Modern Computational Statistics
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School of Mathematical Sciences, Peking University
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General Information 2/31

» Class times:
» Monday 6:40-8:30pm, odd Wednesday 8:00-9:50am
» Classroom Building No.3, Room 504
» Tentative office hours:
» 1279 Science Building No.1
» Thursday 3:00-5:00pm or by appointment
> Website:
https://zcrabbit.github.io/courses/mcs-£19.html
» Join us at Piazza:

https://piazza.com/peking_university/fall2019/00113730
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Computational Statistics/Statistical Computing  3/31

» A branch of mathematical sciences focusing on efficient
numerical methods for statistically formulated problems

» The focus lies on computer intensive statistical methods
and efficient modern statistical models.

» Developing rapidly, leading to a broader concept of
computing that combines the theories and techniques from
many fields within the context of statistics, mathematics
and computer sciences.
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Goals 4/31

» Become familiar with a variety of modern computational
statistical techniques and knows more about the role of
computation as a tool of discovery

» Develop a deeper understanding of the mathematical
theory of computational statistical approaches and
statistical modeling.

» Understand what makes a good model for data.

» Be able to analyze datasets using a modern programming
language (e.g., python).
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Tentative Topics 5/31

» Optimization Methods
» Gradient Methods
» Expectation Maximization
» Approximate Bayesian Inference Methods
» Markov chain Monte Carlo
» Variational Inference
» Scalable Approaches
» Applications in Machine Learning

» Variational Autoencoder
» Generative Adversarial Networks
» Flow-based Generative Models
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Prerequisites 6/31

Familiar with at least one programming language (with python
preferred!).

» All class assignments will be in python (and use numpy).
» You can find a good Python tutorial at
http://www.scipy-lectures.org/
You may find a shorter python-+numpy tutorial useful at

http://cs231n.github.io/python-numpy-tutorial/

Familiar with the following subjects
» Probability and Statistical Inference

» Stochastic Processes
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Grading Policy 7/31

4 Problem Sets:

Final Course Project:

2-3 people (recommended) for each team

» Teams should be formed by the end of week 4
» Midterm proposal:

» Final write-up:

» Bonus point for exceptional oral presentation

v

v

v

v

Late policy

v

7 free late days, use them in your ways
» Afterward, 25% off per late day

» Not accepted after 3 late days per PS

» Does not apply to Final Course Project

v

Collaboration policy
» Finish your work independently, verbal discussion allowed
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Final Project 8/31

» Structure your project exploration around a general
problem type, algorithm, or data set, but should explore
around your problem, testing thoroughly or comparing to
alternatives.

» Submit a project proposal that briefly describe your teams’
project concept and goals in one page by 11/04.

» There will be in class project presentation at the end of the
term. Not presenting your projects will be taken as
voluntarily giving up the opportunity for the final
write-ups.

» Turn in a write-up (< 10 pages) describing your project
and its outcomes, similar to a research-level publication.
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Today’s Agenda 9/31

» A brief overview of statistical approaches

» Basic concepts in statistical computing
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Statistical Pipeline 10/31

Knowledge
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Statistical Pipeline 10/31
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Statistical Pipeline 10/31
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Statistical Pipeline 10/31

Linear Models Neural Networks

Bayesian Nonparametric Models

Generalized Linear Models

Knowledge
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Statistical Pipeline 10/31
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Statistical Pipeline 10/31

Gradient Descent
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‘ Knowledge
MCMC
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Statistical Pipeline 10/31

Gradient Descent
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Statistical Pipeline 10/31

Gradient Descent
Our focus

N S
RN

\ ~o

\\\ DT EM
T
_> s [Taerence —»  Knoviedze

MCMC

D p(D|9) Variational Methods

ez X P

@

PEKING UNIVERSITY



Statistical Models 11/31

“All models are wrong, but some are useful.”
George E. P. Box

Models are used to describe the data generating process, hence
prescribe the probabilities of the observed data D

p(D|9)

also known as the likelihood.
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Examples: Linear Models 12/31

Data: D = {(xi, i)},
Model: )
Y:X9—|-6, ENN(O,O'ZITL) 4

=Y ~ N(X0,0%I,)

Y — X0|2
p(Y|X,0) = (2102) ™2 exp <_”202”2)
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Examples: Logistic Regression 13/31

Data:
D = {(zi,yi) }iz1, vi € {0,1}
Model:

Y ~ Bernoulli(p)
v
1+ exp(—X0)

p:

p(Y|X,0) = prw— 1=
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Examples: Gaussian Mixture Model 14/31

Data: D = {yi}?:p Y; € Rd
Model:
ylZ =2z ~ N(pz,02la)

Z ~ Categorical(«)

n K 2
d/2 lyi — el
p(Y|p, 0, ) | | E ay ( 27r0 = /)exp <_T‘z
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Examples: Phylogenetic Model

