
Bayesian Theory and Computation

Lecture 19: Energy-based and Score-based
Generative Models

Cheng Zhang

School of Mathematical Sciences, Peking University

May 20, 2024

How to Parameterize a Distribution? 2/50

Probability densities p(x) need to satisfy

▶ non-negative: p(x) ≥ 0.

▶ sum-to-one:
∑

x p(x) = 1 or
∫
p(x)dx = 1 for continuous

variables

Coming up with a non-negative function pθ(x) is not hard

▶ pθ(x) = fθ(x)
2

▶ pθ(x) = exp(fθ(x))

▶ pθ(x) = |fθ(x)|
Sum to one is the key. Although many models allow analytical
integration (e.g., autoregressive models, normalizing flows),
what if the analytical integration is not available?

Energy-based Model 3/50

pθ(x) =
exp(fθ(x))

Z(θ)
, Z(θ) =

∫
exp(fθ(x))dx

The normalizing constant Z(θ) is also called the partition
function. Why exponential (and not e.g. fθ(x)

2)?

▶ Want to capture very large variations in probability.
log-probability is the nature scale we want to work with.
Otherwise need highly non-smooth fθ.

▶ Exponential families. Many common distributions can be
written in this form.

▶ These distributions arise under fairly general assumptions
in statistical physics (maximum entropy, second law of
thermodynamics).
▶ fθ(x) is called the energy, hence the name.
▶ Intuitively, configurations x with low energy (high fθ(x))

are more likely.

Energy-based Model 4/50

pθ(x) =
exp(fθ(x))

Z(θ)
, Z(θ) =

∫
exp(fθ(x))dx

Pros:

▶ extreme flexibility. pretty much any function fθ(x) you
want to use

Cons:

▶ Samping from pθ(x) is hard

▶ Evaluating and optimizing likelihood pθ(x) is hard
(learning is hard)

▶ No feature learning (but can add latent variables)

Curse of dimensionality: The fundamental issue is that
computing Z(θ) numerically (when no analytic solution is
available) scales exponentially in the number of dimensions of x.

Example: Ising Model 5/50

▶ There is a true image y ∈ {0, 1}3×3, and a corrupted image
x ∈ {0, 1}3×3. We know x, and want to somehow recover y.

▶ We model the joint probability distribution p(y, x) as

p(y, x) ∝ exp

∑
i

ψi(xi, yi) +
∑
i,j∈E

ψi,j(yi, yj)

Example: Ising Model 5/50

The energy is
∑

i ψi(xi, yi) +
∑

i,j∈E ψi,j(yi, yj)

▶ ψi(xi, yi): the i-th corrupted pixel depends on the i-th
original pixel

▶ ψij(yi, yj): neighboring pixels tend to have the same value

How did the original image y look like? Solution: maximize
p(y|x). Or equivalently, maximize p(y, x).

Example: Restricted Boltzmann Machine (RBM) 6/50

▶ RBM: energy-based model with latent variables

▶ Two types of variables:
▶ x ∈ {0, 1}n are visible variables (e.g., pixel values)
▶ z ∈ {0, 1}m are latent ones

▶ The joint distribution is

pW,b,c(x, z) ∝ exp(xTWz + bTx+ cT z)

▶ Restricted as there are no within-class connections.

▶ Can be stacked together to make deep RBMs (one of the
first generative models).

Deep RBMs: Samples 7/50

Adapted from Salakhutdinov and Hinton, 2009.

Energy-based Models: Learning and Inference 8/50

▶ Learning by maximizing the likelihood function

max
θ

Ex∼pdata log pθ(x) = max
θ

(Ex∼pdatafθ(x)− logZ(θ))

▶ Gradient of log-likelihood:

Ex∼pdata∇θfθ(x)−∇θ logZ(θ) = Ex∼pdata∇θfθ(x)−
∇θZ(θ)

Z(θ)

= Ex∼pdata∇θfθ(x)−
∫

exp(fθ(x))

Z(θ)
∇θfθ(x)dx

= Ex∼pdata∇θfθ(x)−
∫
pθ(x)∇θfθ(x)dx

= Ex∼pdata∇θfθ(x)− Ex∼pθ(x)∇θfθ(x)

▶ Contrastive Divergence: sample xsample ∼ pθ, take
gradient step on ∇θfθ(xtrain)−∇θfθ(xsample).

