sets 5/38

> A set C'is convex if the line segment between any two
points in C also lies in C, i.e.,

Ox1+(1—0)xe € C, Va2 €C,0<6<1

Convex Set Non-convex Set

» If C'is a convex set in R™ and f(z) : R” — R" is an affine
function, then f(C), i.e., the image of C' is also a convex

set. - .
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Convex Functions 6/38

» A function f:R"™ — R is conver if its domain Dy is a
convex set, and Vo,y € Dy and 0 < 0 <1

f0z+ (1 —0)y) <Of(x)+ (1—0)f(y)

» For example, many norms are convex functions

lzllp = O les)'?, p>1

ez x Y
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Convex Functions 7/38

Jw
fl2) + Vi) (y—2)

» First order conditions. Suppose f is differentiable, then f
is convex iff Dy is convex and

fy) = f(z) + Vf(2)"(y —2), Va,ye Dy
Corollary: For convex function f,
FEX)) <E(f(X))

» Second order conditions. V?f(x) = 0, Yz € Dy
e £ X F
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Basic Terminology and Notations 8/38

v

Optimial value p* = inf{ fo(z)| fi(x ) <0, hj(z) =0}

v

x is feasible if v € D = ﬂ Dy N ﬂ Dy, and satisfies the

1=0
constraints.

v

A feasible z* is optimal if f(x*) = p*

v

Optimality criterion. Assuming fy is convex and
differentiable, = is optimal iff

Vio(x)'(y—x) >0, Vfeasibley
Remark: for unconstrained problems, x is optimial iff

Vf()(l’) =
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Basic Terminology and Notations 9/38

Local Optimality
x is locally optimal if for a given R > 0, it is optimal for

minimize fy(z)

In convex optimization problems, any locally optimal point is
also globally optimal.
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The Lagrangian 10/38

» Consider a general optimization problem

minimize fo(x)
subject to  fi(z) <0, i=1,...,m

» To take the constraints into account, we augment the
objective function with a weighted sum of the constraints
and define the Lagrangian L : R” x R™ x R? — R as

P
L(z,\,v) —1—2/\ fi(zx —|—Zyjh](a:)
j=1

where A and v are dual variables or Lagrangian multipliers.
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The Lagrangian Dual Function 11/38

v

We define the Lagrangian dual function as follows

g\ v) = a}g]gL(:n,/\, V)

v

The dual function is the pointwise infimum of a family of
affine functions of (\,v), it is concave, even when the
original problem is not convex.

If A > 0, for each feasible point &

v

g()\,y) = ;2%L(.’IJ,A,V) < L(i’,)\,l/) < fO(i)

v

Therefore, g(\,v) is a lower bound for the optimial value
g\ v)<p*, VA>0,veR?

ez x Y
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The Lagrangian Dual Problem 12/38

» Finding the best lower bound leads to the Lagrangian dual
problem

maximize g(\,v), subjectto A>0

» The above problem is a convex optimization problem.

» We denote the optimal value as d*, and call the
corresponding solution (A*,v*) the dual optimal

» In contrast, the original problem is called the primal
problem, whose solution x* is called primal optimal

ez x Y

@

PEKING UNIVERSITY




Weak vs. Strong Duality 13/38

v

d* is the best lower bound for p* that can be obtained from
the Lagrangian dual function.

Weak Duality

v

v

The difference p* — d* is called the optimal dual gap

v

Strong Duality
d* — p*

ez x Y
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Slater’s Condition 14/38

» Strong duality doesn’t hold in general, but if the primal is
convex, it usually holds under some conditions called
constraint qualifications

» A simple and well-known constraint qualification is Slater’s
condition: there exist an x in the relative interior of D such
that

filx) <0, i=1,...,m, Ax=0»

ez x Y
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Complementary Slackness 15/38

» Consider primal optmial z* and dual optimal (\*, ")

» If strong duality holds
fo(z™) = g(A\*,v7)

p
mf( —l-z)\ fi(w +Zv;hi($)>
=1
< fO Z)‘ fz +Z’U;khz($
i=1

< fo(z™).

