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▶ So far, we have introduced many MCMC algorithms.

▶ Although these algorithms have been empirically shown to
converge to the target distribution with good speed, in
practice, we may want to know more precisely about the
convergence behavior and assess the approximation error
for a given computation budget.

▶ In this lecture, we discuss some theoretical results on the
convergence of MCMC methods, with an emphasis on
Langevin diffusion.
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▶ Total Variation Distance: the total variation distance
between two probability measures µ and ν on X is

dTV(µ, ν) = sup
A⊆X

|µ(A)− ν(A)|.

▶ Ergodicity: if a Markov chain on a state space X is both
ϕ-irreducible and aperiodic, and has a stationary
distribution π, then for π-a.e. x ∈ X ,

lim
n→∞

dTV(δxP
n, π) = 0.

In particular,
lim
n→∞

Pn(x,A) = π(A)

for all measurable A ⊆ X .
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▶ For Markov chains that are irreducible and aperiodic, we
have stronger convergence properties given certain
conditions.

▶ Uniform Ergodicity: a Markov chain with invariant
probability measure π and Markov transition kernel P is
uniformly ergodic if

dTV(δxP
n, π) ≤ Mρn, ∀x ∈ X

for some constant M and ρ < 1.

▶ This means the total variation distance decreases
geometrically fast, with ρ governing the rate, and the
bound is independent of x.
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▶ Minorization Condition:

Pm(x,A) ≥ ϵν(A), ∀x ∈ X , A ⊆ X ,

for some m ∈ N, ϵ > 0 and probability measure ν.

▶ Loosely speaking, minorimzation condition guarantees that
δxP

m and δyP
m have some degree of overlap, ∀x, y ∈ X .

Theorem
Suppose the above minorization condition holds, then

dTV(δxP
n, π) ≤ (1− ϵ)⌊

n
m
⌋, ∀x ∈ X .
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▶ Coupling: we say ζ is a coupling of two probability
measure µ, ν if it is a probability measure on
(Rd × Rd,B(Rd × Rd)) such that

ζ(A,Rd) = µ(A), ζ(Rd, A) = ν(A), ∀A ∈ B(Rd).

▶ The coupling inequality:

dTV(µ, ν) ≤ p(X ̸= Y ),

for any coupling (X,Y ) of µ and ν.

Proof. dTV(µ, ν) = sup
A

|µ(A)− ν(A)|

= sup
A

|p(X ∈ A, Y /∈ A)− p(X /∈ A, Y ∈ A)|

≤ p(X ̸= Y ).
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▶ For simplicity, we consider the case when m = 1. That is

P (x,A) ≥ ϵν(A).

▶ We define a residual Markov kernel

R(x,A) =
P (x,A)− ϵν(A)

1− ϵ
, x ∈ X , A ⊆ X ,

and observe that δxP = ϵν + (1− ϵ)δxR.

▶ We will show an explicit coupling (Doeblin 1938) such that

p(Xn ̸= Yn) ≤ (1− ϵ)n

where Xn ∼ δxP
n and Yn ∼ π.
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▶ Let X0 = x and Y0 ∼ π.

▶ Now follow the procedure for each time n ≥ 1:

1. If Xn−1 = Yn−1, sample Zn ∼ P (Xn−1, ·), set
Xn = Yn = Zn.

2. Otherwise, with probability ϵ, sample Zn ∼ ν and set
Xn = Yn = Zn.

3. Otherwise, sample Xn ∼ R(Xn−1, ·) and Yn ∼ R(Yn−1, ·)
independently.

▶ Note that we have not changed the marginal distributions
of Xn or Yn, so Xn ∼ δxP

n and Yn ∼ π.

▶ We also observe that

p(Xn ̸= Yn) ≤ (1− ϵ)n.
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▶ The minorization condition allows us to successfully couple
Markov chains with probability ϵ at each time, which is too
strong in practice.

▶ A weaker condition is geometric ergodicity.

▶ Geometric Ergodicity: a Markov chain with stationary
distribution π is geometrically ergodic if

dTV(δxP
n, π) ≤ M(x)ρn, x ∈ X ,

for some ρ < 1, where M(x) < ∞ for π-a.e. x ∈ X .

