Bayesian Theory and Computation

Lecture 19: Energy-based and Score-based Generative Models

Cheng Zhang

School of Mathematical Sciences, Peking University

May 20, 2024

How to Parameterize a Distribution?

Probability densities p(x) need to satisfy

• non-negative:
$$p(x) \ge 0$$
.

▶ sum-to-one: $\sum_{x} p(x) = 1$ or $\int p(x) dx = 1$ for continuous variables

Coming up with a non-negative function $p_{\theta}(x)$ is not hard

•
$$p_{\theta}(x) = f_{\theta}(x)^2$$

• $p_{\theta}(x) = \exp(f_{\theta}(x))$

$$\blacktriangleright p_{\theta}(x) = |f_{\theta}(x)|$$

Sum to one is the key. Although many models allow analytical integration (e.g., autoregressive models, normalizing flows), what if the analytical integration is not available?

Energy-based Model

$$p_{\theta}(x) = \frac{\exp(f_{\theta}(x))}{Z(\theta)}, \quad Z(\theta) = \int \exp(f_{\theta}(x))dx$$

The normalizing constant $Z(\theta)$ is also called the partition function. Why exponential (and not e.g. $f_{\theta}(x)^2$)?

- Want to capture very large variations in probability. log-probability is the nature scale we want to work with. Otherwise need highly non-smooth f_{θ} .
- Exponential families. Many common distributions can be written in this form.
- ▶ These distributions arise under fairly general assumptions in statistical physics (maximum entropy, second law of thermodynamics).
 - $f_{\theta}(x)$ is called the energy, hence the name.
 - ► Intuitively, configurations x with low energy (high $f_{\theta}(x)$) are more likely.

Energy-based Model

$$p_{\theta}(x) = \frac{\exp(f_{\theta}(x))}{Z(\theta)}, \quad Z(\theta) = \int \exp(f_{\theta}(x))dx$$

Pros:

► extreme flexibility. pretty much any function $f_{\theta}(x)$ you want to use

Cons:

- Samping from $p_{\theta}(x)$ is hard
- Evaluating and optimizing likelihood $p_{\theta}(x)$ is hard (learning is hard)

▶ No feature learning (but can add latent variables)

Curse of dimensionality: The fundamental issue is that computing $Z(\theta)$ numerically (when no analytic solution is available) scales exponentially in the number of dimensions of x.

Example: Ising Model

▶ There is a true image $y \in \{0, 1\}^{3 \times 3}$, and a corrupted image $x \in \{0, 1\}^{3 \times 3}$. We know x, and want to somehow recover y.

• We model the joint probability distribution p(y, x) as

$$p(y,x) \propto \exp\left(\sum_{i} \psi_i(x_i, y_i) + \sum_{i,j \in E} \psi_{i,j}(y_i, y_j)\right)$$

PEKING UNIVERSITY

Example: Ising Model

The energy is $\sum_{i} \psi_i(x_i, y_i) + \sum_{i,j \in E} \psi_{i,j}(y_i, y_j)$

• $\psi_i(x_i, y_i)$: the *i*-th corrupted pixel depends on the *i*-th original pixel

• $\psi_{ij}(y_i, y_j)$: neighboring pixels tend to have the same value How did the original image y look like? Solution: maximize p(y|x). Or equivalently, maximize p(y, x).

Example: Restricted Boltzmann Machine (RBM) 6/50

- ▶ RBM: energy-based model with latent variables
- ► Two types of variables:
 - $x \in \{0,1\}^n$ are visible variables (e.g., pixel values)
 - ▶ $z \in \{0,1\}^m$ are latent ones
- ▶ The joint distribution is

 $p_{W,b,c}(x,z) \propto \exp(x^T W z + b^T x + c^T z)$

- ▶ Restricted as there are no within-class connections.
- Can be stacked together to make deep RBMs (one of the first generative models).

Deep RBMs: Samples

论 N 10

Training samples

Generated samples

Adapted from Salakhutdinov and Hinton, 2009.