Data: DNA sequences D = {y;}I" ,

CTTTTCAAGG
CATTGCAAAG
CATTTTCAGG
GAAAAGAAAT
TGCAAAAAAA
TTTTTGTGGA
GTTATTAAGG
TACCCACCGG
AATCAAAATG
ATCACAGGGG
ACATCCAGTG

AGTATTTCCT
GGAATAATCT
ATAACTTTCT
CGAGGCAAAA
GGAAGACCAT
GAAGACGCGT
ATATGTTCAT
ATTTTTACCC
GAATAAAATC
AAGGTGAGAT
AGAGAGACCG

ATGAACGAGT
ATGAACGCAA
ATGAAAGTAA
ATGAGCAAAG
ATGCTTGACG
GTGATTGTTA
ATGTTTTTCA
ATGCTCACCG
ATGCTACCAT
ATGCACTCTC
ATGCATCCGA

TAGACGGCAT
TAATTATTGA
ACTTAATACT
TCAGACTCGC
CTCAAACCAT
AACGACCCGT
AAAAGAACCT
TTAAGCAGAT
CTATTTCAAT
AAATCTGGGT
TGCTGAACAT
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Examples: Phylogenetic Model

Data: DNA sequences D = {y;}I" ,

CTTTTCAAGG
CATTGCAAAG
CATTTTCAGG
GAAAAGAAAT
TGCAAAAAAA
TTTTTGTGGA
GTTATTAAGG
TACCCACCGG
AATCAAAATG
ATCACAGGGG
ACATCCAGTG

AGTATTTCCT
GGAATAATCT
ATAACTTTCT
CGAGGCAAAA
GGAAGACCAT
GAAGACGCGT
ATATGTTCAT
ATTTTTACCC
GAATAAAATC
AAGGTGAGAT
AGAGAGACCG

ATGAACGAGT
ATGAACGCAA
ATGAAAGTAA
ATGAGCAAAG
ATGCTTGACG
GTGATTGTTA
ATGTTTTTCA
ATGCTCACCG
ATGCTACCAT
ATGCACTCTC
ATGCATCCGA

TAGACGGCAT
TAATTATTGA
ACTTAATACT
TCAGACTCGC
CTCAAACCAT
AACGACCCGT
AAAAGAACCT
TTAAGCAGAT
CTATTTCAAT
AAATCTGGGT
TGCTGAACAT

15/31

P. gonderi
Plasmodivm sp. W,

P. fragile

P. coatneyi
P. knowlesi

P. simiovale

n

P. fieldi - N-3
P. inui - Taiwan I

P. inui - Leaf Monkey I
Plasmodium sp. (VM82) a
P. hylobati

P. cynomolgi - Berok

P. cynomolgiCeylonensis m

P. vivax
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Examples: Phylogenetic Model

Data: DNA sequences D = {y;}I"

Model: Phylogenetic tree: (7,q).
Substitution model:

» stationary distribution: n(a,).

> transition probability:

p(au — av‘qu) = Pauav (qu)

@

15/31

©

ez x Y

PEKING UNIVERSITY




Examples: Phylogenetic Model 15/31

Data: DNA sequences D = {y;}I" e
Model: Phylogenetic tree: (7,q). A
Substitution model: @
» stationary distribution: n(a,). T
> transition probability:
C
play — av‘qu) = Pu,a, (qu) @
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Examples: Phylogenetic Model 15/31

Data: DNA sequences D = {y;}7 ,

Model: Phylogenetic tree: (7,q). <><:

Substitution model:

» stationary distribution: n(a,).
» transition probability: @

play = ay|quw) = Paya, (quv)
p(Ylr.q) H >l II  Poai(aw)

=1 qt (u,v)GE(T)

where a’ agree with y; at the tips
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Examples: Latent Dirichlet Allocation 16/31

Data: a corpus D = {w;}M, (O—(O+ ’4"
o 0 4 4

Model: for each document w in D,
» choose a mixture of topics 6 ~ Dir(«)

» for each of the N words w,,

zp, ~ Multinomial(0), wy|zn, B ~ p(wy|2zn, B)

p(Dla, B H/ (0alcr) HZP zdn|0a)p(Wan |2dn, B) dba

n=1 z4n
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Exponential Family 17/31

Many well-known distributions take the following form
p(ylo) = h(y) exp (¢(0) - T(y) — A(0))

» ¢(0): natural/canonical parameters
» T'(y): sufficient statistics
» A(0): log-partition function

A(8) = log ( [ty exvlo®) 7)) dy>

Y
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Score Function 18/31

Y = {vi}l 1, vi ~ p(yi|6), the Log-likelihood

L(6;Y) = logp(uil6)
i=1

The gradient of L with respect to 6 is called the score

oL

s(0) = 50

The expected value of the score is zero

_ [ 9logp(yl0) _ .9 _
Bls) =n [ S ) dy =y [ p(ul6) dy =0
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Fisher Information 19/31

Fisher information is the variance of the score.
Z(0) = E(ss?)