▶ Instead of a constant, the bound M now depends on x.



Small Sets and Drift Condition 10/49

▶ Small sets: a set C ⊆ X is small if

Pm(x,A) ≥ ϵν(A), x ∈ C, A ⊆ X ,

for some m ∈ N, ϵ > 0 and probability measure ν.

▶ Drift condition: there is a function V : X 7→ [1,∞] with
V (x) < ∞ for at least one x ∈ X , such that∫

X
V (y)P (x, dy) ≤ λV (x) + b1C(x),

where C is a small set, λ ∈ (0, 1) and b < ∞.

▶ The drift condition guarantees that

supx∈C Exκ
τC < ∞, for some κ > 1,

where τA = inf{n ≥ 1 : Xn ∈ A}.
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Theorem (Meyn and Tweedie, 1993)

A Markov chain is geometrically ergodic if and only if it admits
a small set and satisfies the drift condition.

Geometric ergodicity for various sampling algorithms.

Generalized Gaussian distribution, π(x) ∝ exp(−∥x∥β)

Sampling
methods

β ∈ (0, 1)
Thick tails

β = 1
Exponential

β ∈ (1, 2) β = 2
Gaussian

β > 2
Light Tails

MALA (1D) No Yes Yes Yes No

RWM No Yes Yes

HMC No Yes Yes Yes No
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▶ Denote by π a target density w.r.t the Lebesgue measure
on Rd, known up to a normalizing constant

π(x) =
exp(−U(x))∫

Rd exp(−U(y))dy

Here, d ≫ 1.

▶ Assumption 1: U is L-smooth: twice continously
differentiable, ∀x, y ∈ Rd,

∥∇U(x)−∇U(y)∥ ≤ L∥x− y∥.

▶ Assumption 2: U is m-strongly convex, ∀x, y ∈ Rd,

U(y) ≥ U(x) +∇U(x)T (y − x) +
m

2
∥y − x∥2.
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▶ Langevin SDE:

dXt = −∇U(Xt)dt+
√
2dBt,

where (Bt)t≥0 is a d-dimensional Brownian Motion.

▶ Notation: (Pt)t≥0 is the Markov semigroup associated to
the Langevin diffusion:

Pt(x,A) = P(Xt ∈ A|X0 = x), x ∈ Rd, A ∈ B(Rd).

▶ π(x) ∝ exp(−U(x)) is the unique invariant probability
measure,

π = πPt, ∀t ≥ 0.
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▶ Idea: Sample the diffusion path, using the Euler-Maruyama
(EM) scheme:

Xk+1 = Xk − γk+1∇U(Xk) +
√
2γk+1ηk+1

where
▶ (ηk)k≥1 is i.i.d N (0, Id).
▶ (γk)k≥1 is a sequence of stepsizes, which can either be held

constant or be chosen to decrease to 0 at a certain rate.

▶ Closely related to the (stochastic) gradient descent
algorithm.

▶ Note that this is just MALA without MH correction.
Hence, this is referred to as unadjusted Langevin algorithm.



Constant Stepsize 15/49

▶ When the stepsize is held constant, i.e. γk = γ, then
(Xk)k≥1 is an homogeneous Markov chain with Markov
kernel Rγ .

▶ Under some appropriate conditions, this Markov chain is
irreducible, positive recurrent. Hence, it has an unique
invariant distribution πγ which does not coincide with the
target distribution π.

▶ Questions:
▶ For a given precision ϵ > 0, how could we choose the

stepsize γ > 0 and the number of iterations n so that

D(δxR
n
γ , π) ≤ ϵ

where D is some distance measure between distributions.
▶ Is there a way to choose the starting point x cleverly?
▶ How to quantify the distance between πγ and π?
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▶ When (γk)k≥1 is nonincreasing and non constant, (Xk)k≥1

is an inhomogeneous Markov chain associated with the
kernels (Rγk)k≥1.