Energy-based Models: Learning and Inference

▶ Learning by maximizing the likelihood function

$$\max_{\theta} \mathbb{E}_{x \sim p_{\text{data}}} \log p_{\theta}(x) = \max_{\theta} \left(\mathbb{E}_{x \sim p_{\text{data}}} f_{\theta}(x) - \log Z(\theta) \right)$$

► Gradient of log-likelihood:

$$\mathbb{E}_{x \sim p_{\text{data}}} \nabla_{\theta} f_{\theta}(x) - \nabla_{\theta} \log Z(\theta) = \mathbb{E}_{x \sim p_{\text{data}}} \nabla_{\theta} f_{\theta}(x) - \frac{\nabla_{\theta} Z(\theta)}{Z(\theta)}$$
$$= \mathbb{E}_{x \sim p_{\text{data}}} \nabla_{\theta} f_{\theta}(x) - \int \frac{\exp(f_{\theta}(x))}{Z(\theta)} \nabla_{\theta} f_{\theta}(x) dx$$
$$= \mathbb{E}_{x \sim p_{\text{data}}} \nabla_{\theta} f_{\theta}(x) - \int p_{\theta}(x) \nabla_{\theta} f_{\theta}(x) dx$$
$$= \mathbb{E}_{x \sim p_{\text{data}}} \nabla_{\theta} f_{\theta}(x) - \mathbb{E}_{x \sim p_{\theta}(x)} \nabla_{\theta} f_{\theta}(x)$$

► Contrastive Divergence: sample $x_{\text{sample}} \sim p_{\theta}$, take gradient step on $\nabla_{\theta} f_{\theta}(x_{\text{train}}) - \nabla_{\theta} f_{\theta}(x_{\text{sample}})$.

Sampling From EBMs

$$p_{\theta}(x) = \frac{\exp(f_{\theta}(x))}{Z(\theta)}, \quad Z(\theta) = \int \exp(f_{\theta}(x))dx$$

- No direct way to sample like in autoregressive or flow models.
- ▶ Can use gradient-based MCMC methods, e.g., SGLD

$$x^{t+1} = x^t + \epsilon \nabla_x \log p_\theta(x^t) + \sqrt{2\epsilon} \eta^t, \quad \eta^t \sim \mathcal{N}(0, I)$$

▶ Note that for energy-based models

$$s_{\theta}(x) = \nabla_x \log p_{\theta}(x) = \nabla_x f_{\theta}(x) - \nabla_x \log Z(\theta) = \nabla_x f_{\theta}(x)$$

The score function does not depend on $Z(\theta)$!

Langevin sampling

Face samples

Adapted from Nijkamp et al. 2019

Training Without Sampling

$x^{t+1} = x^t + \epsilon \nabla_x \log p_{\theta}(x^t) + \sqrt{2\epsilon} \eta^t, \quad \eta^t \sim \mathcal{N}(0, I)$

- MCMC sampling converges slowly in high dimensional spaces, and repetitive sampling for each training iteration would be expensive.
- Can we train without sampling?
- ▶ Note that to generate samples from an EBM, we only need the score function $\nabla_x \log p_\theta(x)$.
- Can we properly train the score function without sampling?

Score Matching

► A key observation: two distributions are identical iff their scores are the same

$$p(x) = q(x) \Leftrightarrow \nabla_x \log \tilde{p}(x) = \nabla_x \log \tilde{q}(x)$$

where \tilde{p}, \tilde{q} are the unnormalized densities of p, q.

 Match the scores of the data distribution and EBMs by minimizing

$$\frac{1}{2} \mathbb{E}_{x \sim p_{\text{data}}} \| \nabla_x \log p_{\text{data}}(x) - s_{\theta}(x) \|^2$$
$$= \frac{1}{2} \mathbb{E}_{x \sim p_{\text{data}}} \| \nabla_x \log p_{\text{data}}(x) - \nabla_x f_{\theta}(x) \|^2$$

This is also known as Fisher divergence.