» Therefore, these are all equalities
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Complementary Slackness 16/38

» Important conclusions:
» 2* minimize L(z, \*,v*)
> )\ffz(I*)ZO, i=1,...,m
» The latter is called complementary slackness, which
indicates

A>0 = fi(x")=0
filz*y <0 = X =0
» When the dual problem is easier to solve, we can find

(A*,v*) and then minimize L(x, \*,v*). If the resulting
solution is primal feasible, then it is primal optimal.
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Entropy Maximization 17/38

» Consider the entropy maximization problem

n

minimize fo(x) = E T log x;
1=

subject to —xz; <0, 1=1,...,n

3 e

» Lagrangian

L(z,\v) Z:rzlog:m Z)\acl—l—Vsz—l

» We minimize L(z, A, 1) by setting g—’; to zero

10g:%i+1—)\i+1/:0:>:%i:exp()\i—u—l)
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Entropy Maximization 18/38

» The dual function is
n
g\ v) = —Zexp()\i —v—1)—v
i=1
» Dual:

maximize g(\,v) = —exp(—v —1) Zexp()\i) —v, A>0
i=1

» We find the dual optimal

Af=0,i=0,...,n, v'=-1+logn

ez x Y
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Entropy Maximization 19/38

» We now minimize L(z, \*,v*)
logz; +1 -\ +v"=0 = af=-—

» Therefore, the discrete probability distribution that has
maximum entropy is the uniform distribution

Exercise

Show that X ~ N(u,0?) is the maximum entropy distribution
such that EX = p and EX? = 12 + o2, How about fixing the
first kK moments at EX' =m,;, i =1,...,k?
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Karush-Kun-Tucker (KKT) conditions 20/38

» Suppose the functions fo, f1,..., fm, h1,..., hy are all
differentiable; * and (A\*,v*) are primal and dual optimal
points with zero duality gap

» Since z* minimize L(x, \*,v*), the gradient vanishes at z*

V fo(z +ZA*WZ +Zy Vh,(

» Additionally

fz(x*) —_ 07 Z: Y Y
h]({L‘*) =0, g=1,...,p
Al >0, i=1,....,m
A fil®) = 0, i=1,....m

» These are called Karush-Kuhn-Tucker (KKT) condition@
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KKT conditions for convex problems 21/38

» When the primal problem is convex, the KKT conditions
are also sufficient for the points to be primal and dual
optimal with zero duality gap.

» Let 7, 5\, U be any points that satisfy the KKT conditions, &
is primal feasible and minimizes L(Z, \, 7)

g\, D) = L(&,\, D)

= fo(Z)

» Therefore, for convex optimization problems with
differentiable functions that satisfy Slater’s condition, the

ez x Y
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Example 22/38

» Consider the following problem:
1
minimize ixTP.CU + qTx +r, P>0
subject to Ax =b
» KKT conditions:

Pr*+q+ATv =0
Az =b

» To find z*,v*, we can solve the above system of linear
equations

ez x Y
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Descent Methods 23/38

» We now focus on numerical solutions for unconstrained
optimization problems

minimize f(x)

where f : R™ — R is twice differentiable

> Descent method. We can set up a sequence
gD = 2(B) L AR (k) 5
such that f(z**t)) < f(z®), k=0,1,...,

» Az is called the search direction; t*) is called the step
size or learning rate in machine learning.
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Gradient Descent 24/38

A reasonable choice for the search direction is the negative
gradient, which leads to gradient descent methods

g+l — pk) _ t(k)Vf(a;(k)), k=0,1,...

> step size t() can be constant or
determined by line search

» every iteration is cheap, does not
require second derivatives

ez x Y
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Steepest Descent Direction 25/38

» First-order Taylor expansion
fla+v) = f(a) + Vfz)Tv

» v is a descent direction iff V f(z)Tv < 0

» Negative gradient is the steepest descent direction with
respect to the Euclidean norm.

H_Vzmarg?in{vﬂx)% | vl =1}
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Newton’s Method 26/38

» Consider the second-order Taylor expansion of f at z,

flz+v) = f(z) + Vf(a:)Tv + %UTVQf(x)v
£ f(x)

» We find the optimal direction v by minimizing f () with
respect to v
v = [V (@) IV f(2)
» If V2f(z) = 0 (e.g., convex functions)
V@) v ==V @) [V ()] 'V f(z) <0
when Vf(z) #0
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Newton’s Method 27/38

» The search direction in Newton’s method can also be
viewed as a steepest descent direction, but with a different
metric

» In general, given a positive definite matrix P, we can define
a quadratic norm

lollp = (v7 Pu)'/?