Sampling From EBMs 9/50

pθ(x) =
exp(fθ(x))

Z(θ)
, Z(θ) =

∫
exp(fθ(x))dx

▶ No direct way to sample like in autoregressive or flow
models.

▶ Can use gradient-based MCMC methods, e.g., SGLD

xt+1 = xt + ϵ∇x log pθ(x
t) +

√
2ϵηt, ηt ∼ N (0, I)

▶ Note that for energy-based models

sθ(x) = ∇x log pθ(x) = ∇xfθ(x)−∇x logZ(θ) = ∇xfθ(x)

The score function does not depend on Z(θ)!

Modern EBMs 10/50

Adapted from Nijkamp et al. 2019

Training Without Sampling 11/50

xt+1 = xt + ϵ∇x log pθ(x
t) +

√
2ϵηt, ηt ∼ N (0, I)

▶ MCMC sampling converges slowly in high dimensional
spaces, and repetitive sampling for each training iteration
would be expensive.

▶ Can we train without sampling?

▶ Note that to generate samples from an EBM, we only need
the score function ∇x log pθ(x).

▶ Can we properly train the score function without sampling?

Score Matching 12/50

▶ A key observation: two distributions are identical iff their
scores are the same

p(x) = q(x) ⇔ ∇x log p̃(x) = ∇x log q̃(x)

where p̃, q̃ are the unnormalized densities of p, q.

▶ Match the scores of the data distribution and EBMs by
minimizing

1

2
Ex∼pdata∥∇x log pdata(x)− sθ(x)∥2

=
1

2
Ex∼pdata∥∇x log pdata(x)−∇xfθ(x)∥2

This is also known as Fisher divergence.

Score Matching 13/50

▶ Using integration by parts, we have

1

2
Ex∼pdata∥∇x log pdata(x)−∇xfθ(x)∥2

=Ex∼pdata

(
Tr

(
∇2

xfθ(x)
)
+

1

2
∥∇xfθ(x)∥2

)
+Const

▶ Sample a mini-batch of datapoints

{x1, x2, . . . , xn} ∼ pdata(x)

▶ Estimate the score matching loss with the empirical mean

1

n

n∑
i=1

(
1

2
∥∇xfθ(xi)∥2 +Tr

(
∇2

xfθ(xi)
))

Score Matching 14/50

▶ Minimize the score matching loss via stochastic gradient
descent.

▶ No need to sample from the EBM!

▶ Note that computing the trace of Hessian Tr
(
∇2

xfθ(x)
)
is

in general very expensive for large models.

▶ Scalable score matching methods: denoising score matching
(Vincent 2010) and sliced score matching (Song et al.
2019).

Score-based Models 15/50

▶ When the pdf is differentiable, we can compute the
gradient of a probability density, and use it to represent
the distribution.

Score function ∇x log p(x)

How to Train Score-based Models 16/50

▶ Given i.i.d. samples {x1, . . . , xN} ∼ p(x)

▶ We want to estimate the score ∇x log pdata(x)

▶ Score model: a learnable vector-valued function

sθ(x) : RD → R

▶ Goal: sθ(x) ≈ ∇x log pdata(x)

▶ How to compare two vector fields of scores?

How to Train Score-based Models 17/50

▶ Objective: Average Euclidean distance over the whole
space.

1

2
Ex∼pdata∥∇x log pdata(x)− sθ(x)∥2

▶ Score matching:

Ex∼pdata

(
1

2
∥sθ(x)∥2 +Tr(∇xsθ(x))

)
▶ Requirements:

▶ The score model must be efficient to evaluated.
▶ Do we need the score model to be a proper score function?