Score Matching

▶ Using integration by parts, we have

$$\frac{1}{2} \mathbb{E}_{x \sim p_{\text{data}}} \| \nabla_x \log p_{\text{data}}(x) - \nabla_x f_\theta(x) \|^2$$
$$= \mathbb{E}_{x \sim p_{\text{data}}} \left(\text{Tr} \left(\nabla_x^2 f_\theta(x) \right) + \frac{1}{2} \| \nabla_x f_\theta(x) \|^2 \right) + \text{Const}$$

▶ Sample a mini-batch of datapoints

$$\{x_1, x_2, \ldots, x_n\} \sim p_{\text{data}}(x)$$

▶ Estimate the score matching loss with the empirical mean

$$\frac{1}{n}\sum_{i=1}^{n}\left(\frac{1}{2}\|\nabla_{x}f_{\theta}(x_{i})\|^{2}+\operatorname{Tr}\left(\nabla_{x}^{2}f_{\theta}(x_{i})\right)\right)$$

- Minimize the score matching loss via stochastic gradient descent.
- ▶ No need to sample from the EBM!
- ► Note that computing the trace of Hessian $\operatorname{Tr} \left(\nabla_x^2 f_{\theta}(x) \right)$ is in general very expensive for large models.
- Scalable score matching methods: denoising score matching (Vincent 2010) and sliced score matching (Song et al. 2019).

Score-based Models

▶ When the pdf is differentiable, we can compute the gradient of a probability density, and use it to represent the distribution.

Score function $\nabla_x \log p(x)$

How to Train Score-based Models

- Given i.i.d. samples $\{x_1, \ldots, x_N\} \sim p(x)$
- We want to estimate the score $\nabla_x \log p_{\text{data}}(x)$
- ▶ Score model: a learnable vector-valued function

$$s_{\theta}(x) : \mathbb{R}^D \to \mathbb{R}$$

- Goal: $s_{\theta}(x) \approx \nabla_x \log p_{\text{data}}(x)$
- ▶ How to compare two vector fields of scores?

How to Train Score-based Models

 Objective: Average Euclidean distance over the whole space.

$$\frac{1}{2}\mathbb{E}_{x \sim p_{\text{data}}} \|\nabla_x \log p_{\text{data}}(x) - s_{\theta}(x)\|^2$$

Score matching:

$$\mathbb{E}_{x \sim p_{\text{data}}}\left(\frac{1}{2} \|s_{\theta}(x)\|^2 + \text{Tr}(\nabla_x s_{\theta}(x))\right)$$

► Requirements:

▶ The score model must be efficient to evaluated.

▶ Do we need the score model to be a proper score function?

Score Matching is Not Scalable

 We can use deep neural networks for more expressive score models

Score Matching is Not Scalable

 We can use deep neural networks for more expressive score models

► However, $\operatorname{Tr}(\nabla_x s_{\theta}(x))$ can be a problem.

O(D) Backprops!

Score Matching is Not Scalable

▶ We can use deep neural networks for more expressive score models

• However, $\operatorname{Tr}(\nabla_x s_{\theta}(x))$ can be a problem.

O(D) Backprops!

 $\tilde{\mathbf{x}}$

 Denoising score matching (Vincent 2011) used a noise-perturbed data distribution

$$\begin{aligned} &\frac{1}{2} \mathbb{E}_{\tilde{x} \sim q_{\sigma}} \| \nabla_{\tilde{x}} \log q_{\sigma}(\tilde{x}) - s_{\theta}(\tilde{x}) \|^{2} \\ &= \frac{1}{2} \int q_{\sigma}(\tilde{x}) \| \nabla_{\tilde{x}} \log q_{\sigma}(\tilde{x}) - s_{\theta}(\tilde{x}) \|^{2} d\tilde{x} \\ &= \frac{1}{2} \int q_{\sigma}(\tilde{x}) \| s_{\theta}(\tilde{x}) \|^{2} d\tilde{x} \\ &- \int q_{\sigma}(\tilde{x}) \nabla_{\tilde{x}} \log q_{\sigma}(\tilde{x})^{T} s_{\theta}(\tilde{x}) d\tilde{x} + \text{Const} \end{aligned}$$

