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Problem 1.
Suppose a sample of size n is drawn from a mixture of two normal populations. Specif-
ically, the density of the observed yi is

p(yi|w) = wN (yi|µ1, σ21) + (1− w)N (yi|µ2, σ22)

where w ∈ [0, 1] is the mixture proportion.

(1) Assume µ1, σ
2
1 and µ2, σ

2
2 are all unknown. Introduce appropriate latent indicators

and describe and implement an EM algorithm for computing the MLE of (w, µ1, σ
2
1, µ2, σ

2
2).

(2) Apply your program to the following data set, which records pH measurements of
several water samples in various locations near Gittaz Lake in the French Alps (data
taken from Houtot et al., 2002, Geophysics, 1048–1060)

y = (8.1, 8.2, 8.1, 8.2, 8.2, 7.4, 7.3, 7.4, 8.1, 8.1, 7.9, 7.8, 8.2, 7.9, 7.9, 8.1, 8.1).

Try different starting values. Does your EM algorithm always converge? Is there more
than one mode?

Problem 2.
A total of n instruments are used to observe the same astronomical source. Suppose the
number of photons recorded by instrument j can be modeled as yj ∼ Poisson(xjθ + rj)
where θ ≥ 0 is the parameter of interest, and xj and rj are known positive constants. You
may think of θ, xj , rj as the source intensity, the observation time, and the background
intensity for instrument j, respectively. Assume the photon counts across different in-
struments are independent.

(1) Write down the likelihood function for θ.
(2) Introduce mutually independent latent variables zj1 ∼ Poisson(xjθ) and zj2 ∼
Poisson(rj) and suppose we observe only yj ≡ zj1 + zj2. Under this formulation, derive
an EM algorithm to find the MLE of θ.

Table 1: Data (xj , rj , yj) for Problem 2

(3) Apply your EM algorithm to the data set given by Table 1. What is the MLE?
(4) For these data compute the observed Fisher information and the fraction of missing
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information. (Recall the observed Fisher information is defined as the negative second
derivative of the observed data log-likelihood evaluated at the MLE.)

Problem 3.
Consider the following scenario: you have an incomplete dataset consisting of 478 ob-
servations with 2 binary variables, Y1 and Y2. Y1 and Y2 are both observed for 300
observations, Y1 is observed but Y2 is missing for 88 observations, and Y1 is missing but
Y2 is observed for 90 observations. Table 2 gives the counts for all cases. Assume the
complete counts have a multinomial distribution with probability vector

π = [π11, π12, π21, π22]
>,

where πij = Prob(Y1 = i, Y2 = j). We wish to obtain the maximum likelihood estimate
of π.

Table 2: A 2 × 2 Table with Supplemental Margins for Both Variables

(1) Write down the observed data log-likelihood. What assumptions are you making?
(2) Derive the E-step and M-step of an EM algorithm for calculating π̂, the MLE of π.
(3) Apply the EM algorithm to numerically compute π̂ for the data given in Table 2.
(4) Compare the ML estimate of the odds ratio π11π22π

−1
12 π

−1
21 with the estimate from

the complete cases (that is, using only those units with both Y1 and Y2 observed). Are
they identically equal?
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