Score Matching is Not Scalable 18/50

▶ We can use deep neural networks for more expressive score
models

▶ However, Tr(∇xsθ(x)) can be a problem.

Score Matching is Not Scalable 18/50

▶ We can use deep neural networks for more expressive score
models

▶ However, Tr(∇xsθ(x)) can be a problem.

Score Matching is Not Scalable 18/50

▶ We can use deep neural networks for more expressive score
models

▶ However, Tr(∇xsθ(x)) can be a problem.

Denoising Score Matching 19/50

▶ Denoising score matching (Vincent
2011) used a noise-perturbed data
distribution

1

2
Ex̃∼qσ∥∇x̃ log qσ(x̃)− sθ(x̃)∥2

=
1

2

∫
qσ(x̃)∥∇x̃ log qσ(x̃)− sθ(x̃)∥2dx̃

=
1

2

∫
qσ(x̃)∥sθ(x̃)∥2dx̃

−
∫
qσ(x̃)∇x̃ log qσ(x̃)

T sθ(x̃)dx̃+Const

Denoising Score Matching 20/50

▶ The second term can be rewritten as

−
∫
qσ(x̃)∇x̃ log qσ(x̃)

T sθ(x̃)dx̃ = −
∫

∇x̃qσ(x̃)
T sθ(x̃)dx̃

= −
∫

∇x̃

(∫
pdata(x)qσ(x̃|x)dx

)T

sθ(x̃)dx̃

= −
∫ (∫

pdata(x)∇x̃qσ(x̃|x)dx
)T

sθ(x̃)dx̃

= −
∫ ∫

pdata(x)qσ(x̃|x)∇x̃ log qσ(x̃|x)T sθ(x̃)dxdx̃

= −Ex∼pdata(x),x̃∼qσ(x̃|x)∇x̃ log qσ(x̃|x)T sθ(x̃)

Denoising Score Matching 21/50

▶ Plug it back we have

1

2
Ex̃∼qσ∥∇x̃ log qσ(x̃)− sθ(x̃)∥2

=
1

2
Ex∼pdata(x),x̃∼qσ(x̃|x)∥sθ(x̃)−∇x̃ log qσ(x̃|x)∥2 +Const

▶ The noise score ∇x̃ log qσ(x̃|x) is easy to compute. For
example, when use Gaussian noise qσ(x̃|x) = N (x̃|x, σ2I),
the score is

∇x̃ log qσ(x̃|x) = − x̃− x

σ2

▶ Pros: efficient to optimize even for very high dimensional
data, and useful for optimal denoising.

▶ Cons: cannot estimate the score of clean data (noise-free)

Denoising Score Matching 22/50

▶ Sample a minibatch of datapoints {x1, . . . , xn} ∼ pdata(x).

▶ Sample a minibatch of perturbed datapoints

x̃i ∼ qσ(x̃i|xi), i = 1, 2, . . . , n

▶ Estimate the denoising score matching loss with empirical
means

1

2n

n∑
i=1

∥sθ(x̃)−∇x̃ log qσ(x̃i|x)∥2

▶ Stochastic gradient descent

▶ Need to choose a very small σ! However, the loss variance
would also increase drastically as σ → 0!

Tweedie’s Formula and Denoising Score Matching 23/50

▶ Denoising score matching is suitable for optimal denoising

▶ Given p(x), qσ(x̃|x) = N (x̃|x, σ2I), we can define the
posterior p(x|x̃) with Bayes’ rule

p(x|x̃) = p(x)qσ(x̃|x)
qσ(x̃)

where

qσ(x̃) =

∫
p(x)qσ(x̃|x)dx

▶ Tweedie’s formula:

Ex∼p(x|x̃)[x] = x̃+ σ2∇x̃ log qσ(x̃)

≈ x̃+ σ2sθ(x̃)

Sliced Score Matching 24/50

▶ One dimensional problems should be easier.

▶ Consider projections onto random directions.

▶ Sliced score matching (Song et al 2019).