▶ The second term can be rewritten as

$$\begin{split} -\int q_{\sigma}(\tilde{x}) \nabla_{\tilde{x}} \log q_{\sigma}(\tilde{x})^{T} s_{\theta}(\tilde{x}) d\tilde{x} &= -\int \nabla_{\tilde{x}} q_{\sigma}(\tilde{x})^{T} s_{\theta}(\tilde{x}) d\tilde{x} \\ &= -\int \nabla_{\tilde{x}} \left(\int p_{\text{data}}(x) q_{\sigma}(\tilde{x}|x) dx \right)^{T} s_{\theta}(\tilde{x}) d\tilde{x} \\ &= -\int \left(\int p_{\text{data}}(x) \nabla_{\tilde{x}} q_{\sigma}(\tilde{x}|x) dx \right)^{T} s_{\theta}(\tilde{x}) d\tilde{x} \\ &= -\int \int p_{\text{data}}(x) q_{\sigma}(\tilde{x}|x) \nabla_{\tilde{x}} \log q_{\sigma}(\tilde{x}|x)^{T} s_{\theta}(\tilde{x}) dx d\tilde{x} \\ &= -\mathbb{E}_{x \sim p_{\text{data}}(x), \tilde{x} \sim q_{\sigma}(\tilde{x}|x)} \nabla_{\tilde{x}} \log q_{\sigma}(\tilde{x}|x)^{T} s_{\theta}(\tilde{x}) \end{split}$$

▶ Plug it back we have

$$\frac{1}{2} \mathbb{E}_{\tilde{x} \sim q_{\sigma}} \| \nabla_{\tilde{x}} \log q_{\sigma}(\tilde{x}) - s_{\theta}(\tilde{x}) \|^{2}$$
$$= \frac{1}{2} \mathbb{E}_{x \sim p_{\text{data}}(x), \tilde{x} \sim q_{\sigma}(\tilde{x}|x)} \| s_{\theta}(\tilde{x}) - \nabla_{\tilde{x}} \log q_{\sigma}(\tilde{x}|x) \|^{2} + \text{Const}$$

► The noise score $\nabla_{\tilde{x}} \log q_{\sigma}(\tilde{x}|x)$ is easy to compute. For example, when use Gaussian noise $q_{\sigma}(\tilde{x}|x) = \mathcal{N}(\tilde{x}|x, \sigma^2 I)$, the score is

$$\nabla_{\tilde{x}} \log q_{\sigma}(\tilde{x}|x) = -\frac{\tilde{x}-x}{\sigma^2}$$

- Pros: efficient to optimize even for very high dimensional data, and useful for optimal denoising.
- ▶ Cons: cannot estimate the score of clean data (noise-free)

Sample a minibatch of datapoints $\{x_1, \ldots, x_n\} \sim p_{\text{data}}(x)$.

▶ Sample a minibatch of perturbed datapoints

$$\tilde{x}_i \sim q_\sigma(\tilde{x}_i|x_i), \quad i = 1, 2, \dots, n$$

 Estimate the denoising score matching loss with empirical means

$$\frac{1}{2n}\sum_{i=1}^n \|s_\theta(\tilde{x}) - \nabla_{\tilde{x}}\log q_\sigma(\tilde{x}_i|x)\|^2$$

► Stochastic gradient descent

▶ Need to choose a very small σ ! However, the loss variance would also increase drastically as $\sigma \rightarrow 0$!

Tweedie's Formula and Denoising Score Matching 23/50

- ▶ Denoising score matching is suitable for optimal denoising
- Given p(x), $q_{\sigma}(\tilde{x}|x) = \mathcal{N}(\tilde{x}|x, \sigma^2 I)$, we can define the posterior $p(x|\tilde{x})$ with Bayes' rule

$$p(x|\tilde{x}) = \frac{p(x)q_{\sigma}(\tilde{x}|x)}{q_{\sigma}(\tilde{x})}$$

where

$$q_{\sigma}(\tilde{x}) = \int p(x)q_{\sigma}(\tilde{x}|x)dx$$

► Tweedie's formula:

$$\mathbb{E}_{x \sim p(x|\tilde{x})}[x] = \tilde{x} + \sigma^2 \nabla_{\tilde{x}} \log q_{\sigma}(\tilde{x})$$
$$\approx \tilde{x} + \sigma^2 s_{\theta}(\tilde{x})$$

Sliced Score Matching

▶ One dimensional problems should be easier.

- Consider projections onto random directions.
- ▶ Sliced score matching (Song et al 2019).

Sliced Score Matching

▶ Objective: Sliced Fisher Divergence

$$\frac{1}{2} \mathbb{E}_{v \sim p_v} \mathbb{E}_{x \sim p_{\text{data}}} \left(v^T \nabla_x \log p_{\text{data}}(x) - v^T s_\theta(x) \right)^2$$

▶ Similarly, we can do integration by parts

$$\mathbb{E}_{v \sim p_v} \mathbb{E}_{x \sim p_{\text{data}}} \left(v^T \nabla_x s_\theta(x) v + \frac{1}{2} (v^T s_\theta(x))^2 \right)$$

▶ Computing Jacobian-vector products is scalable

$$v^T \nabla_x s_\theta(x) v = v^T \nabla_x (s_\theta(x)^T v)$$

This only requires one backpropagation!

