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General Information 2/31

I Class times:
I Monday 6:40-8:30pm, odd Wednesday 8:00-9:50am
I Classroom Building No.3, Room 504

I Tentative office hours:
I 1279 Science Building No.1
I Thursday 3:00-5:00pm or by appointment

I Website:
https://zcrabbit.github.io/courses/mcs-f19.html

I Join us at Piazza:
https://piazza.com/peking_university/fall2019/00113730

https://zcrabbit.github.io/courses/mcs-f19.html
https://piazza.com/peking_university/fall2019/00113730


Computational Statistics/Statistical Computing 3/31

I A branch of mathematical sciences focusing on efficient
numerical methods for statistically formulated problems

I The focus lies on computer intensive statistical methods
and efficient modern statistical models.

I Developing rapidly, leading to a broader concept of
computing that combines the theories and techniques from
many fields within the context of statistics, mathematics
and computer sciences.



Goals 4/31

I Become familiar with a variety of modern computational
statistical techniques and knows more about the role of
computation as a tool of discovery

I Develop a deeper understanding of the mathematical
theory of computational statistical approaches and
statistical modeling.

I Understand what makes a good model for data.

I Be able to analyze datasets using a modern programming
language (e.g., python).



Tentative Topics 5/31

I Optimization Methods
I Gradient Methods
I Expectation Maximization

I Approximate Bayesian Inference Methods
I Markov chain Monte Carlo
I Variational Inference
I Scalable Approaches

I Applications in Machine Learning
I Variational Autoencoder
I Generative Adversarial Networks
I Flow-based Generative Models



Prerequisites 6/31

Familiar with at least one programming language (with python
preferred!).

I All class assignments will be in python (and use numpy).

I You can find a good Python tutorial at

http://www.scipy-lectures.org/

You may find a shorter python+numpy tutorial useful at

http://cs231n.github.io/python-numpy-tutorial/

Familiar with the following subjects

I Probability and Statistical Inference

I Stochastic Processes

http://www.scipy-lectures.org/
http://cs231n.github.io/python-numpy-tutorial/


Grading Policy 7/31

I 4 Problem Sets: 4× 15% = 60%

I Final Course Project: 40%
I 2-3 people (recommended) for each team
I Teams should be formed by the end of week 4
I Midterm proposal: 5%
I Final write-up: 35%
I Bonus point for exceptional oral presentation

I Late policy
I 7 free late days, use them in your ways
I Afterward, 25% off per late day
I Not accepted after 3 late days per PS
I Does not apply to Final Course Project

I Collaboration policy
I Finish your work independently, verbal discussion allowed



Final Project 8/31

I Structure your project exploration around a general
problem type, algorithm, or data set, but should explore
around your problem, testing thoroughly or comparing to
alternatives.

I Submit a project proposal that briefly describe your teams’
project concept and goals in one page by 11/04.

I There will be in class project presentation at the end of the
term. Not presenting your projects will be taken as
voluntarily giving up the opportunity for the final
write-ups.

I Turn in a write-up (< 10 pages) describing your project
and its outcomes, similar to a research-level publication.



Today’s Agenda 9/31

I A brief overview of statistical approaches

I Basic concepts in statistical computing



Statistical Pipeline 10/31
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Statistical Models 11/31

“All models are wrong, but some are useful.”
George E. P. Box

Models are used to describe the data generating process, hence
prescribe the probabilities of the observed data D

p(D|θ)

also known as the likelihood.



Examples: Linear Models 12/31

Data: D = {(xi, yi)}ni=1

Model:

Y = Xθ + ε, ε ∼ N (0, σ2In)

⇒ Y ∼ N (Xθ, σ2In)

p(Y |X, θ) = (2πσ2)−n/2 exp

(
−‖Y −Xθ‖

2
2

2σ2

)



Examples: Logistic Regression 13/31

Data:

D = {(xi, yi)}ni=1, yi ∈ {0, 1}

Model:

Y ∼ Bernoulli(p)

p =
1

1 + exp(−Xθ)

p(Y |X, θ) =

n∏
i=1

pyii (1− pi)1−yi



Examples: Gaussian Mixture Model 14/31

Data: D = {yi}ni=1, yi ∈ Rd

Model:

y|Z = z ∼ N (µz, σ
2
zId)

Z ∼ Categorical(α)

p(Y |µ, σ, α) =

n∏
i=1

K∑
k=1

αk (2πσ2k)
(−d/2) exp

(
−‖yi − µk‖

2
2

2σ2k

)



Examples: Phylogenetic Model 15/31

Data: DNA sequences D = {yi}ni=1

p(Y |τ, q) =

n∏
i=1

∑
ai

η(aiρ)
∏

(u,v)∈E(τ)

Paiuaiv(quv)

where ai agree with yi at the tips
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Examples: Latent Dirichlet Allocation 16/31

Data: a corpus D = {wi}Mi=1

Model: for each document w in D,

I choose a mixture of topics θ ∼ Dir(α)

I for each of the N words wn,

zn ∼ Multinomial(θ), wn|zn, β ∼ p(wn|zn, β)

p(D|α, β) =

M∏
d=1

∫
p(θd|α)

Nd∏
n=1

∑
zdn

p(zdn|θd)p(wdn|zdn, β) dθd



Exponential Family 17/31

Many well-known distributions take the following form

p(y|θ) = h(y) exp (φ(θ) · T (y)−A(θ))

I φ(θ): natural/canonical parameters

I T (y): sufficient statistics

I A(θ): log-partition function

A(θ) = log

(∫
y
h(y) exp(φ(θ) · T (y)) dy

)



Score Function 18/31

Y = {yi}ni=1, yi ∼ p(yi|θ), the Log-likelihood

L(θ;Y ) =

n∑
i=1

log p(yi|θ)

The gradient of L with respect to θ is called the score

s(θ) =
∂L

∂θ

The expected value of the score is zero

E(s) = n

∫
∂ log p(y|θ)

∂θ
p(y|θ) dy = n

∂

∂θ

∫
p(y|θ) dy = 0



Fisher Information 19/31

Fisher information is the variance of the score.