▶ Notation: Qn,p
γ , n ≤ p is the composition of Markov kernels

Qn,p
γ = RγnRγn+1 · · ·Rγp , Qp

γ = Q1,p
γ

with this notation, Ex[f(Xp)] = δxQ
p
γf .

▶ Questions:
▶ Convergence: is there a way to choose the step sizes so that

D(δxQ
p
γ , π) → 0 and if yes, what is the optimal way of

choosing the stepsizes?
▶ Optimal choice of simulation parameters: what is the

number of iterations required to reach a neighborhood of
the target: D(δxQ

p
γ , π) ≤ ϵ starting form a given point x?

▶ Should we use fixed or decreasing step sizes?
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▶ Coupling: we say ζ is a coupling of two probability
measure µ, ν if it is a probability measure on
(Rd × Rd,B(Rd × Rd) such that

ζ(A,Rd) = µ(A), ζ(Rd, A) = ν(A), ∀A ∈ B(Rd).

▶ Wasserstein Distance: for two probability measure µ, ν on
Rd, define Wasserstein distance of order p ≥ 1 as

Wp(µ, ν) = inf
(X,Y )∈

∏
(µ,ν)

E
1
p [∥X − Y ∥p],

where
∏
(µ, ν) is the set of couplings of µ, ν.

▶ Let Pp(Rd) = {µ :
∫
Rd ∥x∥pdµ(x) < ∞}. Pp(Rd) equipped

with Wp is a complete separable metric space. In what
follows, we use the case p = 2.
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Theorem (Durums and Moulines, 2016)

Assume that U is L-smooth and m-strongly convex. Then
∀x, y ∈ Rd and t ≥ 0,

W2(δxPt, δyPt) ≤ exp(−mt)∥x− y∥

▶ The contraction depends only on the strong convexity
constant.

▶ Key idea: synchronous coupling!
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{
dXt = −∇U(Xt)dt+

√
2dBt

dYt = −∇U(Yt)dt+
√
2dBt

, where (X0, Y0) = (x, y).

▶ This SDE has a unique strong solution (Xt, Yt)t≥0. As
(Bt)t≥0 is shared, we have

dXt − dYt = − (∇U(Xt)−∇U(Yt)) dt

▶ The product rule for semimartingales imply

d∥Xt − Yt∥2 = 2⟨dXt − dYt, Xt − Yt⟩
= −2⟨∇U(Xt)−∇U(Yt), Xt − Yt⟩dt
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▶ Since U is m-strongly convex, ∀x, y ∈ Rd

⟨∇U(x)−∇U(y), x− y⟩ ≥ m∥x− y∥2.

▶ This implies

d∥Xt − Yt∥2 ≤ −2m∥Xt − Yt∥2dt.

▶ By Grönwall inequality:

∥Xt − Yt∥2 ≤ exp(−2mt)∥X0 − Y0∥2 = exp(−2mt)∥x− y∥2

▶ Therefore,

W2(δxPt, δyPt) ≤ E
1
2 ∥Xt − Yt∥2 ≤ exp(−mt)∥x− y∥.
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▶ Assume that U is L-smooth and m-strongly convex. Then,
∀x ∈ Rd and t ≥ 0

Ex∥Xt − x∗∥2 ≤ ∥x− x∗∥2 exp(−2mt) +
d

m
(1− exp(−2mt)),

where
x∗ = argmin

x∈Rd

U(x).

▶ The stationary distribution π satisfies∫
Rd

∥x− x∗∥2π(dx) ≤ d

m
.

▶ ∀x ∈ Rd and t > 0,

W2(δxPt, π) ≤ exp(−mt)

(
∥x− x∗∥+

√
d

m

)
.
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▶ The generator A associated (Pt)t≥0 is defined as

Af(x) = lim
t↓0

Exf(Xt)− f(x)

t

= −⟨∇U(x),∇f(x)⟩+∆f(x),

∀f ∈ C2(Rd) and x ∈ Rd.