Sliced Score Matching

- ► Sample a minibatch of datapoints $\{x_1, \ldots, x_n\} \sim p_{\text{data}}(x)$
- ► Sample a minibatch of projection directions $\{v_i \sim p_v\}_{i=1}^n$
- Estimate the sliced score matching loss with empirical means

$$\frac{1}{n}\sum_{i=1}^{n} \left(v_i^T \nabla_x s_\theta(x_i) v_i + \frac{1}{2} (v_i^T s_\theta(x_i))^2 \right)$$

- The perturbation distribution is typically Gaussian or Rademacher. When $\mathbb{E}vv^T = I$, this is equivalent to the Hutchinson's trick.
- ► Can use $||s_{\theta}(x)||^2$ instead of $(v^T s_{\theta}(x))^2$ to reduce variance.
- Can use more projections per datapoint to boost performance.

Pitfalls: Manifold Hypothesis

▶ Datapoints would lie on a lower dimensional manifold.

▶ Data score hence would be undefined.

Pitfalls: Challenges in Low Data Density Region 28/50

$$\frac{1}{2} \mathbb{E}_{x \sim p_{\text{data}}} \| \nabla_x \log p_{\text{data}}(x) - s_{\theta}(x) \|^2$$

- ▶ Poor score estimation in low data density regions.
- ► Langevin MCMC will also have trouble exploring low density regions.

Pitfalls: Slow Mixing Between Data Modes

Adapted from Song et al 2019.

29/50

Gaussian Perturbation

- ► The solution to all pitfalls: Gaussian perturbation!
- ▶ Inflate the flat manifold with noise.

Score matching on noise data

Noisy Data Score Estimation

 Noisy score can provide useful directional information for Langevin MCMC.

Multi-scale Noise Perturbation

▶ Multi-scale noise perturbations.

 $\sigma_1 > \sigma_2 > \cdots > \sigma_{L-1} > \sigma_L$

▶ Trading off data quality and estimator accuracy

Annealed Langevin Dynamics

Sample using $\sigma_1, \ldots, \sigma_L$ sequentially with Langevin dynamics.

33/50

- ► Anneal down the noise level.
- ▶ Samples used as initialization for the next level.

Algorithm 1 Annealed Langevin dynamics.

Require: $\{\sigma_i\}_{i=1}^L, \epsilon, T.$ 1: Initialize $\tilde{\mathbf{x}}_0$ 2: for $i \leftarrow 1$ to L do 3: $\alpha_i \leftarrow \epsilon \cdot \sigma_i^2 / \sigma_I^2 \rightarrow \alpha_i$ is the step size. 4: **for** $t \leftarrow 1$ to T **do** 5: Draw $\mathbf{z}_t \sim \mathcal{N}(0, I)$ $\tilde{\mathbf{x}}_t \leftarrow \tilde{\mathbf{x}}_{t-1} + \frac{\dot{lpha_i}}{2} \mathbf{s}_{\boldsymbol{ heta}}(\tilde{\mathbf{x}}_{t-1}, \sigma_i) + \sqrt{\alpha_i} \mathbf{z}_t$ 6: end for 7: 8: $\tilde{\mathbf{x}}_0 \leftarrow \tilde{\mathbf{x}}_T$ 9: end for return $\tilde{\mathbf{x}}_T$

Noise Conditional Score Networks

Learning score functions jointly with noise conditional score networks!

