Bayesian Theory and Computation

Lecture 14: Variational EM

Cheng Zhang

School of Mathematical Sciences, Peking University

April 16, 2025



EM Recap 2/18

» EM algorithm finds the MLE for latent variable model
L(0) = log p(z|6) = logZp (z,2]0)

» EM update formula

ei+1) = arg;nax Q(t)(ﬂ) = argénax Ep 200 log p(z, z|0)

» EM requires the posterior p(z|z,6®) is known. What if
p(z|z,0®) is unknown?
» If somehow we can sample from p(z|z,6®)), we can use
Monte Carlo estimates, that is Monte Carlo EM.
» However, the associated computation may be expansive.
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Variational EM 3/18

» Recall EM maximizes the lower bound

9)
Fg,00) = E, ., log P&

» When the best ¢(z) = p(z|x, ) is not available, we can
use approximate ¢(z) instead.

< L(0), vq(2)

» A widely used approximation is the mean-field
approximation
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Mean-Field Lower Bound 4/18

» In that case, the lower bound is

(t)
/qu Zi log 2 21077) dz1dzs ... dzg

i= 1(]1 Zi

= /H qi(zi) logp(z, 210W)) dzydzs . . . dzg

d
- Z/Qi(zi) log ¢i(%:) dzi
i=1
» Coordinate Ascent

qz(t) (zi) o exp (E_qi log p(z, z|0(t))> vi=1,...,d
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Mean-Field Variational EM 5/18

> E-step. Run coordinate ascent several times to obtain good
mean-field approximation

d
() =[Ta" =)
i=1
compute the expected complete data log-likelihood
QM (6) = By, log p(x, [6)
» M-step. Update # to maximize Q) ()

04+ = arg max Q™ (0)
[%

ANEIE T

=/ PEKING UNIVERSITY




Variational Bayesian EM 6/18

» Now let us consider Bayesian inference for latent variable
models

p(z,0lz) o< p(x, 2(6)p(0)
» We can lower bound the marginal likelihood

L(x) =logp(x) = log/p(x, z|0)p(0) dzdb

[ i)
—lg/q(,e) (2.0) dzdb

p(z, 2|0)p(0)
> /q(z,&) logw dzdf
= Flq(z,0))

» Maximizing this lower bound F is equivalent to minimizing

DKL(Q(Zv 9)||p(z,9[:c)) @ z]t}%J’ %
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Mean-Field Approximation 7/18

» Again, we consider a simple factorized approximation
q(2,0) = q=(2)qo(0)
p(z, |0)p(0)
L(z 2/22 0)log ———————= dzdf
() q:(2)qe(9) log =20
= F(q:(2), 40(9))

» Maximizing this lower bound F, leads to EM-like iterative
updates

(t+1)

gz (2) o< exp (Eqéa(g) log p(z, Z!@)

q§t+1)(9) o p(f) - exp (quwn(z) log p(z, Z‘g))
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Conjugate-Exponential Models 8/18

Let’s focus on conjugate-exponential (CE) models, which satisfy

Condition 1
The joint probability over variables is in the exponential family

p(z, 2[0) = h(z, z) exp (¢(0) - T(x, z) — A(0))

Condition 2
The prior over parameters is conjugate to this joint probability

p(0ln,v) < exp (¢(0) - v —nA(0))

Conjugate priors are computationally convenient and have an
intuitive interpretation:

» 1: number of pseudo-observations

» v: values of pseudo-observations .
At 7% ¥
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Conjugate-Exponential Models 9/18

Now suppose we have an iid data set © = {z1,...,2,}
> VB E-step.

a(z) o exp (E g0, log plx, 216)
x H h(wi, zi) exp (¢ - T(xi, zi))

i=1

where ¢ = Eqét) (p(0))
> VB M-step

qétﬂ)(@) X exp ( . (1/ + ZT Tiy % ) (n+ n)A(0)>

where T'(z;, 2;) = Eq(t+1) (T(24,2i))
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EM for MAP v.s. Variational Bayesian EM

EM for MAP

» Goal: maximize p(z, 6)

» E-step: compute
¢ (z) = p(zla, 60)

> M-step:
0+ = arg max Q™ (9)

0
Q(t) (9) = Eq(t-‘rl) Ing(.T, 2, 6)

10/18

Variational Bayesian EM

» Goal: lower bound p(x)
» VB E-step: compute

¢t (2) = p(2lz, )
» VB M-step:

0y 0) o exp (QU(9))

QY (8) =E ¢ logp(z, 2,6)
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Properties of VBEM 11/18

» Reduces to the EM algorithm if gy(0) = 6(0 — 6*).

» F increases monotonically, and incorporates the model
complexity penalty.

» Analytical parameter distributions

> VB E-step has the same complexity as corresponding E
step, and is almost identical except that it uses the
expected natural parameters, ¢.

» The lower bound given by VBEM can be used for model
selection.
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Bayesian Model Selection 12/18

» In Bayesian model selection, we want to select the model
class with the highest marginal likelihood (evidence)

plalm) = / p(x]0, m)p(8]m)do

» Occam’s Razor

A

P(XIM,)

_j__—ﬁ]gm”

X

\

All possible data sets
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Bayesian Model Selection

Adapted from Zoubin Ghahramani
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Model Evidence
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Marginal Likelihood Estimation 14/18

» Bayesian Information Criterion (BIC):

A d
log p(z|m) ~ log p(z|fmap,m) — ; logn
» Annealed Importance Sampling (AIS):
Zy = /p(:n|<9,m)7’“p(0|m)d9, O=1<- <71 =1

K-1

Z
logp(x|0) = Zk = [ Zl
k=0

where Zg—:l can be estimated via importance sampling.
» Variational Bayesian EM (VB): use VBEM lower

bound estimate
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Example: A Bipartite Structured Model 15/18

» A simple bipartite graphical model: two binary hidden
variables, and four five-valued discrete observed variables

(o) (o)
0@”@@

> Experiment: there are 136 distinict structures with 2 latent
variables as potential parents of 4 conditionally
independent observed variables

» Score each structure with 3 methods: BIC, VB and the
gold standard AIS.

i=1..n
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How Reliable is The AIS Gold Standard? 16/18
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Ranking The True Structure 17/18

VB score finds correct structure earlier, and more reliably

rank of true structure

0

10 - CO-F BT o o o

- AIS
—o— VB
o —=— BIC
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