▶ Set V (x) = ∥x− x∗∥2. Since ∇U(x∗) = 0 and using the
strong convexity,

AV (x) = 2 (−⟨∇U(x)−∇U(x∗), x− x∗⟩+ d)

≤ 2(−mV (x) + d).
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▶ Denote for all t ≥ 0 and x ∈ Rd by

v(t, x) = PtV (x) = Ex∥Xt − x∗∥2.

▶ We have

∂v(t, x)

∂t
= PtAV (x) ≤ −2mPtV (x)+ 2d = −2mv(t, x)+ 2d.

▶ Grönwall inequality

Ex∥Xt − x∗∥2 = v(t, x)

≤ ∥x− x∗∥2 exp(−2mt) +
d

m
(1− exp(−2mt)).
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▶ Using triangle inequality

W2(δxPt, π) ≤ W2(δxPt, δx∗Pt) +W2(δx∗Pt, π)

≤ W2(δxPt, δx∗Pt) +W2(δx∗Pt, πPt)

≤ exp(−mt)∥x− x∗∥+W2(δx∗Pt, πPt).

▶ Using a similar synchronous coupling strategy as before,
with X0 = x∗, Y0 ∼ π,

W2(δx∗Pt, πPt) ≤ exp(−mt)E
1
2 ∥X0−Y0∥2 ≤ exp(−mt)

√
d

m
.

▶ This concludes the proof

W2(δxPt, π) ≤ exp(−mt)

(
∥x− x∗∥+

√
d

m

)
.
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▶ Assume that U is L-smooth and m-strongly convex. Let
(γk)k≥1 be a nonincreasing sequence with γ1 ≤ 2

m+L . Then,

∀x, y ∈ Rd and ℓ ≥ n ≥ 1,

W2(δxQ
n,ℓ
γ , δyQ

n,ℓ
γ ) ≤

√√√√ ℓ∏
k=n

(1− κγk)∥x− y∥2

where

κ =
2mL

m+ L
.

▶ For any γ ∈ (0, 2
m+L), ∀x ∈ Rd and n ≥ 1,

W2(δxR
n
γ , πγ) ≤ (1− κγ)n/2

(
∥x− x∗∥+

√
2dκ−1

)
.
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▶ Synchronous Coupling:

Xk+1 = Xk − γk+1∇U(Xk) +
√
2γk+1ηk+1

Yk+1 = Yk − γk+1∇U(Yk) +
√

2γk+1ηk+1

where (ηk)k≥n is i.i.d N (0, Id) and Xn−1 = x, Yn−1 = y.

▶ Cancel out ηk+1 gives

Xk+1 − Yk+1 = Xk − Yk − γk+1 (∇U(Xk)−∇U(Yk))

which implies

∥Xk+1 − Yk+1∥2 = ∥Xk − Yk∥2 + γ2k+1∥∇U(Xk)−∇U(Yk)∥2

− 2γk+1⟨∇U(Xk)−∇U(Yk), Xk − Yk⟩
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▶ A stronger inequality for U (Nesterov 2004)

⟨∇U(x)−∇U(y), x−y⟩ ≥ κ

2
∥x−y∥2+ 1

m+ L
∥∇U(x)−∇U(y)∥2.

▶ Using this inequality, we have

∥Xk+1 − Yk+1∥2 ≤ (1− κγk+1)∥Xk − Yk∥2

▶ By induction

∥Xℓ−Yℓ∥2 ≤
ℓ∏

k=n

(1−κγk)∥Xn−1−Yn−1∥2 =
ℓ∏

k=n

(1−κγk)∥x−y∥2.

▶ Therefore,

W2(δxQ
n,ℓ
γ , δyQ

n,ℓ
γ ) ≤ E

1
2 ∥Xℓ−Yℓ∥2 ≤

√√√√ ℓ∏
k=n

(1− κγk)∥x− y∥2.
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▶ Let x∗ be the unique minimize of U . Then ∀x ∈ Rd and
ℓ ≥ n ≥ 1, given Xn−1 = x,

Ex∥Xℓ − x∗∥2 ≤ ρn,ℓ(x)

where

ρn,ℓ(x) =

ℓ∏
k=n

(1−κγk)∥x−x∗∥2+2dκ−1

(
1−

ℓ∏
k=n

(1− κγk)