Training Noise Conditional Score Networks

- ► As the goal is to estimate the score of perturbed data distributions, we can use denoising score matching for training.
- Assign different weights to combine denoising score matching losses for different noise levels.

$$\frac{1}{L} \sum_{i=1}^{L} \lambda(\sigma_i) \mathbb{E}_{\tilde{x} \sim q_{\sigma_i}(\tilde{x})} \| \nabla_{\tilde{x}} \log q_{\sigma_i}(\tilde{x}) - s_{\theta}(\tilde{x}, \sigma_i) \|^2$$
$$= \frac{1}{L} \sum_{i=1}^{L} \lambda(\sigma_i) \mathbb{E}_{x \sim p_{\text{data}}, \tilde{x} \sim q_{\sigma_i}(\tilde{x}|x)} \| \nabla_x \log q_{\sigma_i}(\tilde{x}|x) - s_{\theta}(\tilde{x}, \sigma_i) \|^2 + \text{Const}$$
$$= \frac{1}{L} \sum_{i=1}^{L} \lambda(\sigma_i) \mathbb{E}_{x \sim p_{\text{data}}, z \sim \mathcal{N}(0, I)} \| s_{\theta}(x + \sigma_i z, \sigma_i) + \frac{z}{\sigma_i} \|^2 + \text{Const}.$$

Noise Scales and Weighting Functions

- Adjacent noise scales should have sufficient overlap to ease transitioning across noise scales in annealed Langevin dynamics.
- ▶ For example, a geometric progression

$$\frac{\sigma_i}{\sigma_{i+1}} = \alpha > 1, \quad i = 1, \dots, L-1$$

• What about the weighting function λ ?

• Use $\lambda(\sigma) = \sigma^2$ to balance different score matching losses

$$\frac{1}{L} \sum_{i=1}^{L} \sigma_i^2 \mathbb{E}_{x \sim p_{\text{data}}, z \sim \mathcal{N}(0, I)} \| s_\theta(x + \sigma_i z, \sigma_i) + \frac{z}{\sigma_i} \|^2$$
$$= \frac{1}{L} \sum_{i=1}^{L} \mathbb{E}_{x \sim p_{\text{data}}, z \sim \mathcal{N}(0, I)} \| \sigma_i s_\theta(x + \sigma_i z, \sigma_i) + z \|^2$$

Training Noise Conditional Score Networks

- Sample a mini-batch of datapoints $\{x_1, \ldots, x_n\} \sim p_{\text{data}}$.
- ▶ Sample a mini-batch of noise scale indices

$$\{i_1,\ldots,i_n\}\sim \mathcal{U}\{1,2,\ldots,L\}$$

▶ Sample a mini-batch of Gaussian noise

$$\{z_1,\ldots,z_n\}\sim\mathcal{N}(0,I)$$

▶ Estimate the weighted mixture of score matching losses

$$\frac{1}{n}\sum_{k=1}^n \|\sigma_{i_k}s_\theta(x_k+\sigma_{i_k}z_k,\sigma_{i_k})+z_k\|^2$$

 As efficient as training one single non-conditional score-based model.

38/50

A Continuous Version via SDEs

Consider the case of infinitely many noise levels

Forward diffusion SDE: $dX_t = f(X_t, t)dt + g(t)dB_t$. Examples:

• Variance Exploding: $f(X_t, t) = 0$, $g(t) = \sqrt{\frac{d\sigma_t^2}{dt}}$.

► Variance Preserving: $f(X_t, t) = -X_t$, $g(t) = \sqrt{2}$.

The Generative Reverse SDE

► Forward diffusion SDE:

$$d\bar{X}_t = f(\bar{X}_t, t)dt + g(t)dB_t, \quad \bar{X}_t \sim q_t.$$

▶ Reverse diffusion SDE: let $\bar{X}_t^{\leftarrow} := \bar{X}_{T-t}, 0 \le t \le T$

 $d\bar{X}_t^{\leftarrow} = (g(T-t)^2 \nabla \log q_{T-t}(\bar{X}_t^{\leftarrow}) - f(\bar{X}_t^{\leftarrow}, T-t))dt + g(T-t)dB_t.$

A Concrete Example via OU Process

• Let q be the data distribution. Consider the OU forward process:

$$d\bar{X}_t = -\bar{X}_t dt + \sqrt{2} dB_t, \quad q_0 \sim q.$$

▶ The condition distribution is

$$\bar{X}_t | \bar{X}_0 \sim \mathcal{N}(e^{-t} \bar{X}_0, (1 - e^{-2t}) I_d).$$

► The corresponding reverse process is

$$d\bar{X}_t^{\leftarrow} = (\bar{X}_t^{\leftarrow} + 2\nabla \log q_{T-t}(\bar{X}_t^{\leftarrow}))dt + \sqrt{2}dB_t.$$

where q_t is the law of the forward process.