I(θ) = E(ssT )

Under mild assumptions (e.g., exponential families),

I(θ) = −E
(

∂2L

∂θ∂θT

)
Intuitively, Fisher information is a measure of the curvature of
the Log-likelihood function. Therefore, it reflects the sensitivity
of model about the parameter at its current value.



KL Divergence 20/31

I Kullback-Leibler divergence or KL divergence is a measure
of statistical distance between two distributions p(x) and
q(x)

DKL(q‖p) =

∫
q(x) log

q(x)

p(x)
dx

I KL divergence is non-negative

DKL(q‖p) = −
∫
q(x) log

p(x)

q(x)
≥ − log

∫
p(x) dx = 0

I Consider a family of distributions p(x|θ), Fisher
information is Hessian of KL-divergence between two
distributions p(x|θ) and p(x|θ′) with respect to θ′ at θ′ = θ

∇2
θ′DKL

(
p(x|θ)‖p(x|θ′)

)
|θ′=θ = I(θ)



Maximum Likelihood Estimate 21/31

θ̂MLE = arg max
θ

L(θ) ≈ arg max
θ

Ey∼pdata log
p(y|θ)
pdata(y)

= arg min
θ

DKL(pdata(y)||p(y|θ))

I Consistency. Under weak regularity condition, θ̂MLE is
consistent: θ̂MLE → θ0 in probability as n→∞, where θ0
is the “true” parameter

I Asymptotical Normality.

√
n(θ̂MLE − θ0)→ N (0, I−1(θ0))

See Rao 1973 for more details.



Example: Poisson Distribution 22/31

L(θ; y) = y log θ − θ − log y!

s(θ) =
y

θ
− 1, I(θ) =

1

θ

θ̂MLE = arg max
θ

n∑
i=1

yi log θ − nθ =

∑n
i=1 yi
n

By the Law of large numbers

θ̂MLE
p−→ θ0

By central limit theorem

√
n(θ̂MLE − θ0)

d−→ N (0, θ0)



Bayesian Inference 23/31

In Bayesian statistics,
besides specifying a
model p(y|θ) for the
observed data, we also
specify our prior p(θ) for
the model parameters.

Bayes rule for inverse probability

p(θ|D) =
p(D|θ) · p(θ)

p(D)
∝ p(D|θ) · p(θ)

known as the posterior.



Bayesian Approach for Machine Learning 24/31

I uncertainty quantification, provides more useful
information

I reducing overfitting. Regularization ⇐⇒ Prior.

Prediction

p(x|D) =

∫
p(x|θ,D)p(θ|D)dθ

Model Comparison

p(m|D) =
p(D|m)p(m)

p(D)

p(D|m) =

∫
p(D|θ,m)p(θ|m) dθ



Choice of Priors 25/31

I Subjective Priors. Priors should reflect our beliefs as
well as possible. They are subjective, but not arbitrary.

I Hierarchical Priors. Priors of multiple levels.

p(θ) =

∫
p(θ|α)p(α) dα

=

∫
p(θ|α) dα

∫
p(α|β)p(β) dβ

I Conjugate Priors. Priors that ease computation, often
used to facilitate the development of inference and
parameter estimation algorithms.



Conjugate Priors 26/31

I Conjugacy: prior p(θ) and posterior p(θ|Y ) belong to the
same family of distribution

I Exponential family

p(Y |θ) ∝ exp

(
φ(θ) ·

∑
i

T (yi)− nA(θ)

)

I Conjugate prior

p(θ) ∝ exp (φ(θ) · ν − ηA(θ))

I Posterior

p(θ|Y ) ∝ exp

(
φ(θ) · (ν +

∑
i

T (yi))− (n+ η)A(θ)

)



Example: Multinomial Distribution 27/31

Data: D = {xi}mi=1. For each x in D

p(x|θ) ∝ exp

(
K∑
k=1

xk log θk

)

Use Dir(α) as the conjugate prior

p(θ) ∝ exp

(
K∑
k=1

(αk − 1) log θk

)

p(θ|D) ∝ exp

(
K∑
k=1

(
αk − 1 +

M∑
i=1

xik

)
log θk

)



Markov Chains 28/31

Consider random variables {Xt}, t = 0, 1, . . . with state space S

Markov Property

p(Xn+1 = x|X0 = x0, . . . , Xn = xn) = p(Xn+1 = x|Xn = xn)

Transition Probability

Pnij = p(Xn+1 = j|Xn = i), i, j ∈ S.

A Markov chain is called time homogeneous if Pnij = Pij , ∀n.

A Markov chain is governed by its transition probability matrix.



Markov Chains 29/31

I Stationary Distribution.

πTP = πT .

I Ergodic Theorem. If the Markov chain is irreducible and
aperiodic, with stationary distribution π, then

Xn
d−→ π

and for any function h

1

n

n∑
t=1

h(Xt)→ Eπh(X), n→∞

given Eπ|h(X)| exists.



What’s Next? 30/31

I In general, finding MLE and posterior analytically is
difficult. We almost always have to resort to computational
methods.

I In this course, we’ll discuss a variety of computational
techniques for numerical optimization and integration,
approximate Bayesian inference methods, with applications
in statistical machine learning, computational biology and
other related field.

Signup in Piazza:

https://piazza.com/peking_university/fall2019/00113730

https://piazza.com/peking_university/fall2019/00113730
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