Sliced Score Matching 25/50

▶ Objective: Sliced Fisher Divergence

1

2
Ev∼pvEx∼pdata

(
vT∇x log pdata(x)− vT sθ(x)

)2
▶ Similarly, we can do integration by parts

Ev∼pvEx∼pdata

(
vT∇xsθ(x)v +

1

2
(vT sθ(x))

2

)
▶ Computing Jacobian-vector products is scalable

vT∇xsθ(x)v = vT∇x(sθ(x)
T v)

This only requires one backpropagation!

Sliced Score Matching 26/50

▶ Sample a minibatch of datapoints {x1, . . . , xn} ∼ pdata(x)

▶ Sample a minibatch of projection directions {vi ∼ pv}ni=1

▶ Estimate the sliced score matching loss with empirical
means

1

n

n∑
i=1

(
vTi ∇xsθ(xi)vi +

1

2
(vTi sθ(xi))

2

)
▶ The perturbation distribution is typically Gaussian or

Rademacher. When EvvT = I, this is equivalent to the
Hutchinson’s trick.

▶ Can use ∥sθ(x)∥2 instead of (vT sθ(x))
2 to reduce variance.

▶ Can use more projections per datapoint to boost
performance.

Pitfalls: Manifold Hypothesis 27/50

▶ Datapoints would lie on a lower dimensional manifold.

▶ Data score hence would be undefined.

Pitfalls: Challenges in Low Data Density Region 28/50

1

2
Ex∼pdata∥∇x log pdata(x)− sθ(x)∥2

▶ Poor score estimation in low data density regions.

▶ Langevin MCMC will also have trouble exploring low
density regions.

Pitfalls: Slow Mixing Between Data Modes 29/50

Adapted from Song et al 2019.

Gaussian Perturbation 30/50

▶ The solution to all pitfalls: Gaussian perturbation!

▶ Inflate the flat manifold with noise.

▶ Score matching on noise data

Noisy Data Score Estimation 31/50

1

2
Ex̃∼qσ∥∇x̃ log qσ(x̃)− sθ(x̃)∥2

▶ Noisy score can provide useful directional information for
Langevin MCMC.

Multi-scale Noise Perturbation 32/50

▶ Multi-scale noise perturbations.

▶ Trading off data quality and estimator accuracy

Annealed Langevin Dynamics 33/50

▶ Sample using σ1, . . . , σL sequentially with Langevin
dynamics.

▶ Anneal down the noise level.

▶ Samples used as initialization for the next level.

Annealed Langevin Dynamics 34/50

Noise Conditional Score Networks 35/50

▶ Learning score functions jointly with noise conditional
score networks!

Training Noise Conditional Score Networks 36/50

▶ As the goal is to estimate the score of perturbed data
distributions, we can use denoising score matching for
training.

▶ Assign different weights to combine denoising score
matching losses for different noise levels.

1

L

L∑
i=1

λ(σi)Ex̃∼qσi (x̃)∥∇x̃ log qσi(x̃)− sθ(x̃, σi)∥2

=
1

L

L∑
i=1

λ(σi)Ex∼pdata,x̃∼qσi (x̃|x)∥∇x log qσi(x̃|x)− sθ(x̃, σi)∥2 +Const

=
1

L

L∑
i=1

λ(σi)Ex∼pdata,z∼N (0,I)∥sθ(x+ σiz, σi) +
z

σi
∥2 +Const.

Noise Scales and Weighting Functions 37/50

▶ Adjacent noise scales should have sufficient overlap to ease
transitioning across noise scales in annealed Langevin
dynamics.

▶ For example, a geometric progression

σi
σi+1

= α > 1, i = 1, . . . , L− 1

▶ What about the weighting function λ?

▶ Use λ(σ) = σ2 to balance different score matching losses

1

L

L∑
i=1

σ2i Ex∼pdata,z∼N (0,I)∥sθ(x+ σiz, σi) +
z

σi
∥2

=
1

L

L∑
i=1

Ex∼pdata,z∼N (0,I)∥σisθ(x+ σiz, σi) + z∥2

Training Noise Conditional Score Networks 38/50

▶ Sample a mini-batch of datapoints {x1, . . . , xn} ∼ pdata.