► Denoising score matching:

$$\min_{s} \mathbb{E}_{\bar{x}_{0} \sim q, \bar{x}_{t} \sim q(\bar{x}_{t}|\bar{x}_{0})} \|s_{t}(\bar{x}_{t}) - \nabla_{\bar{x}_{t}} \log q(\bar{x}_{t}|\bar{x}_{0})\|^{2}.$$

► Reverse SDE with estimated score

$$d\bar{X}_t^{\leftarrow} = (\bar{X}_t^{\leftarrow} + 2s_{T-t}(\bar{X}_t^{\leftarrow}))dt + \sqrt{2}dB_t.$$

- Let h > 0 be the step size. Assume that we have score estimates s_{kh} for each time k = 0, 1, ..., N, where T = Nh.
- ▶ Discretize the reverse SDE using an exponential integrator

$$d\bar{X}_t^{\leftarrow} = (\bar{X}_t^{\leftarrow} + 2s_{T-kh}(\bar{X}_{kh}^{\leftarrow}))dt + \sqrt{2}dB_t, \quad t \in [kh, (k+1)h]$$

▶ How well can the data distribution be approximated if the score estimation is accurate enough?

42/50

Main Theorem

Assumptions:

- ▶ A1: $\forall t \ge 0$, the score function $\nabla \log q_t$ *L*-Lipschitz.
- A2: For some $\eta > 0$, $\mathbb{E}_q \| \cdot \|^{2+\eta}$ is finite, and

$$m_2^2 := \mathbb{E}_q \| \cdot \|^2.$$

► A3: For all k = 1, N, $\mathbb{E}_{q_{kh}} \| s_{kh} - \nabla \log q_{kh} \|^2 \le \epsilon^2$.

Theorem (Chen et al., 2023)

Suppose A1-3 hold. Let p_T be the output of the discretized reverse SDE at time T with $\bar{X}_0^{\leftarrow} \sim \gamma^d$, and suppose $h \leq 1/L$, where $L \geq 1$. Then it holds that

 $\operatorname{TV}(p_T, q) \lesssim \sqrt{\operatorname{KL}(q \| \gamma^d)} \exp(-T) + (L\sqrt{dh} + Lm_2h)\sqrt{T} + \epsilon\sqrt{T}$

▶ Let Q_T^{\leftarrow} be the path measure of the exact reverse process

$$d\bar{X}_t^{\leftarrow} = (\bar{X}_t^{\leftarrow} + 2\nabla \log q_{T-t}(\bar{X}_t^{\leftarrow}))dt + \sqrt{2}dB_t.$$

▶ Let $P_T^{q_T}$ be the path measure of the approximated reverse process

$$d\bar{X}_t^{\leftarrow} = (\bar{X}_t^{\leftarrow} + 2s_{T-kh}(\bar{X}_{kh}^{\leftarrow}))dt + \sqrt{2}dB_t, \quad t \in [kh, (k+1)h]$$

▶ Girsanov's theorem: a more general case

$$\mathrm{KL}(Q_T^{\leftarrow} \| P_T^{q_T}) \le \sum_{k=0}^{N-1} \mathbb{E}_{Q_T^{\leftarrow}} \int_{kh}^{(k+1)h} \| s_{T-kh}(X_{kh}) - \nabla \log q_{T-t}(X_t) \|^2 dt.$$

▶ Bounding the discretization error. $\forall t \in [kh, (k+1)h]$

$$\begin{aligned} \mathbb{E}_{Q_T^{\leftarrow}} \|s_{T-kh}(X_{kh}) - \nabla \log q_{T-t}(X_t)\|^2 \\ \lesssim \mathbb{E}_{Q_T^{\leftarrow}} \left(\|s_{T-kh}(X_{kh}) - \nabla \log q_{T-kh}(X_{kh})\|^2 \right. \\ &+ \|\nabla \log q_{T-kh}(X_{kh}) - \nabla \log q_{T-t}(X_{kh})\|^2 \\ &+ \|\nabla \log q_{T-t}(X_{kh}) - \nabla \log q_{T-t}(X_t)\|^2 \right) \\ \lesssim \epsilon^2 + \mathbb{E}_{Q_T^{\leftarrow}} \left\| \nabla \log \frac{q_{T-kh}}{q_{T-t}}(X_{kh}) \right\|^2 + L^2 \mathbb{E}_{Q_T^{\leftarrow}} \|X_{kh} - X_t\|^2. \end{aligned}$$

