
Modern Computational Statistics, Problem Set 2

November 5, 2019 Due 11/07/2019

Problem 1. The standard Laplace distribution has density

f(x) =
1

2
e−|x|, −∞ < x <∞

(1) Describe how to generate a standard Laplace random variable by inverting the CDF.
(2) Describe and implement a rejection sampling algorithm to simulate random draws
from the standard normal distribution using (a multiple of) the Laplace density as the
envelop function. Hint: how do you choose the constant multiple to make sure that this
is a valid envelop?
(3) Can one simulate Laplace random variables using rejection sampling with a multiple
of the standard normal density as the envelop? Why or why not?

Problem 2. Consider a univariate normal model with conditional conjugate priors

xi ∼ N (µ, σ2), i = 1, . . . , n. µ ∼ N (µ0, τ
2
0 ), σ2 ∼ Inv-χ2(ν0, σ

2
0)

where µ0 = 0, τ0 = 1, ν0 = 1, σ0 = 1. Download the data from the course website.

(1) Derive the conditional distributions for the Gibbs sampler.
(2) Implement a Gibbs sampler to simulate 1000 samples from the posterior.
(3) Implement a random walk Metropolis algorithm to simulate 1000 samples from the
posterior (be careful to tune your step sizes to achieve good performance). Hint: you
can use the following proposal for σ2 (this is not a symmetrical proposal indeed!)

(σ2)′ = exp(Uniform(−δ, δ)) · σ2

(4) Compare the samples given by the above samplers. Show the trace plots of µ and
σ2. Choose appropriate number of samples as burn-in based on the trace plot, and show
the autocorrelation plots of µ and σ2. Which sampler is better in this case? Explain
your findings.

Problem 3. Consider a logistic regression model with normal priors

yi ∼ Bernoulli(pi), pi =
1

1 + exp(−xTi β)
, i = 1, . . . , n. β ∼ N (0, σ2β)

where σβ = 1. Download the data from the course website.

(1) Implement a Hamiltonian Monte Carlo sampler to collect 500 samples (with 500
discarded as burn-in), show the scatter plot. Test the following two strategies for the
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number of leapfrog steps L: (1) use a fixed L; (2) use a random one, say Uniform(1, Lmax).
Do you find any difference? Explain it.
(2) Run HMC for 100000 iterations and discard the first 50000 samples as burn-in to form
the ground truth. Implement stochastic gradient MCMC algorithms including SGLD,
SGHMC and SGNHT. Show the convergence rate of different SGMCMC algorithms in
terms of KL divergence to the ground truth as a function of iterations. You may want to
use the ITE package https://bitbucket.org/szzoli/ite-in-python/src/default/

to compute the KL divergence between two samples.
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