)

▶ For any γ ∈ (0, 2
m+L), Rγ has a unique stationary

distribution πγ and∫
Rd

∥x− x∗∥2πγ(dx) ≤ 2dκ−1.
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▶ For any γ ∈ (0, 2
m+L), we have ∀x ∈ Rd∫

Rd

∥y − x∗∥2Rγ(x, dy) = ∥x− γ∇U(x)− x∗∥2 + 2γd

= ∥x− x∗ − γ(∇U(x)−∇U(x∗))∥2 + 2γd

≤ (1− κγ)∥x− x∗∥2 + 2γd

▶ By induction

Ex∥Xℓ − x∗∥2 ≤ (1− κγℓ)Ex∥Xℓ−1 − x∗∥2 + 2γℓd

≤ ρn,ℓ(x).

▶ Similarly

W2(δxR
n
γ , πγ) ≤ W2(δxR

n
γ , δx∗Rn

γ ) +W2(δx∗Rn
γ , πγR

n
γ )

≤ (1− κγ)n/2
(
∥x− x∗∥+

√
2dκ−1

)
.
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▶ Objective: compute bound for W2(δxQ
n
γ , π).

▶ Since πPt = π,∀t ≥ 0, it suffices to get bounds of the
Wasserstein distance

W2(δxQ
n
γ , πPΓn)

where

Γn =

n∑
k=1

γk.

▶ δxQ
n
γ : law of the discretized diffusion

▶ πPγn = π, where (Pt)t≥0 is the semigroup of the diffusion.
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Theorem (Durums and Moulines, 2016)

Let (γk)k≥1 be a non-increasing sequence with γ1 ≤ 1
m+L . Then

∀x ∈ Rd and n ≥ 1,

W 2
2 (δxQ

n
γ , π) ≤ u(1)n (γ)

(
∥x− x∗∥2 + d

m

)
+ u(2)n (γ),

where

u(1)n (γ) = 2
n∏

k=1

(1− κγk/2)

u(2)n (γ) = L2d

n∑
i=1

[
γ2i (κ

−1 + γi)

(
2 +

L2γi
m

+
L2γ2i
6

) n∏
k=i+1

(1− κγk/2)

]

Idea: synchronous coupling between the diffusion and the
interpolation of the Euler discretization!
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▶ ∀n ≥ 0 and t ∈ [Γn,Γn+1), define{
Xt = XΓn −

∫ t
Γn

∇U(Xs)ds+
√
2(Bt −BΓn)

X̄t = X̄Γn −
∫ t
Γn

∇U(X̄Γn)ds+
√
2(Bt −BΓn)

with X0 ∼ π and X̄0 = x.

▶ ∀n ≥ 0,
W 2

2 (δxQ
n
γ , πPΓn) ≤ E∥XΓn − X̄Γn∥2.

▶ Cancel out noise terms

∥XΓn+1 − X̄Γn+1∥2 = ∥XΓn − X̄Γn −
∫ Γn+1

Γn

∇U(Xs)−∇U(X̄Γn)ds∥2

= ∥XΓn−X̄Γn∥2 + ∥
∫ Γn+1

Γn

∇U(Xs)−∇U(X̄Γn)ds∥2

−2

∫ Γn+1

Γn

⟨XΓn − X̄Γn ,∇U(Xs)−∇U(X̄Γn)⟩ds
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▶ Young’s inequality and Jensen’s inequality

∥
∫ Γn+1

Γn

∇U(Xs)−∇U(X̄Γn)ds∥2 ≤ 2γ2n+1∥∇U(XΓn)−∇U(X̄Γn)∥2

+2γn+1

∫ Γn+1

Γn

∥∇U(Xs)−∇U(XΓn)∥2ds

▶ Since γ1 ≤ 1/(m+ L) and (γk)k≥1 is non-increasing

∥XΓn+1 − X̄Γn+1∥2 ≤(1− κγn+1)∥XΓn − X̄Γn∥2

+ 2γn+1

∫ Γn+1

Γn

∥∇U(Xs)−∇U(XΓn)∥2ds

− 2

∫ Γn+1

Γn

⟨XΓn − X̄Γn ,∇U(Xs)−∇U(XΓn)⟩ds
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▶ Using the Cauchy-Schwartz inequality, ∀ϵ > 0