46/50

▶ Bounding the change of score along the forward process

$$\left\|\nabla \log \frac{q_{T-kh}}{q_{T-t}}(X_{kh})\right\|^2 \lesssim L^2 dh + L^2 h^2 \|X_{kh}\|^2 + L^2 h^2 \|\nabla \log q_{T-t}(X_{kh})\|^2.$$

▶ For the last term

$$\begin{aligned} \|\nabla \log q_{T-t}(X_{kh})\|^2 &\lesssim \|\nabla \log q_{T-t}(X_t)\|^2 + \\ \|\nabla \log q_{T-t}(X_{kh}) - \nabla \log q_{T-t}(X_t)\|^2 \\ &\lesssim \|\nabla \log q_{T-t}(X_t)\|^2 + L^2 \|X_{kh} - X_t\|^2. \end{aligned}$$

▶ put these together

$$\begin{aligned} \mathbb{E}_{Q_{T}^{\leftarrow}} \| s_{T-kh}(X_{kh}) - \nabla \log q_{T-t}(X_{t}) \|^{2} \\ &\lesssim \epsilon^{2} + L^{2} dh + L^{2} h^{2} \mathbb{E}_{Q_{T}^{\leftarrow}} \| X_{kh} \|^{2} \\ &+ L^{2} h^{2} \mathbb{E}_{Q_{T}^{\leftarrow}} \| \nabla \log q_{T-t}(X_{t}) \|^{2} + L^{2} \mathbb{E}_{Q_{T}^{\leftarrow}} \| X_{kh} - X_{t} \|^{2}. \end{aligned}$$

▶ apply moment bounds for the forward process

$$\begin{aligned} \mathbb{E}_{Q_T^{\leftarrow}} \| s_{T-kh}(X_{kh}) - \nabla \log q_{T-t}(X_t) \|^2 \\ \lesssim \epsilon^2 + L^2 dh + L^2 h^2 (d+m_2^2) + L^3 h^2 d + L^2 (m^2 h^2 + dh) \\ \lesssim \epsilon^2 + L^2 dh + L^2 m_2^2 h^2. \end{aligned}$$

► According to Girsanov's theorem

$$\mathrm{KL}(Q_T^{\leftarrow} \| P_T^{q_T}) \lesssim (\epsilon^2 + L^2 dh + L^2 m_2^2 h^2) T.$$

► By data processing inequality

$$\begin{aligned} \operatorname{TV}(p_T, q) &\leq \operatorname{TV}(p_T^{\gamma^d}, p_T^{q_T}) + \operatorname{TV}(p_T^{q_T}, Q_T^{\leftarrow}) \\ &\leq \operatorname{TV}(q_T, \gamma^d) + \operatorname{TV}(p_T^{q_T}, Q_T^{\leftarrow}). \end{aligned}$$

▶ Using the convergence of the OU process in KL divergence and Pinsker inequality, we have

 $\mathrm{TV}(p_T,q) \lesssim \sqrt{\mathrm{KL}(q\|\gamma^d)} \exp(-T) + (L\sqrt{dh} + Lm_2h)\sqrt{T} + \epsilon\sqrt{T}$

- Salakhutdinov, R. and Hinton, G. Deep boltzmann machines. In Artificial intelligence and statistics, 2009.
- Aapo Hyvarinen. Estimation of non-normalized statistical models by score matching. Journal of Machine Learning Research, 6(Apr):695–709, 2005.
- Pascal Vincent. A connection between score matching and denoising autoencoders. Neural computation, 23(7):1661-1674, 2011.

References

- Yang Song, Sahaj Garg, Jiaxin Shi, and Stefano Ermon. Sliced score matching: A scalable approach to density and score estimation. In Proceedings of the Thirty-Fifth Conference on Uncertainty in Artificial Intelligence, UAI 2019.
- Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution. In Advances in Neural Information Processing Systems, pp. 11895–11907, 2019.
- Sitan Chen, Sinho Chewi, Jerry Li, Yuanzhi Li, Adil Salim, and Anru Zhang. Sampling is as easy as learning the score: theory for diffusion models with minimal data assumptions. In The Eleventh International Conference on Learning Representations, 2023