▶ Sample a mini-batch of noise scale indices

{i1, . . . , in} ∼ U{1, 2, . . . , L}

▶ Sample a mini-batch of Gaussian noise

{z1, . . . , zn} ∼ N (0, I)

▶ Estimate the weighted mixture of score matching losses

1

n

n∑
k=1

∥σiksθ(xk + σikzk, σik) + zk∥2

▶ As efficient as training one single non-conditional
score-based model.

A Continuous Version via SDEs 39/50

Consider the case of infinitely many noise levels

Forward diffusion SDE: dXt = f(Xt, t)dt+ g(t)dBt.
Examples:

▶ Variance Exploding: f(Xt, t) = 0, g(t) =

√
dσ2

t
dt .

▶ Variance Preserving: f(Xt, t) = −Xt, g(t) =
√
2.

The Generative Reverse SDE 40/50

▶ Forward diffusion SDE:

dX̄t = f(X̄t, t)dt+ g(t)dBt, X̄t ∼ qt.

▶ Reverse diffusion SDE: let X̄←t := X̄T−t, 0 ≤ t ≤ T

dX̄←t = (g(T−t)2∇ log qT−t(X̄
←
t)−f(X̄←t , T−t))dt+g(T−t)dBt.

A Concrete Example via OU Process 41/50

▶ Let q be the data distribution. Consider the OU forward
process:

dX̄t = −X̄tdt+
√
2dBt, q0 ∼ q.

▶ The condition distribution is

X̄t|X̄0 ∼ N (e−tX̄0, (1− e−2t)Id).

▶ The corresponding reverse process is

dX̄←t = (X̄←t + 2∇ log qT−t(X̄
←
t))dt+

√
2dBt.

where qt is the law of the forward process.

▶ Denoising score matching:

min
s

Ex̄0∼q,x̄t∼q(x̄t|x̄0)∥st(x̄t)−∇x̄t log q(x̄t|x̄0)∥2.

Estimated Reverse SDE and Discretization 42/50

▶ Reverse SDE with estimated score

dX̄←t = (X̄←t + 2sT−t(X̄
←
t))dt+

√
2dBt.

▶ Let h > 0 be the step size. Assume that we have score
estimates skh for each time k = 0, 1, . . . , N , where T = Nh.

▶ Discretize the reverse SDE using an exponential integrator

dX̄←t = (X̄←t +2sT−kh(X̄
←
kh))dt+

√
2dBt, t ∈ [kh, (k+1)h]

▶ How well can the data distribution be approximated if the
score estimation is accurate enough?

Main Theorem 43/50

Assumptions:

▶ A1:∀t ≥ 0, the score function ∇ log qt L-Lipschitz.

▶ A2: For some η > 0, Eq∥ · ∥2+η is finite, and

m2
2 := Eq∥ · ∥2.

▶ A3: For all k = 1, N , Eqkh∥skh −∇ log qkh∥2 ≤ ϵ2.

Theorem (Chen et al., 2023)

Suppose A1-3 hold. Let pT be the output of the discretized
reverse SDE at time T with X̄←0 ∼ γd, and suppose h ≲ 1/L,
where L ≥ 1. Then it holds that

TV(pT , q) ≲
√
KL(q∥γd) exp(−T) + (L

√
dh+ Lm2h)

√
T + ϵ

√
T

Proof 44/50

▶ Let Q←T be the path measure of the exact reverse process

dX̄←t = (X̄←t + 2∇ log qT−t(X̄
←
t))dt+

√
2dBt.

▶ Let P qT
T be the path measure of the approximated reverse

process

dX̄←t = (X̄←t +2sT−kh(X̄
←
kh))dt+

√
2dBt, t ∈ [kh, (k+1)h]

▶ Girsanov’s theorem: a more general case

KL(Q←T ∥P qT
T) ≤

N−1∑
k=0

EQ←T

∫ (k+1)h

kh
∥sT−kh(Xkh)−∇ log qT−t(Xt)∥2dt.