Under mild assumptions (e.g., exponential families),

0 -5 (k)

Intuitively, Fisher information is a measure of the curvature of
the Log-likelihood function. Therefore, it reflects the sensitivity
of model about the parameter at its current value.

ez x Y

@

PEKING UNIVERSITY




KL Divergence 20/31

» Kullback-Leibler divergence or KL divergence is a measure
of statistical distance between two distributions p(x) and

q(z)
q(z)

Dkr(qllp) = /q(ﬂf) log (@)

» KL divergence is non-negative

Dicr(allp) = - [ 4l logfz’gg > —1og [ pla) dz =0

» Consider a family of distributions p(z|#), Fisher
information is Hessian of KL-divergence between two
distributions p(x|f) and p(z|#") with respect to 6’ at 8’ =0

Vi Dir (p(x10)|Ip(x]6)) lo=o = Z(0)
e £ X J
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Maximum Likelihood Estimate 21/31

p(y|0)

éMLE = arg max L(0) =~ argmaxE,,, . log
0 0 pdata(y)

= arg;nin Dk 1.(Pdata(y)|[P(]0))

» Consistency. Under weak regularity condition, OrirE is
consistent: 0y, — 0y in probability as n — oo, where 6
is the “true” parameter

» Asymptotical Normality.
\/ﬁ(éMLE — 00) — N(O,Iil(e()))

See Rao 1973 for more details.
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Example: Poisson Distribution 22/31

L(0;y) = ylogl — 6 — logy!

Ovre = arg maXZyi logf —nf = 2ui=1Yi
0 i=1 n

By the Law of large numbers
Orie = fo
By central limit theorem

ViOrne — o) 5 N(0, 6)

ANEIE T

=/ PEKING UNIVERSITY




Bayesian Inference

In Bayesian statistics,
besides specifying a
model p(y|f) for the
observed data, we also
specify our prior p() for

the model parameters.

23/31

Posterios

Priot——p, Likelihood

Bayes rule for inverse probability

poip) = "=

known as the posterior.

p(DIo) - p

©) o p(DI0) - p(6)
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Bayesian Approach for Machine Learning 24/31

» uncertainty quantification, provides more useful
information

» reducing overfitting. Regularization <= Prior.

Prediction

(alD) = [ p(al6. D)p(6[D)as
Model Comparison

_ p(DIm)p(m)

pwmwz/MDmmWmew
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Choice of Priors 25/31

» Subjective Priors. Priors should reflect our beliefs as
well as possible. They are subjective, but not arbitrary.

» Hierarchical Priors. Priors of multiple levels.
p(6) = [ plblalp(a) da
— [ #t610) da [ ptal3(s) as
» Conjugate Priors. Priors that ease computation, often

used to facilitate the development of inference and
parameter estimation algorithms.

ez x Y

@

PEKING UNIVERSITY




Conjugate Priors 26/31

» Conjugacy: prior p(f) and posterior p(6|Y) belong to the
same family of distribution

» Exponential family

p(Y']0) o< exp <¢(9) : ZT(%) - nA(9)>
» Conjugate prior

p(0) o exp (4(0) - v — nA(0))

» Posterior

p(0Y) x exp ( (v + Z T(yi)) — (n+ U)A(9)>
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Example: Multinomial Distribution 27/31

Data: D = {x;}]",. For each  in D

K
p(x]0) x exp (Z xy log 9k>

k=1

Use Dir(«) as the conjugate prior

K
p(0) o< exp (Z(ak —1)log 9k>

k=1

K M
p(0]D) x exp (Z (ak -1+ Z:cm) log 9k:>

k=1 =1
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Markov Chains 28/31

Consider random variables {X;},t =0, 1, ... with state space S
Markov Property
P(Xny1 =2/ Xo =20,..., Xp =) = p(Xny1 = 2| X, = xp)
Transition Probability
Pl = p(Xni1 = jlXa = i), i,j€S.
A Markov chain is called time homogeneous if P = Pj,Vn.

A Markov chain is governed by its transition probability matrix.
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Markov Chains 29/31

» Stationary Distribution.
P =nxl.

» Ergodic Theorem. If the Markov chain is irreducible and
aperiodic, with stationary distribution =, then

X, i> T
and for any function h

1 n
- E hX:) = Exh(X), n— o0
n

t=1

given E|h(X)| exists.
At £ X F
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What’s Next? 30/31

» In general, finding MLE and posterior analytically is
difficult. We almost always have to resort to computational
methods.

» In this course, we’ll discuss a variety of computational
techniques for numerical optimization and integration,
approximate Bayesian inference methods, with applications
in statistical machine learning, computational biology and
other related field.

Signup in Piazza:

https://piazza.com/peking_university/£all2019/00113730
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