» Similarly, we can show that —P~!V f(z) is the steepest
descent direction w.r.t. the quadratic norm || - ||p

minimize Vf(z)Tv, subject to ||v]p =1
» When P is the Hessian V2 f(z), we get Newton’s method

ez x Y
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Quasi-Newton Method 28/38

» Computing the Hessian and its inverse could be expensive,
we can approximate it with another positive definite matrix
M > 0 which is easier to use

» Update M) to learn about the curvature of f in the
search direction and maintain a secant condition

vf(x(k+1)) o Vf(ib(k)) _ M(k—‘rl)(x(k-i-l) o :U(k))
» Rank-one update
AzF) = pk+1) _ (k)

V=Vt - i)

o) — y(F) _ g A5 )
(k)

)

(k)
MEHD — ppk L
' T
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Quasi-Newton Method 29/38

» Easy to compute the inverse of matrices for low rank
updates by Sherman-Morrison-Woodbury formula

(A+Ucv)y t=A"l—AlUCct+vatlu)lvat

where A € R™" U € R**¢ C € R™*4 V ¢ R

» Another popular rank-two update method: the BFGS
(Broyden-Fletcher-Goldfarb-Shanno) method

y® ()T ) AR (1) AT

(1) _ ph) _
M M T AL ™ (Aa®)T M) Az

ANEIE T
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Maximum Likelihood Estimation 30/38

» In the frequentist framework, we typically perform
statistical inference by maximizing the log-likelihood L(6),
or equivalently minimizing negative log-likelihood, which is
also known as the energy function

» Some notations we introduced before
» Score function: s(6) = VyL(9)

» Observed Fisher information: J(0) = —V2L(0)
» Fisher information: Z(6) = E(—V3L(6))

» Newton’s method for MLE:

91 = 9k) 1 (J(0%)))~1s(0™*))
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Fisher Scoring Algorithm 31/38

» If we use the Fisher information instead of the observed
information, the resulting method is called the Fisher
scoring algorithm

o1 = 9k) 1 (2(9*))) 1 5(9R))

» It seems that the Fisher scoring algorithm is less sensitive
to the initial guess. On the other hand, the Newton’s
method tends to converge faster

» For exponential family models with natural parameters and
generalized linear models (GLMs) with canonical links, the
two methods are identical

ez x Y
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Generalized Linear Model 32/38

» A generalized linear model (GLM) assumes a set of
independent random variables Y7, ...,Y,, that follow
exponential family distributions of the same form

p(vil6:) = exp (y:b(0;) + c(6;) + d(y:))

» The parameters 6; are typically not of direct interest.
Instead, we usually assume that the expectation of Y; can
be related to a vector of parameters § via a transformation
(link function)

E(Y;) = pi,  g(w) =] B
where x; is the observed covariates for y;.

ez x Y
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Generalized Linear Model 33/38

» Using the link function, we can now write the score
function in terms of 3

» Let g(u;) = n;, we can show that for jth parameter

n

e Wi — i)y O
S(BJ) - Zz; VaI‘(Y;) : 3771

where Ou;/0n; depends on the link function we choose

» It is also easy to show that the Fisher information matrix is

Z(Bj, Br) = E(S(ﬁj) 5(Bk))

_Z 'I'L]xzk O 2
Var(Y;) \ On;
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Iterative Reweighted Least Squares 34/38

» Note that the Fisher information matrix can be written as
7(8) = XTWx

where W is the n x n diagonal matrix with elements

o1 opi\ >
Wi = Var(Y;) \ On;

» Rewriting Fisher scoring algorithm for updating S5 as

Z(8M)pE = ()™M + 5(51)

ANEIE T
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Iterative Reweighted Least Squares 35/38

» After few simple steps, we have

XTwk x glk+1) — xTyy k) 7(k)

where

» Therefore, we can find the next estimate as follows

» The above estimate is similar to the weighted least square
estimate, except that the weights W and the response
variable Z change from one iteration to another

» We iteratively estimate f until the algorithm converges

ANEIE T
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Example: Logistic Regression 36/38

v

Recall that the Log-likelihood for logistic regression is

L(Y|p) = Zyz log

+ IOg(l - p’L)

v

The natural parameters are 6; = log 2. We use
g(z) = log % as the link function, 6; = g(pl-) =273

» We now write the log-likelihood as follows

n
L(B) =YTXB = log(1+ exp(z] B))
i=1
The score function is

v

1

s(8)=X"(Y —p), p= m
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Example: Logistic Regression 37/38

» The observed Fisher information matrix is
J(B) = XxTwx
where W is a diagonal matrix with elements
wii = pi(1 —p;)

» Note that J(3) does not depend on Y, meaning that it is
also the Fisher information matrix Z(8) = J(3)

» Newton’s update

B+ — gk) 4 (XTW(k)X) -1 (XT<Y _p(k))>
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