Proof 45/50

▶ Bounding the discretization error. ∀t ∈ [kh, (k + 1)h]

EQ←T
∥sT−kh(Xkh)−∇ log qT−t(Xt)∥2

≲ EQ←T

(
∥sT−kh(Xkh)−∇ log qT−kh(Xkh)∥2

+ ∥∇ log qT−kh(Xkh)−∇ log qT−t(Xkh)∥2

+∥∇ log qT−t(Xkh)−∇ log qT−t(Xt)∥2
)

≲ ϵ2 + EQ←T

∥∥∥∥∇ log
qT−kh
qT−t

(Xkh)

∥∥∥∥2 + L2 EQ←T
∥Xkh −Xt∥2.

Proof 46/50

▶ Bounding the change of score along the forward process∥∥∥∥∇ log
qT−kh
qT−t

(Xkh)

∥∥∥∥2 ≲ L2dh+ L2h2∥Xkh∥2 + L2h2∥∇ log qT−t(Xkh)∥2.

▶ For the last term

∥∇ log qT−t(Xkh)∥2 ≲∥∇ log qT−t(Xt)∥2+
∥∇ log qT−t(Xkh)−∇ log qT−t(Xt)∥2

≲∥∇ log qT−t(Xt)∥2 + L2∥Xkh −Xt∥2.

Proof 47/50

▶ put these together

EQ←T
∥sT−kh(Xkh)−∇ log qT−t(Xt)∥2

≲ ϵ2 + L2dh+ L2h2EQ←T
∥Xkh∥2

+ L2h2EQ←T
∥∇ log qT−t(Xt)∥2 + L2EQ←T

∥Xkh −Xt∥2.

▶ apply moment bounds for the forward process

EQ←T
∥sT−kh(Xkh)−∇ log qT−t(Xt)∥2

≲ϵ2 + L2dh+ L2h2(d+m2
2) + L3h2d+ L2(m2h2 + dh)

≲ϵ2 + L2dh+ L2m2
2h

2.

Proof 48/50

▶ According to Girsanov’s theorem

KL(Q←T ∥P qT
T) ≲ (ϵ2 + L2dh+ L2m2

2h
2)T.

▶ By data processing inequality

TV(pT , q) ≤TV(pγ
d

T , p
qT
T) + TV(pqTT , Q←T)

≤TV(qT , γ
d) + TV(pqTT , Q←T).

▶ Using the convergence of the OU process in KL divergence
and Pinsker inequality, we have

TV(pT , q) ≲
√

KL(q∥γd) exp(−T)+(L
√
dh+Lm2h)

√
T+ϵ

√
T

References 49/50

▶ Salakhutdinov, R. and Hinton, G. Deep boltzmann
machines. In Artificial intelligence and statistics, 2009.

▶ Aapo Hyvarinen. Estimation of non-normalized statistical
models by score matching. Journal of Machine Learning
Research, 6(Apr):695–709, 2005.

▶ Pascal Vincent. A connection between score matching and
denoising autoencoders. Neural computation,
23(7):1661–1674, 2011.

References 50/50

▶ Yang Song, Sahaj Garg, Jiaxin Shi, and Stefano Ermon.
Sliced score matching: A scalable approach to density and
score estimation. In Proceedings of the Thirty-Fifth
Conference on Uncertainty in Artificial Intelligence, UAI
2019.

▶ Yang Song and Stefano Ermon. Generative modeling by
estimating gradients of the data distribution. In Advances
in Neural Information Processing Systems, pp.
11895–11907, 2019.

▶ Sitan Chen, Sinho Chewi, Jerry Li, Yuanzhi Li, Adil Salim,
and Anru Zhang. Sampling is as easy as learning the score:
theory for diffusion models with minimal data assumptions.
In The Eleventh International Conference on Learning
Representations, 2023