∥XΓn+1 − X̄Γn+1∥2 ≤ (1− (κ− 2ϵ)γn+1)∥XΓn − X̄Γn∥2

+(2γn+1 + (2ϵ)−1)

∫ Γn+1

Γn

∥∇U(Xs)−∇U(XΓn)∥2ds

Lemma
Let (Xt)t≥0 be the solution of Langevin SDE with X0 = x.
Then ∀t ≥ 0 and x ∈ Rd,

Ex∥Xt − x∥2 ≤ dt

(
2 +

L2t2

3

)
+

3

2
t2L2∥x− x∗∥2.
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▶ Using the Lemma and L-smoothness

EF ′
Γn∥XΓn+1 − X̄Γn+1∥2 ≤ (1− (κ− 2ϵ)γn+1)∥XΓn − X̄Γn∥2

+L2γ2n+1(γn+1 + (4ϵ)−1)
(
2d+ L2γn+1∥XΓn − x∗∥2 + dL2γ2n+1/6

)
.

▶ Note that XΓn ∼ π

E∥XΓn − x∗∥2 ≤ d

m

▶ Let ϵ = κ/4. By induction

E∥XΓn − X̄Γn∥2 ≤
n∏

k=1

(1− κγk/2)E∥X0 − x∥2 + u(2)n (γ)

≤ u(1)n (γ)E(∥x− x∗∥2 + ∥X0 − x∗∥2) + u(2)n (γ)

≤ u(1)n (γ)

(
∥x− x∗∥2 + d

m

)
+ u(2)n (γ).
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▶ Fixed step size: ∀ϵ > 0, one may choose γ so that

W2(δx∗Rn
γ , π) ≤ ϵ in n = O(dϵ−2) iterations

where x∗ is the unique maximum of π.

▶ Decreasing step size: with γk = γ1k
−α, α ∈ (0, 1)

W2(δx∗Qn
γ , π) =

√
dO(n−α).

▶ These results are tight (check with U(x) = 1
2∥x∥

2).

▶ Similar results hold for total variation distance, see
Durums and Moulines, 2016 for more details.
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▶ Underdamped Langevin SDE

dvt = −γvtdt− u∇U(xt)dt+
√

2γudBt

dxt = vtdt

▶ Notation: (x0, v0) ∼ p0 for some distribution p0 on R2d.
Then (xt, vt) ∼ pt. Let Φt denote the operator that maps
from p0 to pt:

Φtp0 = pt.

▶ p∗(x, v) ∝ exp(−U(x) + 1
2u∥v∥

2) is the unique invariant
probability measure.
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▶ One step of the discrete underdamped Langevin diffusion is
defined by the SDE

dv̄t = −γv̄tdt− u∇U(x̄0)dt+
√

2γudBt

dx̄t = v̄tdt
(1)

with an initial condition (x̄0, v̄0) ∼ p̄0. Similarly,
(x̄t, v̄t) ∼ p̄t and Φ̄tp̄0 = p̄t.

▶ The above update has an analytical solution.

(x̄t, v̄t) ∼ N (µt(x̄0, v̄0),Σt)

▶ With a small t = δ, this can be used as a single step of
discrete underdamped Langevin MCMC

(x̄k+1, v̄k+1) ∼ N (µδ(x̄k, v̄k),Σδ) (2)
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Theorem (Cheng et al., 2018)

Let p(n) be the distribution of (x̄n, v̄n) after n iterations starting
with p(0)(x̄, v̄) = 1x=x0 · 1v=0. Let the initial distance to
optimum satisfy ∥x0 − x∗∥2 ≤ D2. If we set the step size to be

δ =
ϵ

104κ

√
1

d/m+D2
,

and run update (2) for n iterations with

n ≥ 52κ2

ϵ
·

(√
d

m
+D2

)
· log

(
24( d

m +D2)

ϵ

)
,

where κ = L/m, then we have the guarantee that

W2(p
(n), p∗) ≤ ϵ.
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▶ To converge to within ϵ of the target measure p∗ in W2

distance, underdamped Langevin diffusion requires O(
√
d
ϵ )

iterations, which is a significant improvement over O( d
ϵ2
) of

overdamped Langevin diffusion.

▶ The log(
24( d

m
+D2)

ϵ ) factor can be removed by using a
time-varying step size (Chen et al., 2018).

▶ Similar result holds for stochastic gradient underdamped
Langevin diffusion, if the variance is made small enough
(Chen et al., 2018).
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Theorem (Cheng et al., 2018)

Let u = 1
L and γ = 2. ∀t > 0, there exists a coupling

ζt(x0, v0, y0, w0) ∈
∏
(Φtδx0,v0 ,Φtδy0,w0) such that

E(xt,vt,yt,wt)∼ζt(x0,v0,y0,w0)

(
∥xt − yt∥2 + ∥(xt + vt)− (yt + wt)∥2

)
≤ e−

t
κ
(
∥x0 − y0∥2 + ∥(x0 + v0)− (y0 + w0)∥2

)
Corollary (Cheng et al., 2018)

Let p0 be arbitrary distribution with (x0, v0) ∼ p0. Let q0 and
Φtq0 be the distributions of (x0, x0 + v0) and (xt, xt + vt),
respectively. Then

W2(Φtq0, q
∗) ≤ e−

t
2κW2(q0, q

∗)

where q∗ is the distribution of (x, x+ v) when (x, v) ∼ p∗.
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▶ Sandwich Inequality

1

2
W2(pt, p

∗) ≤ W2(qt, q
∗) ≤ 2W2(pt, p

∗).

▶ Thus we also get convergence of Φtp0 to p∗

W2(Φtp0, p
∗) ≤ 4e−

t
2κW2(p0, p

∗).

▶ Bound the Discretization. Let δ ≤ 1, ∀p0

W2(Φδp0, Φ̄δp0) ≤ δ2
√

2EK
5

where EK = 26( d
m +D2) is an upper bound of the kinetic

energy
Ept∥v∥2 ≤ EK , ∀t ∈ [0, δ]
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▶ Triangle inequality

W2(q
(i+1), q∗) = W2(Φ̄δq

(i), q∗)

≤ W2(Φδq
(i), Φ̄δq

(i)) +W2(Φδq
(i), q∗)

≤ 2δ2
√

2EK
5

+ e−δ/2κW2(q
(i), q∗).

▶ Let η = e−δ/2κ. By induction

W2(q
(n), q∗) ≤ ηnW2(q

(0), q∗) + (1 + η + . . .+ ηn−1)2δ2
√

2EK
5

≤ 2ηnW2(p
(0), p∗) +

2

1− η
δ2
√

2EK
5

.
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▶ Using the sandwich inequality again

W2(p
(n), p∗) ≤ 4ηnW2(p

(0), p∗) +
4

1− η
δ2
√

2EK
5

. (3)

▶ Note that

W 2
2 (p

(0), p∗) = E(x,v)∼p∗
(
∥x0 − x∥2 + ∥v∥2

)
≤ 2Ex∼p∗(x)∥x− x∗∥2 + 2∥x0 − x∗∥2 + Ev∼p∗(v)∥v∥2

≤ 2d

m
+ 2D2 +

d

L
.

▶ Choosing δ and n to bound the right hand side of (3)
completes the proof.
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▶ We have shown some theoretical results on the convergence
of MCMC algorithms.

▶ For the non-asymptotic analysis, similar results hold for
other distances (e.g., total variation distance, KL
divergence)

▶ These results have also been generalized to some
non-convex settings (Cheng et al., 2018)

▶ These non-asymptotic results show that diffusion MCMC is
a viable alternative to classic MCMC which requires little
input from the user and can be computationally more
efficient.



References 46/49

▶ W. Doeblin (1938), Exposé de la théorie des châines
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